//===- PDB.cpp ------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "PDB.h" #include "COFFLinkerContext.h" #include "Chunks.h" #include "Config.h" #include "DebugTypes.h" #include "Driver.h" #include "SymbolTable.h" #include "Symbols.h" #include "TypeMerger.h" #include "Writer.h" #include "lld/Common/Timer.h" #include "llvm/DebugInfo/CodeView/DebugFrameDataSubsection.h" #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" #include "llvm/DebugInfo/CodeView/DebugLinesSubsection.h" #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h" #include "llvm/DebugInfo/CodeView/GlobalTypeTableBuilder.h" #include "llvm/DebugInfo/CodeView/LazyRandomTypeCollection.h" #include "llvm/DebugInfo/CodeView/MergingTypeTableBuilder.h" #include "llvm/DebugInfo/CodeView/RecordName.h" #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h" #include "llvm/DebugInfo/CodeView/SymbolRecordHelpers.h" #include "llvm/DebugInfo/CodeView/SymbolSerializer.h" #include "llvm/DebugInfo/CodeView/TypeIndexDiscovery.h" #include "llvm/DebugInfo/MSF/MSFBuilder.h" #include "llvm/DebugInfo/MSF/MSFCommon.h" #include "llvm/DebugInfo/PDB/GenericError.h" #include "llvm/DebugInfo/PDB/Native/DbiModuleDescriptorBuilder.h" #include "llvm/DebugInfo/PDB/Native/DbiStream.h" #include "llvm/DebugInfo/PDB/Native/DbiStreamBuilder.h" #include "llvm/DebugInfo/PDB/Native/GSIStreamBuilder.h" #include "llvm/DebugInfo/PDB/Native/InfoStream.h" #include "llvm/DebugInfo/PDB/Native/InfoStreamBuilder.h" #include "llvm/DebugInfo/PDB/Native/NativeSession.h" #include "llvm/DebugInfo/PDB/Native/PDBFile.h" #include "llvm/DebugInfo/PDB/Native/PDBFileBuilder.h" #include "llvm/DebugInfo/PDB/Native/PDBStringTableBuilder.h" #include "llvm/DebugInfo/PDB/Native/TpiHashing.h" #include "llvm/DebugInfo/PDB/Native/TpiStream.h" #include "llvm/DebugInfo/PDB/Native/TpiStreamBuilder.h" #include "llvm/DebugInfo/PDB/PDB.h" #include "llvm/Object/COFF.h" #include "llvm/Object/CVDebugRecord.h" #include "llvm/Support/BinaryByteStream.h" #include "llvm/Support/CRC.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Errc.h" #include "llvm/Support/FormatAdapters.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/Path.h" #include "llvm/Support/ScopedPrinter.h" #include #include using namespace llvm; using namespace llvm::codeview; using namespace lld; using namespace lld::coff; using llvm::object::coff_section; using llvm::pdb::StringTableFixup; namespace { class DebugSHandler; class PDBLinker { friend DebugSHandler; public: PDBLinker(COFFLinkerContext &ctx) : builder(bAlloc()), tMerger(ctx, bAlloc()), ctx(ctx) { // This isn't strictly necessary, but link.exe usually puts an empty string // as the first "valid" string in the string table, so we do the same in // order to maintain as much byte-for-byte compatibility as possible. pdbStrTab.insert(""); } /// Emit the basic PDB structure: initial streams, headers, etc. void initialize(llvm::codeview::DebugInfo *buildId); /// Add natvis files specified on the command line. void addNatvisFiles(); /// Add named streams specified on the command line. void addNamedStreams(); /// Link CodeView from each object file in the symbol table into the PDB. void addObjectsToPDB(); /// Add every live, defined public symbol to the PDB. void addPublicsToPDB(); /// Link info for each import file in the symbol table into the PDB. void addImportFilesToPDB(); void createModuleDBI(ObjFile *file); /// Link CodeView from a single object file into the target (output) PDB. /// When a precompiled headers object is linked, its TPI map might be provided /// externally. void addDebug(TpiSource *source); void addDebugSymbols(TpiSource *source); // Analyze the symbol records to separate module symbols from global symbols, // find string references, and calculate how large the symbol stream will be // in the PDB. void analyzeSymbolSubsection(SectionChunk *debugChunk, uint32_t &moduleSymOffset, uint32_t &nextRelocIndex, std::vector &stringTableFixups, BinaryStreamRef symData); // Write all module symbols from all live debug symbol subsections of the // given object file into the given stream writer. Error writeAllModuleSymbolRecords(ObjFile *file, BinaryStreamWriter &writer); // Callback to copy and relocate debug symbols during PDB file writing. static Error commitSymbolsForObject(void *ctx, void *obj, BinaryStreamWriter &writer); // Copy the symbol record, relocate it, and fix the alignment if necessary. // Rewrite type indices in the record. Replace unrecognized symbol records // with S_SKIP records. void writeSymbolRecord(SectionChunk *debugChunk, ArrayRef sectionContents, CVSymbol sym, size_t alignedSize, uint32_t &nextRelocIndex, std::vector &storage); /// Add the section map and section contributions to the PDB. void addSections(ArrayRef sectionTable); /// Write the PDB to disk and store the Guid generated for it in *Guid. void commit(codeview::GUID *guid); // Print statistics regarding the final PDB void printStats(); private: void pdbMakeAbsolute(SmallVectorImpl &fileName); void translateIdSymbols(MutableArrayRef &recordData, TpiSource *source); void addCommonLinkerModuleSymbols(StringRef path, pdb::DbiModuleDescriptorBuilder &mod); pdb::PDBFileBuilder builder; TypeMerger tMerger; COFFLinkerContext &ctx; /// PDBs use a single global string table for filenames in the file checksum /// table. DebugStringTableSubsection pdbStrTab; llvm::SmallString<128> nativePath; // For statistics uint64_t globalSymbols = 0; uint64_t moduleSymbols = 0; uint64_t publicSymbols = 0; uint64_t nbTypeRecords = 0; uint64_t nbTypeRecordsBytes = 0; }; /// Represents an unrelocated DEBUG_S_FRAMEDATA subsection. struct UnrelocatedFpoData { SectionChunk *debugChunk = nullptr; ArrayRef subsecData; uint32_t relocIndex = 0; }; /// The size of the magic bytes at the beginning of a symbol section or stream. enum : uint32_t { kSymbolStreamMagicSize = 4 }; class DebugSHandler { PDBLinker &linker; /// The object file whose .debug$S sections we're processing. ObjFile &file; /// The result of merging type indices. TpiSource *source; /// The DEBUG_S_STRINGTABLE subsection. These strings are referred to by /// index from other records in the .debug$S section. All of these strings /// need to be added to the global PDB string table, and all references to /// these strings need to have their indices re-written to refer to the /// global PDB string table. DebugStringTableSubsectionRef cvStrTab; /// The DEBUG_S_FILECHKSMS subsection. As above, these are referred to /// by other records in the .debug$S section and need to be merged into the /// PDB. DebugChecksumsSubsectionRef checksums; /// The DEBUG_S_FRAMEDATA subsection(s). There can be more than one of /// these and they need not appear in any specific order. However, they /// contain string table references which need to be re-written, so we /// collect them all here and re-write them after all subsections have been /// discovered and processed. std::vector frameDataSubsecs; /// List of string table references in symbol records. Later they will be /// applied to the symbols during PDB writing. std::vector stringTableFixups; /// Sum of the size of all module symbol records across all .debug$S sections. /// Includes record realignment and the size of the symbol stream magic /// prefix. uint32_t moduleStreamSize = kSymbolStreamMagicSize; /// Next relocation index in the current .debug$S section. Resets every /// handleDebugS call. uint32_t nextRelocIndex = 0; void advanceRelocIndex(SectionChunk *debugChunk, ArrayRef subsec); void addUnrelocatedSubsection(SectionChunk *debugChunk, const DebugSubsectionRecord &ss); void addFrameDataSubsection(SectionChunk *debugChunk, const DebugSubsectionRecord &ss); void recordStringTableReferences(CVSymbol sym, uint32_t symOffset); public: DebugSHandler(PDBLinker &linker, ObjFile &file, TpiSource *source) : linker(linker), file(file), source(source) {} void handleDebugS(SectionChunk *debugChunk); void finish(); }; } // Visual Studio's debugger requires absolute paths in various places in the // PDB to work without additional configuration: // https://docs.microsoft.com/en-us/visualstudio/debugger/debug-source-files-common-properties-solution-property-pages-dialog-box void PDBLinker::pdbMakeAbsolute(SmallVectorImpl &fileName) { // The default behavior is to produce paths that are valid within the context // of the machine that you perform the link on. If the linker is running on // a POSIX system, we will output absolute POSIX paths. If the linker is // running on a Windows system, we will output absolute Windows paths. If the // user desires any other kind of behavior, they should explicitly pass // /pdbsourcepath, in which case we will treat the exact string the user // passed in as the gospel and not normalize, canonicalize it. if (sys::path::is_absolute(fileName, sys::path::Style::windows) || sys::path::is_absolute(fileName, sys::path::Style::posix)) return; // It's not absolute in any path syntax. Relative paths necessarily refer to // the local file system, so we can make it native without ending up with a // nonsensical path. if (ctx.config.pdbSourcePath.empty()) { sys::path::native(fileName); sys::fs::make_absolute(fileName); sys::path::remove_dots(fileName, true); return; } // Try to guess whether /PDBSOURCEPATH is a unix path or a windows path. // Since PDB's are more of a Windows thing, we make this conservative and only // decide that it's a unix path if we're fairly certain. Specifically, if // it starts with a forward slash. SmallString<128> absoluteFileName = ctx.config.pdbSourcePath; sys::path::Style guessedStyle = absoluteFileName.startswith("/") ? sys::path::Style::posix : sys::path::Style::windows; sys::path::append(absoluteFileName, guessedStyle, fileName); sys::path::native(absoluteFileName, guessedStyle); sys::path::remove_dots(absoluteFileName, true, guessedStyle); fileName = std::move(absoluteFileName); } static void addTypeInfo(pdb::TpiStreamBuilder &tpiBuilder, TypeCollection &typeTable) { // Start the TPI or IPI stream header. tpiBuilder.setVersionHeader(pdb::PdbTpiV80); // Flatten the in memory type table and hash each type. typeTable.ForEachRecord([&](TypeIndex ti, const CVType &type) { auto hash = pdb::hashTypeRecord(type); if (auto e = hash.takeError()) fatal("type hashing error"); tpiBuilder.addTypeRecord(type.RecordData, *hash); }); } static void addGHashTypeInfo(COFFLinkerContext &ctx, pdb::PDBFileBuilder &builder) { // Start the TPI or IPI stream header. builder.getTpiBuilder().setVersionHeader(pdb::PdbTpiV80); builder.getIpiBuilder().setVersionHeader(pdb::PdbTpiV80); for (TpiSource *source : ctx.tpiSourceList) { builder.getTpiBuilder().addTypeRecords(source->mergedTpi.recs, source->mergedTpi.recSizes, source->mergedTpi.recHashes); builder.getIpiBuilder().addTypeRecords(source->mergedIpi.recs, source->mergedIpi.recSizes, source->mergedIpi.recHashes); } } static void recordStringTableReferences(CVSymbol sym, uint32_t symOffset, std::vector &stringTableFixups) { // For now we only handle S_FILESTATIC, but we may need the same logic for // S_DEFRANGE and S_DEFRANGE_SUBFIELD. However, I cannot seem to generate any // PDBs that contain these types of records, so because of the uncertainty // they are omitted here until we can prove that it's necessary. switch (sym.kind()) { case SymbolKind::S_FILESTATIC: { // FileStaticSym::ModFileOffset uint32_t ref = *reinterpret_cast(&sym.data()[8]); stringTableFixups.push_back({ref, symOffset + 8}); break; } case SymbolKind::S_DEFRANGE: case SymbolKind::S_DEFRANGE_SUBFIELD: log("Not fixing up string table reference in S_DEFRANGE / " "S_DEFRANGE_SUBFIELD record"); break; default: break; } } static SymbolKind symbolKind(ArrayRef recordData) { const RecordPrefix *prefix = reinterpret_cast(recordData.data()); return static_cast(uint16_t(prefix->RecordKind)); } /// MSVC translates S_PROC_ID_END to S_END, and S_[LG]PROC32_ID to S_[LG]PROC32 void PDBLinker::translateIdSymbols(MutableArrayRef &recordData, TpiSource *source) { RecordPrefix *prefix = reinterpret_cast(recordData.data()); SymbolKind kind = symbolKind(recordData); if (kind == SymbolKind::S_PROC_ID_END) { prefix->RecordKind = SymbolKind::S_END; return; } // In an object file, GPROC32_ID has an embedded reference which refers to the // single object file type index namespace. This has already been translated // to the PDB file's ID stream index space, but we need to convert this to a // symbol that refers to the type stream index space. So we remap again from // ID index space to type index space. if (kind == SymbolKind::S_GPROC32_ID || kind == SymbolKind::S_LPROC32_ID) { SmallVector refs; auto content = recordData.drop_front(sizeof(RecordPrefix)); CVSymbol sym(recordData); discoverTypeIndicesInSymbol(sym, refs); assert(refs.size() == 1); assert(refs.front().Count == 1); TypeIndex *ti = reinterpret_cast(content.data() + refs[0].Offset); // `ti` is the index of a FuncIdRecord or MemberFuncIdRecord which lives in // the IPI stream, whose `FunctionType` member refers to the TPI stream. // Note that LF_FUNC_ID and LF_MFUNC_ID have the same record layout, and // in both cases we just need the second type index. if (!ti->isSimple() && !ti->isNoneType()) { TypeIndex newType = TypeIndex(SimpleTypeKind::NotTranslated); if (ctx.config.debugGHashes) { auto idToType = tMerger.funcIdToType.find(*ti); if (idToType != tMerger.funcIdToType.end()) newType = idToType->second; } else { if (tMerger.getIDTable().contains(*ti)) { CVType funcIdData = tMerger.getIDTable().getType(*ti); if (funcIdData.length() >= 8 && (funcIdData.kind() == LF_FUNC_ID || funcIdData.kind() == LF_MFUNC_ID)) { newType = *reinterpret_cast(&funcIdData.data()[8]); } } } if (newType == TypeIndex(SimpleTypeKind::NotTranslated)) { warn(formatv("procedure symbol record for `{0}` in {1} refers to PDB " "item index {2:X} which is not a valid function ID record", getSymbolName(CVSymbol(recordData)), source->file->getName(), ti->getIndex())); } *ti = newType; } kind = (kind == SymbolKind::S_GPROC32_ID) ? SymbolKind::S_GPROC32 : SymbolKind::S_LPROC32; prefix->RecordKind = uint16_t(kind); } } namespace { struct ScopeRecord { ulittle32_t ptrParent; ulittle32_t ptrEnd; }; } // namespace /// Given a pointer to a symbol record that opens a scope, return a pointer to /// the scope fields. static ScopeRecord *getSymbolScopeFields(void *sym) { return reinterpret_cast(reinterpret_cast(sym) + sizeof(RecordPrefix)); } // To open a scope, push the offset of the current symbol record onto the // stack. static void scopeStackOpen(SmallVectorImpl &stack, std::vector &storage) { stack.push_back(storage.size()); } // To close a scope, update the record that opened the scope. static void scopeStackClose(SmallVectorImpl &stack, std::vector &storage, uint32_t storageBaseOffset, ObjFile *file) { if (stack.empty()) { warn("symbol scopes are not balanced in " + file->getName()); return; } // Update ptrEnd of the record that opened the scope to point to the // current record, if we are writing into the module symbol stream. uint32_t offOpen = stack.pop_back_val(); uint32_t offEnd = storageBaseOffset + storage.size(); uint32_t offParent = stack.empty() ? 0 : (stack.back() + storageBaseOffset); ScopeRecord *scopeRec = getSymbolScopeFields(&(storage)[offOpen]); scopeRec->ptrParent = offParent; scopeRec->ptrEnd = offEnd; } static bool symbolGoesInModuleStream(const CVSymbol &sym, unsigned symbolScopeDepth) { switch (sym.kind()) { case SymbolKind::S_GDATA32: case SymbolKind::S_GTHREAD32: // We really should not be seeing S_PROCREF and S_LPROCREF in the first place // since they are synthesized by the linker in response to S_GPROC32 and // S_LPROC32, but if we do see them, don't put them in the module stream I // guess. case SymbolKind::S_PROCREF: case SymbolKind::S_LPROCREF: return false; // S_UDT and S_CONSTANT records go in the module stream if it is not a global record. case SymbolKind::S_UDT: case SymbolKind::S_CONSTANT: return symbolScopeDepth > 0; // S_GDATA32 does not go in the module stream, but S_LDATA32 does. case SymbolKind::S_LDATA32: case SymbolKind::S_LTHREAD32: default: return true; } } static bool symbolGoesInGlobalsStream(const CVSymbol &sym, unsigned symbolScopeDepth) { switch (sym.kind()) { case SymbolKind::S_GDATA32: case SymbolKind::S_GTHREAD32: case SymbolKind::S_GPROC32: case SymbolKind::S_LPROC32: case SymbolKind::S_GPROC32_ID: case SymbolKind::S_LPROC32_ID: // We really should not be seeing S_PROCREF and S_LPROCREF in the first place // since they are synthesized by the linker in response to S_GPROC32 and // S_LPROC32, but if we do see them, copy them straight through. case SymbolKind::S_PROCREF: case SymbolKind::S_LPROCREF: return true; // Records that go in the globals stream, unless they are function-local. case SymbolKind::S_UDT: case SymbolKind::S_LDATA32: case SymbolKind::S_LTHREAD32: case SymbolKind::S_CONSTANT: return symbolScopeDepth == 0; default: return false; } } static void addGlobalSymbol(pdb::GSIStreamBuilder &builder, uint16_t modIndex, unsigned symOffset, std::vector &symStorage) { CVSymbol sym{ArrayRef(symStorage)}; switch (sym.kind()) { case SymbolKind::S_CONSTANT: case SymbolKind::S_UDT: case SymbolKind::S_GDATA32: case SymbolKind::S_GTHREAD32: case SymbolKind::S_LTHREAD32: case SymbolKind::S_LDATA32: case SymbolKind::S_PROCREF: case SymbolKind::S_LPROCREF: { // sym is a temporary object, so we have to copy and reallocate the record // to stabilize it. uint8_t *mem = bAlloc().Allocate(sym.length()); memcpy(mem, sym.data().data(), sym.length()); builder.addGlobalSymbol(CVSymbol(ArrayRef(mem, sym.length()))); break; } case SymbolKind::S_GPROC32: case SymbolKind::S_LPROC32: { SymbolRecordKind k = SymbolRecordKind::ProcRefSym; if (sym.kind() == SymbolKind::S_LPROC32) k = SymbolRecordKind::LocalProcRef; ProcRefSym ps(k); ps.Module = modIndex; // For some reason, MSVC seems to add one to this value. ++ps.Module; ps.Name = getSymbolName(sym); ps.SumName = 0; ps.SymOffset = symOffset; builder.addGlobalSymbol(ps); break; } default: llvm_unreachable("Invalid symbol kind!"); } } // Check if the given symbol record was padded for alignment. If so, zero out // the padding bytes and update the record prefix with the new size. static void fixRecordAlignment(MutableArrayRef recordBytes, size_t oldSize) { size_t alignedSize = recordBytes.size(); if (oldSize == alignedSize) return; reinterpret_cast(recordBytes.data())->RecordLen = alignedSize - 2; memset(recordBytes.data() + oldSize, 0, alignedSize - oldSize); } // Replace any record with a skip record of the same size. This is useful when // we have reserved size for a symbol record, but type index remapping fails. static void replaceWithSkipRecord(MutableArrayRef recordBytes) { memset(recordBytes.data(), 0, recordBytes.size()); auto *prefix = reinterpret_cast(recordBytes.data()); prefix->RecordKind = SymbolKind::S_SKIP; prefix->RecordLen = recordBytes.size() - 2; } // Copy the symbol record, relocate it, and fix the alignment if necessary. // Rewrite type indices in the record. Replace unrecognized symbol records with // S_SKIP records. void PDBLinker::writeSymbolRecord(SectionChunk *debugChunk, ArrayRef sectionContents, CVSymbol sym, size_t alignedSize, uint32_t &nextRelocIndex, std::vector &storage) { // Allocate space for the new record at the end of the storage. storage.resize(storage.size() + alignedSize); auto recordBytes = MutableArrayRef(storage).take_back(alignedSize); // Copy the symbol record and relocate it. debugChunk->writeAndRelocateSubsection(sectionContents, sym.data(), nextRelocIndex, recordBytes.data()); fixRecordAlignment(recordBytes, sym.length()); // Re-map all the type index references. TpiSource *source = debugChunk->file->debugTypesObj; if (!source->remapTypesInSymbolRecord(recordBytes)) { log("ignoring unknown symbol record with kind 0x" + utohexstr(sym.kind())); replaceWithSkipRecord(recordBytes); } // An object file may have S_xxx_ID symbols, but these get converted to // "real" symbols in a PDB. translateIdSymbols(recordBytes, source); } void PDBLinker::analyzeSymbolSubsection( SectionChunk *debugChunk, uint32_t &moduleSymOffset, uint32_t &nextRelocIndex, std::vector &stringTableFixups, BinaryStreamRef symData) { ObjFile *file = debugChunk->file; uint32_t moduleSymStart = moduleSymOffset; uint32_t scopeLevel = 0; std::vector storage; ArrayRef sectionContents = debugChunk->getContents(); ArrayRef symsBuffer; cantFail(symData.readBytes(0, symData.getLength(), symsBuffer)); if (symsBuffer.empty()) warn("empty symbols subsection in " + file->getName()); Error ec = forEachCodeViewRecord( symsBuffer, [&](CVSymbol sym) -> llvm::Error { // Track the current scope. if (symbolOpensScope(sym.kind())) ++scopeLevel; else if (symbolEndsScope(sym.kind())) --scopeLevel; uint32_t alignedSize = alignTo(sym.length(), alignOf(CodeViewContainer::Pdb)); // Copy global records. Some global records (mainly procedures) // reference the current offset into the module stream. if (symbolGoesInGlobalsStream(sym, scopeLevel)) { storage.clear(); writeSymbolRecord(debugChunk, sectionContents, sym, alignedSize, nextRelocIndex, storage); addGlobalSymbol(builder.getGsiBuilder(), file->moduleDBI->getModuleIndex(), moduleSymOffset, storage); ++globalSymbols; } // Update the module stream offset and record any string table index // references. There are very few of these and they will be rewritten // later during PDB writing. if (symbolGoesInModuleStream(sym, scopeLevel)) { recordStringTableReferences(sym, moduleSymOffset, stringTableFixups); moduleSymOffset += alignedSize; ++moduleSymbols; } return Error::success(); }); // If we encountered corrupt records, ignore the whole subsection. If we wrote // any partial records, undo that. For globals, we just keep what we have and // continue. if (ec) { warn("corrupt symbol records in " + file->getName()); moduleSymOffset = moduleSymStart; consumeError(std::move(ec)); } } Error PDBLinker::writeAllModuleSymbolRecords(ObjFile *file, BinaryStreamWriter &writer) { ExitOnError exitOnErr; std::vector storage; SmallVector scopes; // Visit all live .debug$S sections a second time, and write them to the PDB. for (SectionChunk *debugChunk : file->getDebugChunks()) { if (!debugChunk->live || debugChunk->getSize() == 0 || debugChunk->getSectionName() != ".debug$S") continue; ArrayRef sectionContents = debugChunk->getContents(); auto contents = SectionChunk::consumeDebugMagic(sectionContents, ".debug$S"); DebugSubsectionArray subsections; BinaryStreamReader reader(contents, support::little); exitOnErr(reader.readArray(subsections, contents.size())); uint32_t nextRelocIndex = 0; for (const DebugSubsectionRecord &ss : subsections) { if (ss.kind() != DebugSubsectionKind::Symbols) continue; uint32_t moduleSymStart = writer.getOffset(); scopes.clear(); storage.clear(); ArrayRef symsBuffer; BinaryStreamRef sr = ss.getRecordData(); cantFail(sr.readBytes(0, sr.getLength(), symsBuffer)); auto ec = forEachCodeViewRecord( symsBuffer, [&](CVSymbol sym) -> llvm::Error { // Track the current scope. Only update records in the postmerge // pass. if (symbolOpensScope(sym.kind())) scopeStackOpen(scopes, storage); else if (symbolEndsScope(sym.kind())) scopeStackClose(scopes, storage, moduleSymStart, file); // Copy, relocate, and rewrite each module symbol. if (symbolGoesInModuleStream(sym, scopes.size())) { uint32_t alignedSize = alignTo(sym.length(), alignOf(CodeViewContainer::Pdb)); writeSymbolRecord(debugChunk, sectionContents, sym, alignedSize, nextRelocIndex, storage); } return Error::success(); }); // If we encounter corrupt records in the second pass, ignore them. We // already warned about them in the first analysis pass. if (ec) { consumeError(std::move(ec)); storage.clear(); } // Writing bytes has a very high overhead, so write the entire subsection // at once. // TODO: Consider buffering symbols for the entire object file to reduce // overhead even further. if (Error e = writer.writeBytes(storage)) return e; } } return Error::success(); } Error PDBLinker::commitSymbolsForObject(void *ctx, void *obj, BinaryStreamWriter &writer) { return static_cast(ctx)->writeAllModuleSymbolRecords( static_cast(obj), writer); } static pdb::SectionContrib createSectionContrib(COFFLinkerContext &ctx, const Chunk *c, uint32_t modi) { OutputSection *os = c ? ctx.getOutputSection(c) : nullptr; pdb::SectionContrib sc; memset(&sc, 0, sizeof(sc)); sc.ISect = os ? os->sectionIndex : llvm::pdb::kInvalidStreamIndex; sc.Off = c && os ? c->getRVA() - os->getRVA() : 0; sc.Size = c ? c->getSize() : -1; if (auto *secChunk = dyn_cast_or_null(c)) { sc.Characteristics = secChunk->header->Characteristics; sc.Imod = secChunk->file->moduleDBI->getModuleIndex(); ArrayRef contents = secChunk->getContents(); JamCRC crc(0); crc.update(contents); sc.DataCrc = crc.getCRC(); } else { sc.Characteristics = os ? os->header.Characteristics : 0; sc.Imod = modi; } sc.RelocCrc = 0; // FIXME return sc; } static uint32_t translateStringTableIndex(uint32_t objIndex, const DebugStringTableSubsectionRef &objStrTable, DebugStringTableSubsection &pdbStrTable) { auto expectedString = objStrTable.getString(objIndex); if (!expectedString) { warn("Invalid string table reference"); consumeError(expectedString.takeError()); return 0; } return pdbStrTable.insert(*expectedString); } void DebugSHandler::handleDebugS(SectionChunk *debugChunk) { // Note that we are processing the *unrelocated* section contents. They will // be relocated later during PDB writing. ArrayRef contents = debugChunk->getContents(); contents = SectionChunk::consumeDebugMagic(contents, ".debug$S"); DebugSubsectionArray subsections; BinaryStreamReader reader(contents, support::little); ExitOnError exitOnErr; exitOnErr(reader.readArray(subsections, contents.size())); debugChunk->sortRelocations(); // Reset the relocation index, since this is a new section. nextRelocIndex = 0; for (const DebugSubsectionRecord &ss : subsections) { // Ignore subsections with the 'ignore' bit. Some versions of the Visual C++ // runtime have subsections with this bit set. if (uint32_t(ss.kind()) & codeview::SubsectionIgnoreFlag) continue; switch (ss.kind()) { case DebugSubsectionKind::StringTable: { assert(!cvStrTab.valid() && "Encountered multiple string table subsections!"); exitOnErr(cvStrTab.initialize(ss.getRecordData())); break; } case DebugSubsectionKind::FileChecksums: assert(!checksums.valid() && "Encountered multiple checksum subsections!"); exitOnErr(checksums.initialize(ss.getRecordData())); break; case DebugSubsectionKind::Lines: case DebugSubsectionKind::InlineeLines: addUnrelocatedSubsection(debugChunk, ss); break; case DebugSubsectionKind::FrameData: addFrameDataSubsection(debugChunk, ss); break; case DebugSubsectionKind::Symbols: linker.analyzeSymbolSubsection(debugChunk, moduleStreamSize, nextRelocIndex, stringTableFixups, ss.getRecordData()); break; case DebugSubsectionKind::CrossScopeImports: case DebugSubsectionKind::CrossScopeExports: // These appear to relate to cross-module optimization, so we might use // these for ThinLTO. break; case DebugSubsectionKind::ILLines: case DebugSubsectionKind::FuncMDTokenMap: case DebugSubsectionKind::TypeMDTokenMap: case DebugSubsectionKind::MergedAssemblyInput: // These appear to relate to .Net assembly info. break; case DebugSubsectionKind::CoffSymbolRVA: // Unclear what this is for. break; case DebugSubsectionKind::XfgHashType: case DebugSubsectionKind::XfgHashVirtual: break; default: warn("ignoring unknown debug$S subsection kind 0x" + utohexstr(uint32_t(ss.kind())) + " in file " + toString(&file)); break; } } } void DebugSHandler::advanceRelocIndex(SectionChunk *sc, ArrayRef subsec) { ptrdiff_t vaBegin = subsec.data() - sc->getContents().data(); assert(vaBegin > 0); auto relocs = sc->getRelocs(); for (; nextRelocIndex < relocs.size(); ++nextRelocIndex) { if (relocs[nextRelocIndex].VirtualAddress >= vaBegin) break; } } namespace { /// Wrapper class for unrelocated line and inlinee line subsections, which /// require only relocation and type index remapping to add to the PDB. class UnrelocatedDebugSubsection : public DebugSubsection { public: UnrelocatedDebugSubsection(DebugSubsectionKind k, SectionChunk *debugChunk, ArrayRef subsec, uint32_t relocIndex) : DebugSubsection(k), debugChunk(debugChunk), subsec(subsec), relocIndex(relocIndex) {} Error commit(BinaryStreamWriter &writer) const override; uint32_t calculateSerializedSize() const override { return subsec.size(); } SectionChunk *debugChunk; ArrayRef subsec; uint32_t relocIndex; }; } // namespace Error UnrelocatedDebugSubsection::commit(BinaryStreamWriter &writer) const { std::vector relocatedBytes(subsec.size()); uint32_t tmpRelocIndex = relocIndex; debugChunk->writeAndRelocateSubsection(debugChunk->getContents(), subsec, tmpRelocIndex, relocatedBytes.data()); // Remap type indices in inlinee line records in place. Skip the remapping if // there is no type source info. if (kind() == DebugSubsectionKind::InlineeLines && debugChunk->file->debugTypesObj) { TpiSource *source = debugChunk->file->debugTypesObj; DebugInlineeLinesSubsectionRef inlineeLines; BinaryStreamReader storageReader(relocatedBytes, support::little); ExitOnError exitOnErr; exitOnErr(inlineeLines.initialize(storageReader)); for (const InlineeSourceLine &line : inlineeLines) { TypeIndex &inlinee = *const_cast(&line.Header->Inlinee); if (!source->remapTypeIndex(inlinee, TiRefKind::IndexRef)) { log("bad inlinee line record in " + debugChunk->file->getName() + " with bad inlinee index 0x" + utohexstr(inlinee.getIndex())); } } } return writer.writeBytes(relocatedBytes); } void DebugSHandler::addUnrelocatedSubsection(SectionChunk *debugChunk, const DebugSubsectionRecord &ss) { ArrayRef subsec; BinaryStreamRef sr = ss.getRecordData(); cantFail(sr.readBytes(0, sr.getLength(), subsec)); advanceRelocIndex(debugChunk, subsec); file.moduleDBI->addDebugSubsection( std::make_shared(ss.kind(), debugChunk, subsec, nextRelocIndex)); } void DebugSHandler::addFrameDataSubsection(SectionChunk *debugChunk, const DebugSubsectionRecord &ss) { // We need to re-write string table indices here, so save off all // frame data subsections until we've processed the entire list of // subsections so that we can be sure we have the string table. ArrayRef subsec; BinaryStreamRef sr = ss.getRecordData(); cantFail(sr.readBytes(0, sr.getLength(), subsec)); advanceRelocIndex(debugChunk, subsec); frameDataSubsecs.push_back({debugChunk, subsec, nextRelocIndex}); } static Expected getFileName(const DebugStringTableSubsectionRef &strings, const DebugChecksumsSubsectionRef &checksums, uint32_t fileID) { auto iter = checksums.getArray().at(fileID); if (iter == checksums.getArray().end()) return make_error(cv_error_code::no_records); uint32_t offset = iter->FileNameOffset; return strings.getString(offset); } void DebugSHandler::finish() { pdb::DbiStreamBuilder &dbiBuilder = linker.builder.getDbiBuilder(); // If we found any symbol records for the module symbol stream, defer them. if (moduleStreamSize > kSymbolStreamMagicSize) file.moduleDBI->addUnmergedSymbols(&file, moduleStreamSize - kSymbolStreamMagicSize); // We should have seen all debug subsections across the entire object file now // which means that if a StringTable subsection and Checksums subsection were // present, now is the time to handle them. if (!cvStrTab.valid()) { if (checksums.valid()) fatal(".debug$S sections with a checksums subsection must also contain a " "string table subsection"); if (!stringTableFixups.empty()) warn("No StringTable subsection was encountered, but there are string " "table references"); return; } ExitOnError exitOnErr; // Handle FPO data. Each subsection begins with a single image base // relocation, which is then added to the RvaStart of each frame data record // when it is added to the PDB. The string table indices for the FPO program // must also be rewritten to use the PDB string table. for (const UnrelocatedFpoData &subsec : frameDataSubsecs) { // Relocate the first four bytes of the subection and reinterpret them as a // 32 bit integer. SectionChunk *debugChunk = subsec.debugChunk; ArrayRef subsecData = subsec.subsecData; uint32_t relocIndex = subsec.relocIndex; auto unrelocatedRvaStart = subsecData.take_front(sizeof(uint32_t)); uint8_t relocatedRvaStart[sizeof(uint32_t)]; debugChunk->writeAndRelocateSubsection(debugChunk->getContents(), unrelocatedRvaStart, relocIndex, &relocatedRvaStart[0]); uint32_t rvaStart; memcpy(&rvaStart, &relocatedRvaStart[0], sizeof(uint32_t)); // Copy each frame data record, add in rvaStart, translate string table // indices, and add the record to the PDB. DebugFrameDataSubsectionRef fds; BinaryStreamReader reader(subsecData, support::little); exitOnErr(fds.initialize(reader)); for (codeview::FrameData fd : fds) { fd.RvaStart += rvaStart; fd.FrameFunc = translateStringTableIndex(fd.FrameFunc, cvStrTab, linker.pdbStrTab); dbiBuilder.addNewFpoData(fd); } } // Translate the fixups and pass them off to the module builder so they will // be applied during writing. for (StringTableFixup &ref : stringTableFixups) { ref.StrTabOffset = translateStringTableIndex(ref.StrTabOffset, cvStrTab, linker.pdbStrTab); } file.moduleDBI->setStringTableFixups(std::move(stringTableFixups)); // Make a new file checksum table that refers to offsets in the PDB-wide // string table. Generally the string table subsection appears after the // checksum table, so we have to do this after looping over all the // subsections. The new checksum table must have the exact same layout and // size as the original. Otherwise, the file references in the line and // inlinee line tables will be incorrect. auto newChecksums = std::make_unique(linker.pdbStrTab); for (const FileChecksumEntry &fc : checksums) { SmallString<128> filename = exitOnErr(cvStrTab.getString(fc.FileNameOffset)); linker.pdbMakeAbsolute(filename); exitOnErr(dbiBuilder.addModuleSourceFile(*file.moduleDBI, filename)); newChecksums->addChecksum(filename, fc.Kind, fc.Checksum); } assert(checksums.getArray().getUnderlyingStream().getLength() == newChecksums->calculateSerializedSize() && "file checksum table must have same layout"); file.moduleDBI->addDebugSubsection(std::move(newChecksums)); } static void warnUnusable(InputFile *f, Error e, bool shouldWarn) { if (!shouldWarn) { consumeError(std::move(e)); return; } auto msg = "Cannot use debug info for '" + toString(f) + "' [LNK4099]"; if (e) warn(msg + "\n>>> failed to load reference " + toString(std::move(e))); else warn(msg); } // Allocate memory for a .debug$S / .debug$F section and relocate it. static ArrayRef relocateDebugChunk(SectionChunk &debugChunk) { uint8_t *buffer = bAlloc().Allocate(debugChunk.getSize()); assert(debugChunk.getOutputSectionIdx() == 0 && "debug sections should not be in output sections"); debugChunk.writeTo(buffer); return ArrayRef(buffer, debugChunk.getSize()); } void PDBLinker::addDebugSymbols(TpiSource *source) { // If this TpiSource doesn't have an object file, it must be from a type // server PDB. Type server PDBs do not contain symbols, so stop here. if (!source->file) return; ScopedTimer t(ctx.symbolMergingTimer); ExitOnError exitOnErr; pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder(); DebugSHandler dsh(*this, *source->file, source); // Now do all live .debug$S and .debug$F sections. for (SectionChunk *debugChunk : source->file->getDebugChunks()) { if (!debugChunk->live || debugChunk->getSize() == 0) continue; bool isDebugS = debugChunk->getSectionName() == ".debug$S"; bool isDebugF = debugChunk->getSectionName() == ".debug$F"; if (!isDebugS && !isDebugF) continue; if (isDebugS) { dsh.handleDebugS(debugChunk); } else if (isDebugF) { // Handle old FPO data .debug$F sections. These are relatively rare. ArrayRef relocatedDebugContents = relocateDebugChunk(*debugChunk); FixedStreamArray fpoRecords; BinaryStreamReader reader(relocatedDebugContents, support::little); uint32_t count = relocatedDebugContents.size() / sizeof(object::FpoData); exitOnErr(reader.readArray(fpoRecords, count)); // These are already relocated and don't refer to the string table, so we // can just copy it. for (const object::FpoData &fd : fpoRecords) dbiBuilder.addOldFpoData(fd); } } // Do any post-processing now that all .debug$S sections have been processed. dsh.finish(); } // Add a module descriptor for every object file. We need to put an absolute // path to the object into the PDB. If this is a plain object, we make its // path absolute. If it's an object in an archive, we make the archive path // absolute. void PDBLinker::createModuleDBI(ObjFile *file) { pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder(); SmallString<128> objName; ExitOnError exitOnErr; bool inArchive = !file->parentName.empty(); objName = inArchive ? file->parentName : file->getName(); pdbMakeAbsolute(objName); StringRef modName = inArchive ? file->getName() : objName.str(); file->moduleDBI = &exitOnErr(dbiBuilder.addModuleInfo(modName)); file->moduleDBI->setObjFileName(objName); file->moduleDBI->setMergeSymbolsCallback(this, &commitSymbolsForObject); ArrayRef chunks = file->getChunks(); uint32_t modi = file->moduleDBI->getModuleIndex(); for (Chunk *c : chunks) { auto *secChunk = dyn_cast(c); if (!secChunk || !secChunk->live) continue; pdb::SectionContrib sc = createSectionContrib(ctx, secChunk, modi); file->moduleDBI->setFirstSectionContrib(sc); break; } } void PDBLinker::addDebug(TpiSource *source) { // Before we can process symbol substreams from .debug$S, we need to process // type information, file checksums, and the string table. Add type info to // the PDB first, so that we can get the map from object file type and item // indices to PDB type and item indices. If we are using ghashes, types have // already been merged. if (!ctx.config.debugGHashes) { ScopedTimer t(ctx.typeMergingTimer); if (Error e = source->mergeDebugT(&tMerger)) { // If type merging failed, ignore the symbols. warnUnusable(source->file, std::move(e), ctx.config.warnDebugInfoUnusable); return; } } // If type merging failed, ignore the symbols. Error typeError = std::move(source->typeMergingError); if (typeError) { warnUnusable(source->file, std::move(typeError), ctx.config.warnDebugInfoUnusable); return; } addDebugSymbols(source); } static pdb::BulkPublic createPublic(COFFLinkerContext &ctx, Defined *def) { pdb::BulkPublic pub; pub.Name = def->getName().data(); pub.NameLen = def->getName().size(); PublicSymFlags flags = PublicSymFlags::None; if (auto *d = dyn_cast(def)) { if (d->getCOFFSymbol().isFunctionDefinition()) flags = PublicSymFlags::Function; } else if (isa(def)) { flags = PublicSymFlags::Function; } pub.setFlags(flags); OutputSection *os = ctx.getOutputSection(def->getChunk()); assert(os && "all publics should be in final image"); pub.Offset = def->getRVA() - os->getRVA(); pub.Segment = os->sectionIndex; return pub; } // Add all object files to the PDB. Merge .debug$T sections into IpiData and // TpiData. void PDBLinker::addObjectsToPDB() { ScopedTimer t1(ctx.addObjectsTimer); // Create module descriptors for (ObjFile *obj : ctx.objFileInstances) createModuleDBI(obj); // Reorder dependency type sources to come first. tMerger.sortDependencies(); // Merge type information from input files using global type hashing. if (ctx.config.debugGHashes) tMerger.mergeTypesWithGHash(); // Merge dependencies and then regular objects. for (TpiSource *source : tMerger.dependencySources) addDebug(source); for (TpiSource *source : tMerger.objectSources) addDebug(source); builder.getStringTableBuilder().setStrings(pdbStrTab); t1.stop(); // Construct TPI and IPI stream contents. ScopedTimer t2(ctx.tpiStreamLayoutTimer); // Collect all the merged types. if (ctx.config.debugGHashes) { addGHashTypeInfo(ctx, builder); } else { addTypeInfo(builder.getTpiBuilder(), tMerger.getTypeTable()); addTypeInfo(builder.getIpiBuilder(), tMerger.getIDTable()); } t2.stop(); if (ctx.config.showSummary) { for (TpiSource *source : ctx.tpiSourceList) { nbTypeRecords += source->nbTypeRecords; nbTypeRecordsBytes += source->nbTypeRecordsBytes; } } } void PDBLinker::addPublicsToPDB() { ScopedTimer t3(ctx.publicsLayoutTimer); // Compute the public symbols. auto &gsiBuilder = builder.getGsiBuilder(); std::vector publics; ctx.symtab.forEachSymbol([&publics, this](Symbol *s) { // Only emit external, defined, live symbols that have a chunk. Static, // non-external symbols do not appear in the symbol table. auto *def = dyn_cast(s); if (def && def->isLive() && def->getChunk()) { // Don't emit a public symbol for coverage data symbols. LLVM code // coverage (and PGO) create a __profd_ and __profc_ symbol for every // function. C++ mangled names are long, and tend to dominate symbol size. // Including these names triples the size of the public stream, which // results in bloated PDB files. These symbols generally are not helpful // for debugging, so suppress them. StringRef name = def->getName(); if (name.data()[0] == '_' && name.data()[1] == '_') { // Drop the '_' prefix for x86. if (ctx.config.machine == I386) name = name.drop_front(1); if (name.startswith("__profd_") || name.startswith("__profc_") || name.startswith("__covrec_")) { return; } } publics.push_back(createPublic(ctx, def)); } }); if (!publics.empty()) { publicSymbols = publics.size(); gsiBuilder.addPublicSymbols(std::move(publics)); } } void PDBLinker::printStats() { if (!ctx.config.showSummary) return; SmallString<256> buffer; raw_svector_ostream stream(buffer); stream << center_justify("Summary", 80) << '\n' << std::string(80, '-') << '\n'; auto print = [&](uint64_t v, StringRef s) { stream << format_decimal(v, 15) << " " << s << '\n'; }; print(ctx.objFileInstances.size(), "Input OBJ files (expanded from all cmd-line inputs)"); print(ctx.typeServerSourceMappings.size(), "PDB type server dependencies"); print(ctx.precompSourceMappings.size(), "Precomp OBJ dependencies"); print(nbTypeRecords, "Input type records"); print(nbTypeRecordsBytes, "Input type records bytes"); print(builder.getTpiBuilder().getRecordCount(), "Merged TPI records"); print(builder.getIpiBuilder().getRecordCount(), "Merged IPI records"); print(pdbStrTab.size(), "Output PDB strings"); print(globalSymbols, "Global symbol records"); print(moduleSymbols, "Module symbol records"); print(publicSymbols, "Public symbol records"); auto printLargeInputTypeRecs = [&](StringRef name, ArrayRef recCounts, TypeCollection &records) { // Figure out which type indices were responsible for the most duplicate // bytes in the input files. These should be frequently emitted LF_CLASS and // LF_FIELDLIST records. struct TypeSizeInfo { uint32_t typeSize; uint32_t dupCount; TypeIndex typeIndex; uint64_t totalInputSize() const { return uint64_t(dupCount) * typeSize; } bool operator<(const TypeSizeInfo &rhs) const { if (totalInputSize() == rhs.totalInputSize()) return typeIndex < rhs.typeIndex; return totalInputSize() < rhs.totalInputSize(); } }; SmallVector tsis; for (auto e : enumerate(recCounts)) { TypeIndex typeIndex = TypeIndex::fromArrayIndex(e.index()); uint32_t typeSize = records.getType(typeIndex).length(); uint32_t dupCount = e.value(); tsis.push_back({typeSize, dupCount, typeIndex}); } if (!tsis.empty()) { stream << "\nTop 10 types responsible for the most " << name << " input:\n"; stream << " index total bytes count size\n"; llvm::sort(tsis); unsigned i = 0; for (const auto &tsi : reverse(tsis)) { stream << formatv(" {0,10:X}: {1,14:N} = {2,5:N} * {3,6:N}\n", tsi.typeIndex.getIndex(), tsi.totalInputSize(), tsi.dupCount, tsi.typeSize); if (++i >= 10) break; } stream << "Run llvm-pdbutil to print details about a particular record:\n"; stream << formatv("llvm-pdbutil dump -{0}s -{0}-index {1:X} {2}\n", (name == "TPI" ? "type" : "id"), tsis.back().typeIndex.getIndex(), ctx.config.pdbPath); } }; if (!ctx.config.debugGHashes) { // FIXME: Reimplement for ghash. printLargeInputTypeRecs("TPI", tMerger.tpiCounts, tMerger.getTypeTable()); printLargeInputTypeRecs("IPI", tMerger.ipiCounts, tMerger.getIDTable()); } message(buffer); } void PDBLinker::addNatvisFiles() { for (StringRef file : ctx.config.natvisFiles) { ErrorOr> dataOrErr = MemoryBuffer::getFile(file); if (!dataOrErr) { warn("Cannot open input file: " + file); continue; } std::unique_ptr data = std::move(*dataOrErr); // Can't use takeBuffer() here since addInjectedSource() takes ownership. if (ctx.driver.tar) ctx.driver.tar->append(relativeToRoot(data->getBufferIdentifier()), data->getBuffer()); builder.addInjectedSource(file, std::move(data)); } } void PDBLinker::addNamedStreams() { ExitOnError exitOnErr; for (const auto &streamFile : ctx.config.namedStreams) { const StringRef stream = streamFile.getKey(), file = streamFile.getValue(); ErrorOr> dataOrErr = MemoryBuffer::getFile(file); if (!dataOrErr) { warn("Cannot open input file: " + file); continue; } std::unique_ptr data = std::move(*dataOrErr); exitOnErr(builder.addNamedStream(stream, data->getBuffer())); ctx.driver.takeBuffer(std::move(data)); } } static codeview::CPUType toCodeViewMachine(COFF::MachineTypes machine) { switch (machine) { case COFF::IMAGE_FILE_MACHINE_AMD64: return codeview::CPUType::X64; case COFF::IMAGE_FILE_MACHINE_ARM: return codeview::CPUType::ARM7; case COFF::IMAGE_FILE_MACHINE_ARM64: return codeview::CPUType::ARM64; case COFF::IMAGE_FILE_MACHINE_ARMNT: return codeview::CPUType::ARMNT; case COFF::IMAGE_FILE_MACHINE_I386: return codeview::CPUType::Intel80386; default: llvm_unreachable("Unsupported CPU Type"); } } // Mimic MSVC which surrounds arguments containing whitespace with quotes. // Double double-quotes are handled, so that the resulting string can be // executed again on the cmd-line. static std::string quote(ArrayRef args) { std::string r; r.reserve(256); for (StringRef a : args) { if (!r.empty()) r.push_back(' '); bool hasWS = a.contains(' '); bool hasQ = a.contains('"'); if (hasWS || hasQ) r.push_back('"'); if (hasQ) { SmallVector s; a.split(s, '"'); r.append(join(s, "\"\"")); } else { r.append(std::string(a)); } if (hasWS || hasQ) r.push_back('"'); } return r; } static void fillLinkerVerRecord(Compile3Sym &cs, MachineTypes machine) { cs.Machine = toCodeViewMachine(machine); // Interestingly, if we set the string to 0.0.0.0, then when trying to view // local variables WinDbg emits an error that private symbols are not present. // By setting this to a valid MSVC linker version string, local variables are // displayed properly. As such, even though it is not representative of // LLVM's version information, we need this for compatibility. cs.Flags = CompileSym3Flags::None; cs.VersionBackendBuild = 25019; cs.VersionBackendMajor = 14; cs.VersionBackendMinor = 10; cs.VersionBackendQFE = 0; // MSVC also sets the frontend to 0.0.0.0 since this is specifically for the // linker module (which is by definition a backend), so we don't need to do // anything here. Also, it seems we can use "LLVM Linker" for the linker name // without any problems. Only the backend version has to be hardcoded to a // magic number. cs.VersionFrontendBuild = 0; cs.VersionFrontendMajor = 0; cs.VersionFrontendMinor = 0; cs.VersionFrontendQFE = 0; cs.Version = "LLVM Linker"; cs.setLanguage(SourceLanguage::Link); } void PDBLinker::addCommonLinkerModuleSymbols( StringRef path, pdb::DbiModuleDescriptorBuilder &mod) { ObjNameSym ons(SymbolRecordKind::ObjNameSym); EnvBlockSym ebs(SymbolRecordKind::EnvBlockSym); Compile3Sym cs(SymbolRecordKind::Compile3Sym); fillLinkerVerRecord(cs, ctx.config.machine); ons.Name = "* Linker *"; ons.Signature = 0; ArrayRef args = ArrayRef(ctx.config.argv).drop_front(); std::string argStr = quote(args); ebs.Fields.push_back("cwd"); SmallString<64> cwd; if (ctx.config.pdbSourcePath.empty()) sys::fs::current_path(cwd); else cwd = ctx.config.pdbSourcePath; ebs.Fields.push_back(cwd); ebs.Fields.push_back("exe"); SmallString<64> exe = ctx.config.argv[0]; pdbMakeAbsolute(exe); ebs.Fields.push_back(exe); ebs.Fields.push_back("pdb"); ebs.Fields.push_back(path); ebs.Fields.push_back("cmd"); ebs.Fields.push_back(argStr); llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol( ons, bAlloc, CodeViewContainer::Pdb)); mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol( cs, bAlloc, CodeViewContainer::Pdb)); mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol( ebs, bAlloc, CodeViewContainer::Pdb)); } static void addLinkerModuleCoffGroup(PartialSection *sec, pdb::DbiModuleDescriptorBuilder &mod, OutputSection &os) { // If there's a section, there's at least one chunk assert(!sec->chunks.empty()); const Chunk *firstChunk = *sec->chunks.begin(); const Chunk *lastChunk = *sec->chunks.rbegin(); // Emit COFF group CoffGroupSym cgs(SymbolRecordKind::CoffGroupSym); cgs.Name = sec->name; cgs.Segment = os.sectionIndex; cgs.Offset = firstChunk->getRVA() - os.getRVA(); cgs.Size = lastChunk->getRVA() + lastChunk->getSize() - firstChunk->getRVA(); cgs.Characteristics = sec->characteristics; // Somehow .idata sections & sections groups in the debug symbol stream have // the "write" flag set. However the section header for the corresponding // .idata section doesn't have it. if (cgs.Name.startswith(".idata")) cgs.Characteristics |= llvm::COFF::IMAGE_SCN_MEM_WRITE; mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol( cgs, bAlloc(), CodeViewContainer::Pdb)); } static void addLinkerModuleSectionSymbol(pdb::DbiModuleDescriptorBuilder &mod, OutputSection &os, bool isMinGW) { SectionSym sym(SymbolRecordKind::SectionSym); sym.Alignment = 12; // 2^12 = 4KB sym.Characteristics = os.header.Characteristics; sym.Length = os.getVirtualSize(); sym.Name = os.name; sym.Rva = os.getRVA(); sym.SectionNumber = os.sectionIndex; mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol( sym, bAlloc(), CodeViewContainer::Pdb)); // Skip COFF groups in MinGW because it adds a significant footprint to the // PDB, due to each function being in its own section if (isMinGW) return; // Output COFF groups for individual chunks of this section. for (PartialSection *sec : os.contribSections) { addLinkerModuleCoffGroup(sec, mod, os); } } // Add all import files as modules to the PDB. void PDBLinker::addImportFilesToPDB() { if (ctx.importFileInstances.empty()) return; ExitOnError exitOnErr; std::map dllToModuleDbi; for (ImportFile *file : ctx.importFileInstances) { if (!file->live) continue; if (!file->thunkSym) continue; if (!file->thunkLive) continue; std::string dll = StringRef(file->dllName).lower(); llvm::pdb::DbiModuleDescriptorBuilder *&mod = dllToModuleDbi[dll]; if (!mod) { pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder(); SmallString<128> libPath = file->parentName; pdbMakeAbsolute(libPath); sys::path::native(libPath); // Name modules similar to MSVC's link.exe. // The first module is the simple dll filename llvm::pdb::DbiModuleDescriptorBuilder &firstMod = exitOnErr(dbiBuilder.addModuleInfo(file->dllName)); firstMod.setObjFileName(libPath); pdb::SectionContrib sc = createSectionContrib(ctx, nullptr, llvm::pdb::kInvalidStreamIndex); firstMod.setFirstSectionContrib(sc); // The second module is where the import stream goes. mod = &exitOnErr(dbiBuilder.addModuleInfo("Import:" + file->dllName)); mod->setObjFileName(libPath); } DefinedImportThunk *thunk = cast(file->thunkSym); Chunk *thunkChunk = thunk->getChunk(); OutputSection *thunkOS = ctx.getOutputSection(thunkChunk); ObjNameSym ons(SymbolRecordKind::ObjNameSym); Compile3Sym cs(SymbolRecordKind::Compile3Sym); Thunk32Sym ts(SymbolRecordKind::Thunk32Sym); ScopeEndSym es(SymbolRecordKind::ScopeEndSym); ons.Name = file->dllName; ons.Signature = 0; fillLinkerVerRecord(cs, ctx.config.machine); ts.Name = thunk->getName(); ts.Parent = 0; ts.End = 0; ts.Next = 0; ts.Thunk = ThunkOrdinal::Standard; ts.Length = thunkChunk->getSize(); ts.Segment = thunkOS->sectionIndex; ts.Offset = thunkChunk->getRVA() - thunkOS->getRVA(); llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); mod->addSymbol(codeview::SymbolSerializer::writeOneSymbol( ons, bAlloc, CodeViewContainer::Pdb)); mod->addSymbol(codeview::SymbolSerializer::writeOneSymbol( cs, bAlloc, CodeViewContainer::Pdb)); CVSymbol newSym = codeview::SymbolSerializer::writeOneSymbol( ts, bAlloc, CodeViewContainer::Pdb); // Write ptrEnd for the S_THUNK32. ScopeRecord *thunkSymScope = getSymbolScopeFields(const_cast(newSym.data().data())); mod->addSymbol(newSym); newSym = codeview::SymbolSerializer::writeOneSymbol(es, bAlloc, CodeViewContainer::Pdb); thunkSymScope->ptrEnd = mod->getNextSymbolOffset(); mod->addSymbol(newSym); pdb::SectionContrib sc = createSectionContrib(ctx, thunk->getChunk(), mod->getModuleIndex()); mod->setFirstSectionContrib(sc); } } // Creates a PDB file. void lld::coff::createPDB(COFFLinkerContext &ctx, ArrayRef sectionTable, llvm::codeview::DebugInfo *buildId) { ScopedTimer t1(ctx.totalPdbLinkTimer); PDBLinker pdb(ctx); pdb.initialize(buildId); pdb.addObjectsToPDB(); pdb.addImportFilesToPDB(); pdb.addSections(sectionTable); pdb.addNatvisFiles(); pdb.addNamedStreams(); pdb.addPublicsToPDB(); ScopedTimer t2(ctx.diskCommitTimer); codeview::GUID guid; pdb.commit(&guid); memcpy(&buildId->PDB70.Signature, &guid, 16); t2.stop(); t1.stop(); pdb.printStats(); } void PDBLinker::initialize(llvm::codeview::DebugInfo *buildId) { ExitOnError exitOnErr; exitOnErr(builder.initialize(ctx.config.pdbPageSize)); buildId->Signature.CVSignature = OMF::Signature::PDB70; // Signature is set to a hash of the PDB contents when the PDB is done. memset(buildId->PDB70.Signature, 0, 16); buildId->PDB70.Age = 1; // Create streams in MSF for predefined streams, namely // PDB, TPI, DBI and IPI. for (int i = 0; i < (int)pdb::kSpecialStreamCount; ++i) exitOnErr(builder.getMsfBuilder().addStream(0)); // Add an Info stream. auto &infoBuilder = builder.getInfoBuilder(); infoBuilder.setVersion(pdb::PdbRaw_ImplVer::PdbImplVC70); infoBuilder.setHashPDBContentsToGUID(true); // Add an empty DBI stream. pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder(); dbiBuilder.setAge(buildId->PDB70.Age); dbiBuilder.setVersionHeader(pdb::PdbDbiV70); dbiBuilder.setMachineType(ctx.config.machine); // Technically we are not link.exe 14.11, but there are known cases where // debugging tools on Windows expect Microsoft-specific version numbers or // they fail to work at all. Since we know we produce PDBs that are // compatible with LINK 14.11, we set that version number here. dbiBuilder.setBuildNumber(14, 11); } void PDBLinker::addSections(ArrayRef sectionTable) { ExitOnError exitOnErr; // It's not entirely clear what this is, but the * Linker * module uses it. pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder(); nativePath = ctx.config.pdbPath; pdbMakeAbsolute(nativePath); uint32_t pdbFilePathNI = dbiBuilder.addECName(nativePath); auto &linkerModule = exitOnErr(dbiBuilder.addModuleInfo("* Linker *")); linkerModule.setPdbFilePathNI(pdbFilePathNI); addCommonLinkerModuleSymbols(nativePath, linkerModule); // Add section contributions. They must be ordered by ascending RVA. for (OutputSection *os : ctx.outputSections) { addLinkerModuleSectionSymbol(linkerModule, *os, ctx.config.mingw); for (Chunk *c : os->chunks) { pdb::SectionContrib sc = createSectionContrib(ctx, c, linkerModule.getModuleIndex()); builder.getDbiBuilder().addSectionContrib(sc); } } // The * Linker * first section contrib is only used along with /INCREMENTAL, // to provide trampolines thunks for incremental function patching. Set this // as "unused" because LLD doesn't support /INCREMENTAL link. pdb::SectionContrib sc = createSectionContrib(ctx, nullptr, llvm::pdb::kInvalidStreamIndex); linkerModule.setFirstSectionContrib(sc); // Add Section Map stream. ArrayRef sections = { (const object::coff_section *)sectionTable.data(), sectionTable.size() / sizeof(object::coff_section)}; dbiBuilder.createSectionMap(sections); // Add COFF section header stream. exitOnErr( dbiBuilder.addDbgStream(pdb::DbgHeaderType::SectionHdr, sectionTable)); } void PDBLinker::commit(codeview::GUID *guid) { // Print an error and continue if PDB writing fails. This is done mainly so // the user can see the output of /time and /summary, which is very helpful // when trying to figure out why a PDB file is too large. if (Error e = builder.commit(ctx.config.pdbPath, guid)) { checkError(std::move(e)); error("failed to write PDB file " + Twine(ctx.config.pdbPath)); } } static uint32_t getSecrelReloc(llvm::COFF::MachineTypes machine) { switch (machine) { case AMD64: return COFF::IMAGE_REL_AMD64_SECREL; case I386: return COFF::IMAGE_REL_I386_SECREL; case ARMNT: return COFF::IMAGE_REL_ARM_SECREL; case ARM64: return COFF::IMAGE_REL_ARM64_SECREL; default: llvm_unreachable("unknown machine type"); } } // Try to find a line table for the given offset Addr into the given chunk C. // If a line table was found, the line table, the string and checksum tables // that are used to interpret the line table, and the offset of Addr in the line // table are stored in the output arguments. Returns whether a line table was // found. static bool findLineTable(const SectionChunk *c, uint32_t addr, DebugStringTableSubsectionRef &cvStrTab, DebugChecksumsSubsectionRef &checksums, DebugLinesSubsectionRef &lines, uint32_t &offsetInLinetable) { ExitOnError exitOnErr; const uint32_t secrelReloc = getSecrelReloc(c->file->ctx.config.machine); for (SectionChunk *dbgC : c->file->getDebugChunks()) { if (dbgC->getSectionName() != ".debug$S") continue; // Build a mapping of SECREL relocations in dbgC that refer to `c`. DenseMap secrels; for (const coff_relocation &r : dbgC->getRelocs()) { if (r.Type != secrelReloc) continue; if (auto *s = dyn_cast_or_null( c->file->getSymbols()[r.SymbolTableIndex])) if (s->getChunk() == c) secrels[r.VirtualAddress] = s->getValue(); } ArrayRef contents = SectionChunk::consumeDebugMagic(dbgC->getContents(), ".debug$S"); DebugSubsectionArray subsections; BinaryStreamReader reader(contents, support::little); exitOnErr(reader.readArray(subsections, contents.size())); for (const DebugSubsectionRecord &ss : subsections) { switch (ss.kind()) { case DebugSubsectionKind::StringTable: { assert(!cvStrTab.valid() && "Encountered multiple string table subsections!"); exitOnErr(cvStrTab.initialize(ss.getRecordData())); break; } case DebugSubsectionKind::FileChecksums: assert(!checksums.valid() && "Encountered multiple checksum subsections!"); exitOnErr(checksums.initialize(ss.getRecordData())); break; case DebugSubsectionKind::Lines: { ArrayRef bytes; auto ref = ss.getRecordData(); exitOnErr(ref.readLongestContiguousChunk(0, bytes)); size_t offsetInDbgC = bytes.data() - dbgC->getContents().data(); // Check whether this line table refers to C. auto i = secrels.find(offsetInDbgC); if (i == secrels.end()) break; // Check whether this line table covers Addr in C. DebugLinesSubsectionRef linesTmp; exitOnErr(linesTmp.initialize(BinaryStreamReader(ref))); uint32_t offsetInC = i->second + linesTmp.header()->RelocOffset; if (addr < offsetInC || addr >= offsetInC + linesTmp.header()->CodeSize) break; assert(!lines.header() && "Encountered multiple line tables for function!"); exitOnErr(lines.initialize(BinaryStreamReader(ref))); offsetInLinetable = addr - offsetInC; break; } default: break; } if (cvStrTab.valid() && checksums.valid() && lines.header()) return true; } } return false; } // Use CodeView line tables to resolve a file and line number for the given // offset into the given chunk and return them, or std::nullopt if a line table // was not found. std::optional> lld::coff::getFileLineCodeView(const SectionChunk *c, uint32_t addr) { ExitOnError exitOnErr; DebugStringTableSubsectionRef cvStrTab; DebugChecksumsSubsectionRef checksums; DebugLinesSubsectionRef lines; uint32_t offsetInLinetable; if (!findLineTable(c, addr, cvStrTab, checksums, lines, offsetInLinetable)) return std::nullopt; std::optional nameIndex; std::optional lineNumber; for (const LineColumnEntry &entry : lines) { for (const LineNumberEntry &ln : entry.LineNumbers) { LineInfo li(ln.Flags); if (ln.Offset > offsetInLinetable) { if (!nameIndex) { nameIndex = entry.NameIndex; lineNumber = li.getStartLine(); } StringRef filename = exitOnErr(getFileName(cvStrTab, checksums, *nameIndex)); return std::make_pair(filename, *lineNumber); } nameIndex = entry.NameIndex; lineNumber = li.getStartLine(); } } if (!nameIndex) return std::nullopt; StringRef filename = exitOnErr(getFileName(cvStrTab, checksums, *nameIndex)); return std::make_pair(filename, *lineNumber); }