//===-- clang-linker-wrapper/ClangLinkerWrapper.cpp - wrapper over linker-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===---------------------------------------------------------------------===// // // This tool works as a wrapper over a linking job. This tool is used to create // linked device images for offloading. It scans the linker's input for embedded // device offloading data stored in sections `.llvm.offloading` and extracts it // as a temporary file. The extracted device files will then be passed to a // device linking job to create a final device image. // //===---------------------------------------------------------------------===// #include "OffloadWrapper.h" #include "clang/Basic/Version.h" #include "llvm/BinaryFormat/Magic.h" #include "llvm/Bitcode/BitcodeWriter.h" #include "llvm/CodeGen/CommandFlags.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/Module.h" #include "llvm/IRReader/IRReader.h" #include "llvm/LTO/LTO.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Object/Archive.h" #include "llvm/Object/ArchiveWriter.h" #include "llvm/Object/Binary.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Object/IRObjectFile.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Object/OffloadBinary.h" #include "llvm/Option/ArgList.h" #include "llvm/Option/OptTable.h" #include "llvm/Option/Option.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Errc.h" #include "llvm/Support/FileOutputBuffer.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Host.h" #include "llvm/Support/InitLLVM.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Parallel.h" #include "llvm/Support/Path.h" #include "llvm/Support/Program.h" #include "llvm/Support/Signals.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/StringSaver.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/WithColor.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include #include using namespace llvm; using namespace llvm::opt; using namespace llvm::object; /// Path of the current binary. static const char *LinkerExecutable; /// Ssave intermediary results. static bool SaveTemps = false; /// Print arguments without executing. static bool DryRun = false; /// Print verbose output. static bool Verbose = false; /// Filename of the executable being created. static StringRef ExecutableName; /// Binary path for the CUDA installation. static std::string CudaBinaryPath; /// Mutex lock to protect writes to shared TempFiles in parallel. static std::mutex TempFilesMutex; /// Temporary files created by the linker wrapper. static std::list> TempFiles; /// Codegen flags for LTO backend. static codegen::RegisterCodeGenFlags CodeGenFlags; /// Global flag to indicate that the LTO pipeline threw an error. static std::atomic LTOError; using OffloadingImage = OffloadBinary::OffloadingImage; namespace llvm { // Provide DenseMapInfo so that OffloadKind can be used in a DenseMap. template <> struct DenseMapInfo { static inline OffloadKind getEmptyKey() { return OFK_LAST; } static inline OffloadKind getTombstoneKey() { return static_cast(OFK_LAST + 1); } static unsigned getHashValue(const OffloadKind &Val) { return Val; } static bool isEqual(const OffloadKind &LHS, const OffloadKind &RHS) { return LHS == RHS; } }; } // namespace llvm namespace { using std::error_code; /// Must not overlap with llvm::opt::DriverFlag. enum WrapperFlags { WrapperOnlyOption = (1 << 4), // Options only used by the linker wrapper. DeviceOnlyOption = (1 << 5), // Options only used for device linking. }; enum ID { OPT_INVALID = 0, // This is not an option ID. #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ HELPTEXT, METAVAR, VALUES) \ OPT_##ID, #include "LinkerWrapperOpts.inc" LastOption #undef OPTION }; #define PREFIX(NAME, VALUE) \ static constexpr StringLiteral NAME##_init[] = VALUE; \ static constexpr ArrayRef NAME(NAME##_init, \ std::size(NAME##_init) - 1); #include "LinkerWrapperOpts.inc" #undef PREFIX static constexpr OptTable::Info InfoTable[] = { #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ HELPTEXT, METAVAR, VALUES) \ {PREFIX, NAME, HELPTEXT, METAVAR, OPT_##ID, Option::KIND##Class, \ PARAM, FLAGS, OPT_##GROUP, OPT_##ALIAS, ALIASARGS, VALUES}, #include "LinkerWrapperOpts.inc" #undef OPTION }; class WrapperOptTable : public opt::GenericOptTable { public: WrapperOptTable() : opt::GenericOptTable(InfoTable) {} }; const OptTable &getOptTable() { static const WrapperOptTable *Table = []() { auto Result = std::make_unique(); return Result.release(); }(); return *Table; } void printCommands(ArrayRef CmdArgs) { if (CmdArgs.empty()) return; llvm::errs() << " \"" << CmdArgs.front() << "\" "; for (auto IC = std::next(CmdArgs.begin()), IE = CmdArgs.end(); IC != IE; ++IC) llvm::errs() << *IC << (std::next(IC) != IE ? " " : "\n"); } [[noreturn]] void reportError(Error E) { outs().flush(); logAllUnhandledErrors(std::move(E), WithColor::error(errs(), LinkerExecutable)); exit(EXIT_FAILURE); } /// Create an extra user-specified \p OffloadFile. /// TODO: We should find a way to wrap these as libraries instead. Expected getInputBitcodeLibrary(StringRef Input) { auto [Device, Path] = StringRef(Input).split('='); auto [String, Arch] = Device.rsplit('-'); auto [Kind, Triple] = String.split('-'); llvm::ErrorOr> ImageOrError = llvm::MemoryBuffer::getFileOrSTDIN(Path); if (std::error_code EC = ImageOrError.getError()) return createFileError(Path, EC); OffloadingImage Image{}; Image.TheImageKind = IMG_Bitcode; Image.TheOffloadKind = getOffloadKind(Kind); Image.StringData = {{"triple", Triple}, {"arch", Arch}}; Image.Image = std::move(*ImageOrError); std::unique_ptr Binary = OffloadBinary::write(Image); auto NewBinaryOrErr = OffloadBinary::create(*Binary); if (!NewBinaryOrErr) return NewBinaryOrErr.takeError(); return OffloadFile(std::move(*NewBinaryOrErr), std::move(Binary)); } std::string getMainExecutable(const char *Name) { void *Ptr = (void *)(intptr_t)&getMainExecutable; auto COWPath = sys::fs::getMainExecutable(Name, Ptr); return sys::path::parent_path(COWPath).str(); } /// Get a temporary filename suitable for output. Expected createOutputFile(const Twine &Prefix, StringRef Extension) { std::scoped_lock Lock(TempFilesMutex); SmallString<128> OutputFile; if (SaveTemps) { (Prefix + "." + Extension).toNullTerminatedStringRef(OutputFile); } else { if (std::error_code EC = sys::fs::createTemporaryFile(Prefix, Extension, OutputFile)) return createFileError(OutputFile, EC); } TempFiles.emplace_back(std::move(OutputFile)); return TempFiles.back(); } /// Execute the command \p ExecutablePath with the arguments \p Args. Error executeCommands(StringRef ExecutablePath, ArrayRef Args) { if (Verbose || DryRun) printCommands(Args); if (!DryRun) if (sys::ExecuteAndWait(ExecutablePath, Args)) return createStringError(inconvertibleErrorCode(), "'" + sys::path::filename(ExecutablePath) + "'" + " failed"); return Error::success(); } Expected findProgram(StringRef Name, ArrayRef Paths) { ErrorOr Path = sys::findProgramByName(Name, Paths); if (!Path) Path = sys::findProgramByName(Name); if (!Path && DryRun) return Name.str(); if (!Path) return createStringError(Path.getError(), "Unable to find '" + Name + "' in path"); return *Path; } /// Runs the wrapped linker job with the newly created input. Error runLinker(ArrayRef Files, const ArgList &Args) { llvm::TimeTraceScope TimeScope("Execute host linker"); // Render the linker arguments and add the newly created image. We add it // after the output file to ensure it is linked with the correct libraries. StringRef LinkerPath = Args.getLastArgValue(OPT_linker_path_EQ); ArgStringList NewLinkerArgs; for (const opt::Arg *Arg : Args) { // Do not forward arguments only intended for the linker wrapper. if (Arg->getOption().hasFlag(WrapperOnlyOption)) continue; Arg->render(Args, NewLinkerArgs); if (Arg->getOption().matches(OPT_o)) llvm::transform(Files, std::back_inserter(NewLinkerArgs), [&](StringRef Arg) { return Args.MakeArgString(Arg); }); } SmallVector LinkerArgs({LinkerPath}); for (StringRef Arg : NewLinkerArgs) LinkerArgs.push_back(Arg); if (Error Err = executeCommands(LinkerPath, LinkerArgs)) return Err; return Error::success(); } void printVersion(raw_ostream &OS) { OS << clang::getClangToolFullVersion("clang-linker-wrapper") << '\n'; } namespace nvptx { Expected fatbinary(ArrayRef> InputFiles, const ArgList &Args) { llvm::TimeTraceScope TimeScope("NVPTX fatbinary"); // NVPTX uses the fatbinary program to bundle the linked images. Expected FatBinaryPath = findProgram("fatbinary", {CudaBinaryPath + "/bin"}); if (!FatBinaryPath) return FatBinaryPath.takeError(); llvm::Triple Triple( Args.getLastArgValue(OPT_host_triple_EQ, sys::getDefaultTargetTriple())); // Create a new file to write the linked device image to. auto TempFileOrErr = createOutputFile(sys::path::filename(ExecutableName), "fatbin"); if (!TempFileOrErr) return TempFileOrErr.takeError(); SmallVector CmdArgs; CmdArgs.push_back(*FatBinaryPath); CmdArgs.push_back(Triple.isArch64Bit() ? "-64" : "-32"); CmdArgs.push_back("--create"); CmdArgs.push_back(*TempFileOrErr); for (const auto &[File, Arch] : InputFiles) CmdArgs.push_back( Args.MakeArgString("--image=profile=" + Arch + ",file=" + File)); if (Error Err = executeCommands(*FatBinaryPath, CmdArgs)) return std::move(Err); return *TempFileOrErr; } } // namespace nvptx namespace amdgcn { Expected fatbinary(ArrayRef> InputFiles, const ArgList &Args) { llvm::TimeTraceScope TimeScope("AMDGPU Fatbinary"); // AMDGPU uses the clang-offload-bundler to bundle the linked images. Expected OffloadBundlerPath = findProgram( "clang-offload-bundler", {getMainExecutable("clang-offload-bundler")}); if (!OffloadBundlerPath) return OffloadBundlerPath.takeError(); llvm::Triple Triple( Args.getLastArgValue(OPT_host_triple_EQ, sys::getDefaultTargetTriple())); // Create a new file to write the linked device image to. auto TempFileOrErr = createOutputFile(sys::path::filename(ExecutableName), "hipfb"); if (!TempFileOrErr) return TempFileOrErr.takeError(); BumpPtrAllocator Alloc; StringSaver Saver(Alloc); SmallVector CmdArgs; CmdArgs.push_back(*OffloadBundlerPath); CmdArgs.push_back("-type=o"); CmdArgs.push_back("-bundle-align=4096"); SmallVector Targets = {"-targets=host-x86_64-unknown-linux"}; for (const auto &[File, Arch] : InputFiles) Targets.push_back(Saver.save("hipv4-amdgcn-amd-amdhsa--" + Arch)); CmdArgs.push_back(Saver.save(llvm::join(Targets, ","))); CmdArgs.push_back("-input=/dev/null"); for (const auto &[File, Arch] : InputFiles) CmdArgs.push_back(Saver.save("-input=" + File)); CmdArgs.push_back(Saver.save("-output=" + *TempFileOrErr)); if (Error Err = executeCommands(*OffloadBundlerPath, CmdArgs)) return std::move(Err); return *TempFileOrErr; } } // namespace amdgcn namespace generic { Expected clang(ArrayRef InputFiles, const ArgList &Args) { llvm::TimeTraceScope TimeScope("Clang"); // Use `clang` to invoke the appropriate device tools. Expected ClangPath = findProgram("clang", {getMainExecutable("clang")}); if (!ClangPath) return ClangPath.takeError(); const llvm::Triple Triple(Args.getLastArgValue(OPT_triple_EQ)); StringRef Arch = Args.getLastArgValue(OPT_arch_EQ); if (Arch.empty()) Arch = "native"; // Create a new file to write the linked device image to. Assume that the // input filename already has the device and architecture. auto TempFileOrErr = createOutputFile(sys::path::filename(ExecutableName) + "." + Triple.getArchName() + "." + Arch, "img"); if (!TempFileOrErr) return TempFileOrErr.takeError(); StringRef OptLevel = Args.getLastArgValue(OPT_opt_level, "O2"); SmallVector CmdArgs{ *ClangPath, "-o", *TempFileOrErr, Args.MakeArgString("--target=" + Triple.getTriple()), Triple.isAMDGPU() ? Args.MakeArgString("-mcpu=" + Arch) : Args.MakeArgString("-march=" + Arch), Args.MakeArgString("-" + OptLevel), "-Wl,--no-undefined", }; // If this is CPU offloading we copy the input libraries. if (!Triple.isAMDGPU() && !Triple.isNVPTX()) { CmdArgs.push_back("-Bsymbolic"); CmdArgs.push_back("-shared"); ArgStringList LinkerArgs; for (const opt::Arg *Arg : Args.filtered(OPT_library, OPT_rpath, OPT_library_path)) Arg->render(Args, LinkerArgs); llvm::copy(LinkerArgs, std::back_inserter(CmdArgs)); } if (Args.hasArg(OPT_debug)) CmdArgs.push_back("-g"); if (SaveTemps) CmdArgs.push_back("-save-temps"); if (Verbose) CmdArgs.push_back("-v"); if (!CudaBinaryPath.empty()) CmdArgs.push_back(Args.MakeArgString("--cuda-path=" + CudaBinaryPath)); for (StringRef Arg : Args.getAllArgValues(OPT_ptxas_arg)) llvm::copy(SmallVector({"-Xcuda-ptxas", Arg}), std::back_inserter(CmdArgs)); for (StringRef Arg : Args.getAllArgValues(OPT_linker_arg_EQ)) CmdArgs.push_back(Args.MakeArgString("-Wl," + Arg)); for (StringRef InputFile : InputFiles) CmdArgs.push_back(InputFile); if (Error Err = executeCommands(*ClangPath, CmdArgs)) return std::move(Err); return *TempFileOrErr; } } // namespace generic Expected linkDevice(ArrayRef InputFiles, const ArgList &Args) { const llvm::Triple Triple(Args.getLastArgValue(OPT_triple_EQ)); switch (Triple.getArch()) { case Triple::nvptx: case Triple::nvptx64: case Triple::amdgcn: case Triple::x86: case Triple::x86_64: case Triple::aarch64: case Triple::aarch64_be: case Triple::ppc64: case Triple::ppc64le: return generic::clang(InputFiles, Args); default: return createStringError(inconvertibleErrorCode(), Triple.getArchName() + " linking is not supported"); } } void diagnosticHandler(const DiagnosticInfo &DI) { std::string ErrStorage; raw_string_ostream OS(ErrStorage); DiagnosticPrinterRawOStream DP(OS); DI.print(DP); switch (DI.getSeverity()) { case DS_Error: WithColor::error(errs(), LinkerExecutable) << ErrStorage << "\n"; LTOError = true; break; case DS_Warning: WithColor::warning(errs(), LinkerExecutable) << ErrStorage << "\n"; break; case DS_Note: WithColor::note(errs(), LinkerExecutable) << ErrStorage << "\n"; break; case DS_Remark: WithColor::remark(errs()) << ErrStorage << "\n"; break; } } // Get the list of target features from the input file and unify them such that // if there are multiple +xxx or -xxx features we only keep the last one. std::vector getTargetFeatures(ArrayRef InputFiles) { SmallVector Features; for (const OffloadFile &File : InputFiles) { for (auto Arg : llvm::split(File.getBinary()->getString("feature"), ",")) Features.emplace_back(Arg); } // Only add a feature if it hasn't been seen before starting from the end. std::vector UnifiedFeatures; DenseSet UsedFeatures; for (StringRef Feature : llvm::reverse(Features)) { if (UsedFeatures.insert(Feature.drop_front()).second) UnifiedFeatures.push_back(Feature.str()); } return UnifiedFeatures; } template > std::unique_ptr createLTO( const ArgList &Args, const std::vector &Features, ModuleHook Hook = [](size_t, const Module &) { return true; }) { const llvm::Triple Triple(Args.getLastArgValue(OPT_triple_EQ)); StringRef Arch = Args.getLastArgValue(OPT_arch_EQ); lto::Config Conf; lto::ThinBackend Backend; // TODO: Handle index-only thin-LTO Backend = lto::createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); Conf.CPU = Arch.str(); Conf.Options = codegen::InitTargetOptionsFromCodeGenFlags(Triple); StringRef OptLevel = Args.getLastArgValue(OPT_opt_level, "O2"); Conf.MAttrs = Features; std::optional CGOptLevelOrNone = CodeGenOpt::parseLevel(OptLevel[1]); assert(CGOptLevelOrNone && "Invalid optimization level"); Conf.CGOptLevel = *CGOptLevelOrNone; Conf.OptLevel = OptLevel[1] - '0'; Conf.DefaultTriple = Triple.getTriple(); LTOError = false; Conf.DiagHandler = diagnosticHandler; Conf.PTO.LoopVectorization = Conf.OptLevel > 1; Conf.PTO.SLPVectorization = Conf.OptLevel > 1; if (SaveTemps) { std::string TempName = (sys::path::filename(ExecutableName) + "." + Triple.getTriple() + "." + Arch) .str(); Conf.PostInternalizeModuleHook = [=](size_t Task, const Module &M) { std::string File = !Task ? TempName + ".postlink.bc" : TempName + "." + std::to_string(Task) + ".postlink.bc"; error_code EC; raw_fd_ostream LinkedBitcode(File, EC, sys::fs::OF_None); if (EC) reportError(errorCodeToError(EC)); WriteBitcodeToFile(M, LinkedBitcode); return true; }; Conf.PreCodeGenModuleHook = [=](size_t Task, const Module &M) { std::string File = !Task ? TempName + ".postopt.bc" : TempName + "." + std::to_string(Task) + ".postopt.bc"; error_code EC; raw_fd_ostream LinkedBitcode(File, EC, sys::fs::OF_None); if (EC) reportError(errorCodeToError(EC)); WriteBitcodeToFile(M, LinkedBitcode); return true; }; } Conf.PostOptModuleHook = Hook; Conf.CGFileType = (Triple.isNVPTX() || SaveTemps) ? CGFT_AssemblyFile : CGFT_ObjectFile; // TODO: Handle remark files Conf.HasWholeProgramVisibility = Args.hasArg(OPT_whole_program); return std::make_unique(std::move(Conf), Backend); } // Returns true if \p S is valid as a C language identifier and will be given // `__start_` and `__stop_` symbols. bool isValidCIdentifier(StringRef S) { return !S.empty() && (isAlpha(S[0]) || S[0] == '_') && llvm::all_of(llvm::drop_begin(S), [](char C) { return C == '_' || isAlnum(C); }); } Error linkBitcodeFiles(SmallVectorImpl &InputFiles, SmallVectorImpl &OutputFiles, const ArgList &Args) { llvm::TimeTraceScope TimeScope("Link bitcode files"); const llvm::Triple Triple(Args.getLastArgValue(OPT_triple_EQ)); StringRef Arch = Args.getLastArgValue(OPT_arch_EQ); SmallVector BitcodeInputFiles; DenseSet UsedInRegularObj; DenseSet UsedInSharedLib; BumpPtrAllocator Alloc; StringSaver Saver(Alloc); // Search for bitcode files in the input and create an LTO input file. If it // is not a bitcode file, scan its symbol table for symbols we need to save. for (OffloadFile &File : InputFiles) { MemoryBufferRef Buffer = MemoryBufferRef(File.getBinary()->getImage(), ""); file_magic Type = identify_magic(Buffer.getBuffer()); switch (Type) { case file_magic::bitcode: { BitcodeInputFiles.emplace_back(std::move(File)); continue; } case file_magic::elf_relocatable: case file_magic::elf_shared_object: { Expected> ObjFile = ObjectFile::createObjectFile(Buffer); if (!ObjFile) continue; for (SymbolRef Sym : (*ObjFile)->symbols()) { Expected Name = Sym.getName(); if (!Name) return Name.takeError(); // Record if we've seen these symbols in any object or shared libraries. if ((*ObjFile)->isRelocatableObject()) UsedInRegularObj.insert(Saver.save(*Name)); else UsedInSharedLib.insert(Saver.save(*Name)); } continue; } default: continue; } } if (BitcodeInputFiles.empty()) return Error::success(); // Remove all the bitcode files that we moved from the original input. llvm::erase_if(InputFiles, [](OffloadFile &F) { return !F.getBinary(); }); // LTO Module hook to output bitcode without running the backend. SmallVector BitcodeOutput; auto OutputBitcode = [&](size_t, const Module &M) { auto TempFileOrErr = createOutputFile(sys::path::filename(ExecutableName) + "-jit-" + Triple.getTriple(), "bc"); if (!TempFileOrErr) reportError(TempFileOrErr.takeError()); std::error_code EC; raw_fd_ostream LinkedBitcode(*TempFileOrErr, EC, sys::fs::OF_None); if (EC) reportError(errorCodeToError(EC)); WriteBitcodeToFile(M, LinkedBitcode); BitcodeOutput.push_back(*TempFileOrErr); return false; }; // We assume visibility of the whole program if every input file was bitcode. auto Features = getTargetFeatures(BitcodeInputFiles); auto LTOBackend = Args.hasArg(OPT_embed_bitcode) ? createLTO(Args, Features, OutputBitcode) : createLTO(Args, Features); // We need to resolve the symbols so the LTO backend knows which symbols need // to be kept or can be internalized. This is a simplified symbol resolution // scheme to approximate the full resolution a linker would do. uint64_t Idx = 0; DenseSet PrevailingSymbols; for (auto &BitcodeInput : BitcodeInputFiles) { // Get a semi-unique buffer identifier for Thin-LTO. StringRef Identifier = Saver.save( std::to_string(Idx++) + "." + BitcodeInput.getBinary()->getMemoryBufferRef().getBufferIdentifier()); MemoryBufferRef Buffer = MemoryBufferRef(BitcodeInput.getBinary()->getImage(), Identifier); Expected> BitcodeFileOrErr = llvm::lto::InputFile::create(Buffer); if (!BitcodeFileOrErr) return BitcodeFileOrErr.takeError(); // Save the input file and the buffer associated with its memory. const auto Symbols = (*BitcodeFileOrErr)->symbols(); SmallVector Resolutions(Symbols.size()); size_t Idx = 0; for (auto &Sym : Symbols) { lto::SymbolResolution &Res = Resolutions[Idx++]; // We will use this as the prevailing symbol definition in LTO unless // it is undefined or another definition has already been used. Res.Prevailing = !Sym.isUndefined() && PrevailingSymbols.insert(Saver.save(Sym.getName())).second; // We need LTO to preseve the following global symbols: // 1) Symbols used in regular objects. // 2) Sections that will be given a __start/__stop symbol. // 3) Prevailing symbols that are needed visible to external libraries. Res.VisibleToRegularObj = UsedInRegularObj.contains(Sym.getName()) || isValidCIdentifier(Sym.getSectionName()) || (Res.Prevailing && (Sym.getVisibility() != GlobalValue::HiddenVisibility && !Sym.canBeOmittedFromSymbolTable())); // Identify symbols that must be exported dynamically and can be // referenced by other files. Res.ExportDynamic = Sym.getVisibility() != GlobalValue::HiddenVisibility && (UsedInSharedLib.contains(Sym.getName()) || !Sym.canBeOmittedFromSymbolTable()); // The final definition will reside in this linkage unit if the symbol is // defined and local to the module. This only checks for bitcode files, // full assertion will require complete symbol resolution. Res.FinalDefinitionInLinkageUnit = Sym.getVisibility() != GlobalValue::DefaultVisibility && (!Sym.isUndefined() && !Sym.isCommon()); // We do not support linker redefined symbols (e.g. --wrap) for device // image linking, so the symbols will not be changed after LTO. Res.LinkerRedefined = false; } // Add the bitcode file with its resolved symbols to the LTO job. if (Error Err = LTOBackend->add(std::move(*BitcodeFileOrErr), Resolutions)) return Err; } // Run the LTO job to compile the bitcode. size_t MaxTasks = LTOBackend->getMaxTasks(); SmallVector Files(MaxTasks); auto AddStream = [&](size_t Task, const Twine &ModuleName) -> std::unique_ptr { int FD = -1; auto &TempFile = Files[Task]; StringRef Extension = (Triple.isNVPTX() || SaveTemps) ? "s" : "o"; std::string TaskStr = Task ? "." + std::to_string(Task) : ""; auto TempFileOrErr = createOutputFile(sys::path::filename(ExecutableName) + "." + Triple.getTriple() + "." + Arch + TaskStr, Extension); if (!TempFileOrErr) reportError(TempFileOrErr.takeError()); TempFile = *TempFileOrErr; if (std::error_code EC = sys::fs::openFileForWrite(TempFile, FD)) reportError(errorCodeToError(EC)); return std::make_unique( std::make_unique(FD, true)); }; if (Error Err = LTOBackend->run(AddStream)) return Err; if (LTOError) return createStringError(inconvertibleErrorCode(), "Errors encountered inside the LTO pipeline."); // If we are embedding bitcode we only need the intermediate output. bool SingleOutput = Files.size() == 1; if (Args.hasArg(OPT_embed_bitcode)) { if (BitcodeOutput.size() != 1 || !SingleOutput) return createStringError(inconvertibleErrorCode(), "Cannot embed bitcode with multiple files."); OutputFiles.push_back(Args.MakeArgString(BitcodeOutput.front())); return Error::success(); } // Append the new inputs to the device linker input. for (StringRef File : Files) OutputFiles.push_back(File); return Error::success(); } Expected writeOffloadFile(const OffloadFile &File) { const OffloadBinary &Binary = *File.getBinary(); StringRef Prefix = sys::path::stem(Binary.getMemoryBufferRef().getBufferIdentifier()); StringRef Suffix = getImageKindName(Binary.getImageKind()); auto TempFileOrErr = createOutputFile( Prefix + "-" + Binary.getTriple() + "-" + Binary.getArch(), Suffix); if (!TempFileOrErr) return TempFileOrErr.takeError(); Expected> OutputOrErr = FileOutputBuffer::create(*TempFileOrErr, Binary.getImage().size()); if (!OutputOrErr) return OutputOrErr.takeError(); std::unique_ptr Output = std::move(*OutputOrErr); llvm::copy(Binary.getImage(), Output->getBufferStart()); if (Error E = Output->commit()) return std::move(E); return *TempFileOrErr; } // Compile the module to an object file using the appropriate target machine for // the host triple. Expected compileModule(Module &M) { llvm::TimeTraceScope TimeScope("Compile module"); std::string Msg; const Target *T = TargetRegistry::lookupTarget(M.getTargetTriple(), Msg); if (!T) return createStringError(inconvertibleErrorCode(), Msg); auto Options = codegen::InitTargetOptionsFromCodeGenFlags(Triple(M.getTargetTriple())); StringRef CPU = ""; StringRef Features = ""; std::unique_ptr TM( T->createTargetMachine(M.getTargetTriple(), CPU, Features, Options, Reloc::PIC_, M.getCodeModel())); if (M.getDataLayout().isDefault()) M.setDataLayout(TM->createDataLayout()); int FD = -1; auto TempFileOrErr = createOutputFile( sys::path::filename(ExecutableName) + ".image.wrapper", "o"); if (!TempFileOrErr) return TempFileOrErr.takeError(); if (std::error_code EC = sys::fs::openFileForWrite(*TempFileOrErr, FD)) return errorCodeToError(EC); auto OS = std::make_unique(FD, true); legacy::PassManager CodeGenPasses; TargetLibraryInfoImpl TLII(Triple(M.getTargetTriple())); CodeGenPasses.add(new TargetLibraryInfoWrapperPass(TLII)); if (TM->addPassesToEmitFile(CodeGenPasses, *OS, nullptr, CGFT_ObjectFile)) return createStringError(inconvertibleErrorCode(), "Failed to execute host backend"); CodeGenPasses.run(M); return *TempFileOrErr; } /// Creates the object file containing the device image and runtime /// registration code from the device images stored in \p Images. Expected wrapDeviceImages(ArrayRef> Buffers, const ArgList &Args, OffloadKind Kind) { llvm::TimeTraceScope TimeScope("Wrap bundled images"); SmallVector, 4> BuffersToWrap; for (const auto &Buffer : Buffers) BuffersToWrap.emplace_back( ArrayRef(Buffer->getBufferStart(), Buffer->getBufferSize())); LLVMContext Context; Module M("offload.wrapper.module", Context); M.setTargetTriple( Args.getLastArgValue(OPT_host_triple_EQ, sys::getDefaultTargetTriple())); switch (Kind) { case OFK_OpenMP: if (Error Err = wrapOpenMPBinaries(M, BuffersToWrap)) return std::move(Err); break; case OFK_Cuda: if (Error Err = wrapCudaBinary(M, BuffersToWrap.front())) return std::move(Err); break; case OFK_HIP: if (Error Err = wrapHIPBinary(M, BuffersToWrap.front())) return std::move(Err); break; default: return createStringError(inconvertibleErrorCode(), getOffloadKindName(Kind) + " wrapping is not supported"); } if (Args.hasArg(OPT_print_wrapped_module)) errs() << M; auto FileOrErr = compileModule(M); if (!FileOrErr) return FileOrErr.takeError(); return *FileOrErr; } Expected>> bundleOpenMP(ArrayRef Images) { SmallVector> Buffers; for (const OffloadingImage &Image : Images) Buffers.emplace_back(OffloadBinary::write(Image)); return std::move(Buffers); } Expected>> bundleCuda(ArrayRef Images, const ArgList &Args) { SmallVector, 4> InputFiles; for (const OffloadingImage &Image : Images) InputFiles.emplace_back(std::make_pair(Image.Image->getBufferIdentifier(), Image.StringData.lookup("arch"))); Triple TheTriple = Triple(Images.front().StringData.lookup("triple")); auto FileOrErr = nvptx::fatbinary(InputFiles, Args); if (!FileOrErr) return FileOrErr.takeError(); llvm::ErrorOr> ImageOrError = llvm::MemoryBuffer::getFileOrSTDIN(*FileOrErr); SmallVector> Buffers; if (std::error_code EC = ImageOrError.getError()) return createFileError(*FileOrErr, EC); Buffers.emplace_back(std::move(*ImageOrError)); return std::move(Buffers); } Expected>> bundleHIP(ArrayRef Images, const ArgList &Args) { SmallVector, 4> InputFiles; for (const OffloadingImage &Image : Images) InputFiles.emplace_back(std::make_pair(Image.Image->getBufferIdentifier(), Image.StringData.lookup("arch"))); Triple TheTriple = Triple(Images.front().StringData.lookup("triple")); auto FileOrErr = amdgcn::fatbinary(InputFiles, Args); if (!FileOrErr) return FileOrErr.takeError(); llvm::ErrorOr> ImageOrError = llvm::MemoryBuffer::getFileOrSTDIN(*FileOrErr); SmallVector> Buffers; if (std::error_code EC = ImageOrError.getError()) return createFileError(*FileOrErr, EC); Buffers.emplace_back(std::move(*ImageOrError)); return std::move(Buffers); } /// Transforms the input \p Images into the binary format the runtime expects /// for the given \p Kind. Expected>> bundleLinkedOutput(ArrayRef Images, const ArgList &Args, OffloadKind Kind) { llvm::TimeTraceScope TimeScope("Bundle linked output"); switch (Kind) { case OFK_OpenMP: return bundleOpenMP(Images); case OFK_Cuda: return bundleCuda(Images, Args); case OFK_HIP: return bundleHIP(Images, Args); default: return createStringError(inconvertibleErrorCode(), getOffloadKindName(Kind) + " bundling is not supported"); } } /// Returns a new ArgList containg arguments used for the device linking phase. DerivedArgList getLinkerArgs(ArrayRef Input, const InputArgList &Args) { DerivedArgList DAL = DerivedArgList(DerivedArgList(Args)); for (Arg *A : Args) DAL.append(A); // Set the subarchitecture and target triple for this compilation. const OptTable &Tbl = getOptTable(); DAL.AddJoinedArg(nullptr, Tbl.getOption(OPT_arch_EQ), Args.MakeArgString(Input.front().getBinary()->getArch())); DAL.AddJoinedArg(nullptr, Tbl.getOption(OPT_triple_EQ), Args.MakeArgString(Input.front().getBinary()->getTriple())); // If every input file is bitcode we have whole program visibility as we do // only support static linking with bitcode. auto ContainsBitcode = [](const OffloadFile &F) { return identify_magic(F.getBinary()->getImage()) == file_magic::bitcode; }; if (llvm::all_of(Input, ContainsBitcode)) DAL.AddFlagArg(nullptr, Tbl.getOption(OPT_whole_program)); // Forward '-Xoffload-linker' options to the appropriate backend. for (StringRef Arg : Args.getAllArgValues(OPT_device_linker_args_EQ)) { auto [Triple, Value] = Arg.split('='); if (Value.empty()) DAL.AddJoinedArg(nullptr, Tbl.getOption(OPT_linker_arg_EQ), Args.MakeArgString(Triple)); else if (Triple == DAL.getLastArgValue(OPT_triple_EQ)) DAL.AddJoinedArg(nullptr, Tbl.getOption(OPT_linker_arg_EQ), Args.MakeArgString(Value)); } return DAL; } /// Transforms all the extracted offloading input files into an image that can /// be registered by the runtime. Expected> linkAndWrapDeviceFiles(SmallVectorImpl &LinkerInputFiles, const InputArgList &Args, char **Argv, int Argc) { llvm::TimeTraceScope TimeScope("Handle all device input"); DenseMap> InputMap; for (auto &File : LinkerInputFiles) InputMap[File].emplace_back(std::move(File)); LinkerInputFiles.clear(); SmallVector> InputsForTarget; for (auto &[ID, Input] : InputMap) InputsForTarget.emplace_back(std::move(Input)); InputMap.clear(); std::mutex ImageMtx; DenseMap> Images; auto Err = parallelForEachError(InputsForTarget, [&](auto &Input) -> Error { llvm::TimeTraceScope TimeScope("Link device input"); // Each thread needs its own copy of the base arguments to maintain // per-device argument storage of synthetic strings. const OptTable &Tbl = getOptTable(); BumpPtrAllocator Alloc; StringSaver Saver(Alloc); auto BaseArgs = Tbl.parseArgs(Argc, Argv, OPT_INVALID, Saver, [](StringRef Err) { reportError(createStringError(inconvertibleErrorCode(), Err)); }); auto LinkerArgs = getLinkerArgs(Input, BaseArgs); DenseSet ActiveOffloadKinds; for (const auto &File : Input) if (File.getBinary()->getOffloadKind() != OFK_None) ActiveOffloadKinds.insert(File.getBinary()->getOffloadKind()); // First link and remove all the input files containing bitcode. SmallVector InputFiles; if (Error Err = linkBitcodeFiles(Input, InputFiles, LinkerArgs)) return Err; // Write any remaining device inputs to an output file for the linker. for (const OffloadFile &File : Input) { auto FileNameOrErr = writeOffloadFile(File); if (!FileNameOrErr) return FileNameOrErr.takeError(); InputFiles.emplace_back(*FileNameOrErr); } // Link the remaining device files using the device linker. auto OutputOrErr = !Args.hasArg(OPT_embed_bitcode) ? linkDevice(InputFiles, LinkerArgs) : InputFiles.front(); if (!OutputOrErr) return OutputOrErr.takeError(); // Store the offloading image for each linked output file. for (OffloadKind Kind : ActiveOffloadKinds) { llvm::ErrorOr> FileOrErr = llvm::MemoryBuffer::getFileOrSTDIN(*OutputOrErr); if (std::error_code EC = FileOrErr.getError()) { if (DryRun) FileOrErr = MemoryBuffer::getMemBuffer(""); else return createFileError(*OutputOrErr, EC); } std::scoped_lock Guard(ImageMtx); OffloadingImage TheImage{}; TheImage.TheImageKind = Args.hasArg(OPT_embed_bitcode) ? IMG_Bitcode : IMG_Object; TheImage.TheOffloadKind = Kind; TheImage.StringData = { {"triple", Args.MakeArgString(LinkerArgs.getLastArgValue(OPT_triple_EQ))}, {"arch", Args.MakeArgString(LinkerArgs.getLastArgValue(OPT_arch_EQ))}}; TheImage.Image = std::move(*FileOrErr); Images[Kind].emplace_back(std::move(TheImage)); } return Error::success(); }); if (Err) return std::move(Err); // Create a binary image of each offloading image and embed it into a new // object file. SmallVector WrappedOutput; for (auto &[Kind, Input] : Images) { // We sort the entries before bundling so they appear in a deterministic // order in the final binary. llvm::sort(Input, [](OffloadingImage &A, OffloadingImage &B) { return A.StringData["triple"] > B.StringData["triple"] || A.StringData["arch"] > B.StringData["arch"] || A.TheOffloadKind < B.TheOffloadKind; }); auto BundledImagesOrErr = bundleLinkedOutput(Input, Args, Kind); if (!BundledImagesOrErr) return BundledImagesOrErr.takeError(); auto OutputOrErr = wrapDeviceImages(*BundledImagesOrErr, Args, Kind); if (!OutputOrErr) return OutputOrErr.takeError(); WrappedOutput.push_back(*OutputOrErr); } return WrappedOutput; } std::optional findFile(StringRef Dir, StringRef Root, const Twine &Name) { SmallString<128> Path; if (Dir.startswith("=")) sys::path::append(Path, Root, Dir.substr(1), Name); else sys::path::append(Path, Dir, Name); if (sys::fs::exists(Path)) return static_cast(Path); return std::nullopt; } std::optional findFromSearchPaths(StringRef Name, StringRef Root, ArrayRef SearchPaths) { for (StringRef Dir : SearchPaths) if (std::optional File = findFile(Dir, Root, Name)) return File; return std::nullopt; } std::optional searchLibraryBaseName(StringRef Name, StringRef Root, ArrayRef SearchPaths) { for (StringRef Dir : SearchPaths) { if (std::optional File = findFile(Dir, Root, "lib" + Name + ".so")) return File; if (std::optional File = findFile(Dir, Root, "lib" + Name + ".a")) return File; } return std::nullopt; } /// Search for static libraries in the linker's library path given input like /// `-lfoo` or `-l:libfoo.a`. std::optional searchLibrary(StringRef Input, StringRef Root, ArrayRef SearchPaths) { if (Input.startswith(":")) return findFromSearchPaths(Input.drop_front(), Root, SearchPaths); return searchLibraryBaseName(Input, Root, SearchPaths); } /// Common redeclaration of needed symbol flags. enum Symbol : uint32_t { Sym_None = 0, Sym_Undefined = 1U << 1, Sym_Weak = 1U << 2, }; /// Scan the symbols from a BitcodeFile \p Buffer and record if we need to /// extract any symbols from it. Expected getSymbolsFromBitcode(MemoryBufferRef Buffer, StringSaver &Saver, DenseMap &Syms) { Expected IRSymtabOrErr = readIRSymtab(Buffer); if (!IRSymtabOrErr) return IRSymtabOrErr.takeError(); bool ShouldExtract = false; for (unsigned I = 0; I != IRSymtabOrErr->Mods.size(); ++I) { for (const auto &Sym : IRSymtabOrErr->TheReader.module_symbols(I)) { if (Sym.isFormatSpecific() || !Sym.isGlobal()) continue; bool NewSymbol = Syms.count(Sym.getName()) == 0; auto &OldSym = Syms[Saver.save(Sym.getName())]; // We will extract if it defines a currenlty undefined non-weak symbol. bool ResolvesStrongReference = ((OldSym & Sym_Undefined && !(OldSym & Sym_Weak)) && !Sym.isUndefined()); // We will extract if it defines a new global symbol visible to the host. bool NewGlobalSymbol = ((NewSymbol || (OldSym & Sym_Undefined)) && !Sym.isUndefined() && !Sym.canBeOmittedFromSymbolTable() && (Sym.getVisibility() != GlobalValue::HiddenVisibility)); ShouldExtract |= ResolvesStrongReference | NewGlobalSymbol; // Update this symbol in the "table" with the new information. if (OldSym & Sym_Undefined && !Sym.isUndefined()) OldSym = static_cast(OldSym & ~Sym_Undefined); if (Sym.isUndefined() && NewSymbol) OldSym = static_cast(OldSym | Sym_Undefined); if (Sym.isWeak()) OldSym = static_cast(OldSym | Sym_Weak); } } return ShouldExtract; } /// Scan the symbols from an ObjectFile \p Obj and record if we need to extract /// any symbols from it. Expected getSymbolsFromObject(const ObjectFile &Obj, StringSaver &Saver, DenseMap &Syms) { bool ShouldExtract = false; for (SymbolRef Sym : Obj.symbols()) { auto FlagsOrErr = Sym.getFlags(); if (!FlagsOrErr) return FlagsOrErr.takeError(); if (!(*FlagsOrErr & SymbolRef::SF_Global) || (*FlagsOrErr & SymbolRef::SF_FormatSpecific)) continue; auto NameOrErr = Sym.getName(); if (!NameOrErr) return NameOrErr.takeError(); bool NewSymbol = Syms.count(*NameOrErr) == 0; auto &OldSym = Syms[Saver.save(*NameOrErr)]; // We will extract if it defines a currenlty undefined non-weak symbol. bool ResolvesStrongReference = (OldSym & Sym_Undefined) && !(OldSym & Sym_Weak) && !(*FlagsOrErr & SymbolRef::SF_Undefined); // We will extract if it defines a new global symbol visible to the host. bool NewGlobalSymbol = ((NewSymbol || (OldSym & Sym_Undefined)) && !(*FlagsOrErr & SymbolRef::SF_Undefined) && !(*FlagsOrErr & SymbolRef::SF_Hidden)); ShouldExtract |= ResolvesStrongReference | NewGlobalSymbol; // Update this symbol in the "table" with the new information. if (OldSym & Sym_Undefined && !(*FlagsOrErr & SymbolRef::SF_Undefined)) OldSym = static_cast(OldSym & ~Sym_Undefined); if (*FlagsOrErr & SymbolRef::SF_Undefined && NewSymbol) OldSym = static_cast(OldSym | Sym_Undefined); if (*FlagsOrErr & SymbolRef::SF_Weak) OldSym = static_cast(OldSym | Sym_Weak); } return ShouldExtract; } /// Attempt to 'resolve' symbols found in input files. We use this to /// determine if an archive member needs to be extracted. An archive member /// will be extracted if any of the following is true. /// 1) It defines an undefined symbol in a regular object filie. /// 2) It defines a global symbol without hidden visibility that has not /// yet been defined. Expected getSymbols(StringRef Image, StringSaver &Saver, DenseMap &Syms) { MemoryBufferRef Buffer = MemoryBufferRef(Image, ""); switch (identify_magic(Image)) { case file_magic::bitcode: return getSymbolsFromBitcode(Buffer, Saver, Syms); case file_magic::elf_relocatable: { Expected> ObjFile = ObjectFile::createObjectFile(Buffer); if (!ObjFile) return ObjFile.takeError(); return getSymbolsFromObject(**ObjFile, Saver, Syms); } default: return false; } } /// Search the input files and libraries for embedded device offloading code /// and add it to the list of files to be linked. Files coming from static /// libraries are only added to the input if they are used by an existing /// input file. Expected> getDeviceInput(const ArgList &Args) { llvm::TimeTraceScope TimeScope("ExtractDeviceCode"); StringRef Root = Args.getLastArgValue(OPT_sysroot_EQ); SmallVector LibraryPaths; for (const opt::Arg *Arg : Args.filtered(OPT_library_path)) LibraryPaths.push_back(Arg->getValue()); BumpPtrAllocator Alloc; StringSaver Saver(Alloc); // Try to extract device code from the linker input files. SmallVector InputFiles; DenseMap> Syms; for (const opt::Arg *Arg : Args.filtered(OPT_INPUT, OPT_library)) { std::optional Filename = Arg->getOption().matches(OPT_library) ? searchLibrary(Arg->getValue(), Root, LibraryPaths) : std::string(Arg->getValue()); if (!Filename && Arg->getOption().matches(OPT_library)) reportError(createStringError(inconvertibleErrorCode(), "unable to find library -l%s", Arg->getValue())); if (!Filename || !sys::fs::exists(*Filename) || sys::fs::is_directory(*Filename)) continue; ErrorOr> BufferOrErr = MemoryBuffer::getFileOrSTDIN(*Filename); if (std::error_code EC = BufferOrErr.getError()) return createFileError(*Filename, EC); MemoryBufferRef Buffer = **BufferOrErr; if (identify_magic(Buffer.getBuffer()) == file_magic::elf_shared_object) continue; SmallVector Binaries; if (Error Err = extractOffloadBinaries(Buffer, Binaries)) return std::move(Err); // We only extract archive members that are needed. bool IsArchive = identify_magic(Buffer.getBuffer()) == file_magic::archive; bool Extracted = true; while (Extracted) { Extracted = false; for (OffloadFile &Binary : Binaries) { if (!Binary.getBinary()) continue; // If we don't have an object file for this architecture do not // extract. if (IsArchive && !Syms.count(Binary)) continue; Expected ExtractOrErr = getSymbols(Binary.getBinary()->getImage(), Saver, Syms[Binary]); if (!ExtractOrErr) return ExtractOrErr.takeError(); Extracted = IsArchive && *ExtractOrErr; if (!IsArchive || Extracted) InputFiles.emplace_back(std::move(Binary)); // If we extracted any files we need to check all the symbols again. if (Extracted) break; } } } for (StringRef Library : Args.getAllArgValues(OPT_bitcode_library_EQ)) { auto FileOrErr = getInputBitcodeLibrary(Library); if (!FileOrErr) return FileOrErr.takeError(); InputFiles.push_back(std::move(*FileOrErr)); } return std::move(InputFiles); } } // namespace int main(int Argc, char **Argv) { InitLLVM X(Argc, Argv); InitializeAllTargetInfos(); InitializeAllTargets(); InitializeAllTargetMCs(); InitializeAllAsmParsers(); InitializeAllAsmPrinters(); LinkerExecutable = Argv[0]; sys::PrintStackTraceOnErrorSignal(Argv[0]); const OptTable &Tbl = getOptTable(); BumpPtrAllocator Alloc; StringSaver Saver(Alloc); auto Args = Tbl.parseArgs(Argc, Argv, OPT_INVALID, Saver, [&](StringRef Err) { reportError(createStringError(inconvertibleErrorCode(), Err)); }); if (Args.hasArg(OPT_help) || Args.hasArg(OPT_help_hidden)) { Tbl.printHelp( outs(), "clang-linker-wrapper [options] -- ", "\nA wrapper utility over the host linker. It scans the input files\n" "for sections that require additional processing prior to linking.\n" "The will then transparently pass all arguments and input to the\n" "specified host linker to create the final binary.\n", Args.hasArg(OPT_help_hidden), Args.hasArg(OPT_help_hidden)); return EXIT_SUCCESS; } if (Args.hasArg(OPT_v)) { printVersion(outs()); return EXIT_SUCCESS; } // This forwards '-mllvm' arguments to LLVM if present. SmallVector NewArgv = {Argv[0]}; for (const opt::Arg *Arg : Args.filtered(OPT_mllvm)) NewArgv.push_back(Arg->getValue()); for (const opt::Arg *Arg : Args.filtered(OPT_offload_opt_eq_minus)) NewArgv.push_back(Args.MakeArgString(StringRef("-") + Arg->getValue())); cl::ParseCommandLineOptions(NewArgv.size(), &NewArgv[0]); Verbose = Args.hasArg(OPT_verbose); DryRun = Args.hasArg(OPT_dry_run); SaveTemps = Args.hasArg(OPT_save_temps); ExecutableName = Args.getLastArgValue(OPT_o, "a.out"); CudaBinaryPath = Args.getLastArgValue(OPT_cuda_path_EQ).str(); parallel::strategy = hardware_concurrency(1); if (auto *Arg = Args.getLastArg(OPT_wrapper_jobs)) { unsigned Threads = 0; if (!llvm::to_integer(Arg->getValue(), Threads) || Threads == 0) reportError(createStringError( inconvertibleErrorCode(), "%s: expected a positive integer, got '%s'", Arg->getSpelling().data(), Arg->getValue())); parallel::strategy = hardware_concurrency(Threads); } if (Args.hasArg(OPT_wrapper_time_trace_eq)) { unsigned Granularity; Args.getLastArgValue(OPT_wrapper_time_trace_granularity, "500") .getAsInteger(10, Granularity); timeTraceProfilerInitialize(Granularity, Argv[0]); } { llvm::TimeTraceScope TimeScope("Execute linker wrapper"); // Extract the device input files stored in the host fat binary. auto DeviceInputFiles = getDeviceInput(Args); if (!DeviceInputFiles) reportError(DeviceInputFiles.takeError()); // Link and wrap the device images extracted from the linker input. auto FilesOrErr = linkAndWrapDeviceFiles(*DeviceInputFiles, Args, Argv, Argc); if (!FilesOrErr) reportError(FilesOrErr.takeError()); // Run the host linking job with the rendered arguments. if (Error Err = runLinker(*FilesOrErr, Args)) reportError(std::move(Err)); } if (const opt::Arg *Arg = Args.getLastArg(OPT_wrapper_time_trace_eq)) { if (Error Err = timeTraceProfilerWrite(Arg->getValue(), ExecutableName)) reportError(std::move(Err)); timeTraceProfilerCleanup(); } // Remove the temporary files created. if (!SaveTemps) for (const auto &TempFile : TempFiles) if (std::error_code EC = sys::fs::remove(TempFile)) reportError(createFileError(TempFile, EC)); return EXIT_SUCCESS; }