#ifndef __V850_UACCESS_H__ #define __V850_UACCESS_H__ /* * User space memory access functions */ #include #include #include #include #define VERIFY_READ 0 #define VERIFY_WRITE 1 static inline int access_ok (int type, const void *addr, unsigned long size) { unsigned long val = (unsigned long)addr; return val >= (0x80 + NUM_CPU_IRQS*16) && val < 0xFFFFF000; } /* * The exception table consists of pairs of addresses: the first is the * address of an instruction that is allowed to fault, and the second is * the address at which the program should continue. No registers are * modified, so it is entirely up to the continuation code to figure out * what to do. * * All the routines below use bits of fixup code that are out of line * with the main instruction path. This means when everything is well, * we don't even have to jump over them. Further, they do not intrude * on our cache or tlb entries. */ struct exception_table_entry { unsigned long insn, fixup; }; /* Returns 0 if exception not found and fixup otherwise. */ extern unsigned long search_exception_table (unsigned long); /* * These are the main single-value transfer routines. They automatically * use the right size if we just have the right pointer type. */ extern int bad_user_access_length (void); #define __get_user(var, ptr) \ ({ \ int __gu_err = 0; \ typeof(*(ptr)) __gu_val = 0; \ switch (sizeof (*(ptr))) { \ case 1: \ case 2: \ case 4: \ __gu_val = *(ptr); \ break; \ case 8: \ memcpy(&__gu_val, ptr, sizeof(__gu_val)); \ break; \ default: \ __gu_val = 0; \ __gu_err = __get_user_bad (); \ break; \ } \ (var) = __gu_val; \ __gu_err; \ }) #define __get_user_bad() (bad_user_access_length (), (-EFAULT)) #define __put_user(var, ptr) \ ({ \ int __pu_err = 0; \ switch (sizeof (*(ptr))) { \ case 1: \ case 2: \ case 4: \ *(ptr) = (var); \ break; \ case 8: { \ typeof(*(ptr)) __pu_val = 0; \ memcpy(ptr, &__pu_val, sizeof(__pu_val)); \ } \ break; \ default: \ __pu_err = __put_user_bad (); \ break; \ } \ __pu_err; \ }) #define __put_user_bad() (bad_user_access_length (), (-EFAULT)) #define put_user(x, ptr) __put_user(x, ptr) #define get_user(x, ptr) __get_user(x, ptr) #define __copy_from_user(to, from, n) (memcpy (to, from, n), 0) #define __copy_to_user(to, from, n) (memcpy(to, from, n), 0) #define __copy_to_user_inatomic __copy_to_user #define __copy_from_user_inatomic __copy_from_user #define copy_from_user(to, from, n) __copy_from_user (to, from, n) #define copy_to_user(to, from, n) __copy_to_user(to, from, n) #define copy_to_user_ret(to,from,n,retval) \ ({ if (copy_to_user (to,from,n)) return retval; }) #define copy_from_user_ret(to,from,n,retval) \ ({ if (copy_from_user (to,from,n)) return retval; }) /* * Copy a null terminated string from userspace. */ static inline long strncpy_from_user (char *dst, const char *src, long count) { char *tmp; strncpy (dst, src, count); for (tmp = dst; *tmp && count > 0; tmp++, count--) ; return tmp - dst; } /* * Return the size of a string (including the ending 0) * * Return 0 on exception, a value greater than N if too long */ static inline long strnlen_user (const char *src, long n) { return strlen (src) + 1; } #define strlen_user(str) strnlen_user (str, 32767) /* * Zero Userspace */ static inline unsigned long clear_user (void *to, unsigned long n) { memset (to, 0, n); return 0; } #endif /* __V850_UACCESS_H__ */