/* * Driver O/S-independent utility routines * * Copyright (C) 2015, Broadcom Corporation. All Rights Reserved. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * $Id: bcmutils.c 503082 2014-09-17 06:36:56Z $ */ #ifndef __FreeBSD__ #if defined(__NetBSD__) #if defined(_KERNEL) #include #endif /* defined(_KERNEL) */ #endif /* defined(__NetBSD__) */ #endif /* ifndef(__FreeBSD__) */ #include #include #if defined(__FreeBSD__) || defined(__NetBSD__) #include #else #include #endif #ifdef BCMDRIVER #include #include #include #include #else /* !BCMDRIVER */ #include #include #include #if defined(BCMEXTSUP) #include #endif #ifndef ASSERT #define ASSERT(exp) #endif #endif /* !BCMDRIVER */ #if defined(_WIN32) || defined(NDIS) || defined(__vxworks) || defined(_CFE_) #include #endif #include #include #include #include #include #include #include #ifdef BCMPERFSTATS #include #endif void *_bcmutils_dummy_fn = NULL; #if defined(BCMDRIVER) /* Forward declarations */ static char * getvar_internal(char *vars, const char *name); static int getintvar_internal(char *vars, const char *name); static int getintvararray_internal(char *vars, const char *name, int index); static int getintvararraysize_internal(char *vars, const char *name); #endif #ifdef BCMDRIVER #ifdef WLC_LOW /* nvram vars cache */ static char *nvram_vars = NULL; static int vars_len = -1; #endif /* WLC_LOW */ /* rxcpl list management */ bcm_rxcplid_list_t *g_rxcplid_list = NULL; bool BCMATTACHFN(bcm_alloc_rxcplid_list)(osl_t *osh, uint32 cplid_max) { uint32 size; rxcpl_info_t *ptr; uint32 i; printf("allocating a max of %d rxcplid buffers\n", cplid_max); if (g_rxcplid_list != NULL) { printf("ERROR: rxcplid list already inited\n"); return FALSE; } size = sizeof(bcm_rxcplid_list_t) + (cplid_max * sizeof(rxcpl_info_t)); g_rxcplid_list = (bcm_rxcplid_list_t *)MALLOC(osh, size); if (g_rxcplid_list == NULL) { printf("ERROR: rxcplid list allocation fail, size %d, items %d\n", size, cplid_max); return FALSE; } bzero(g_rxcplid_list, size); g_rxcplid_list->max = cplid_max - 1; g_rxcplid_list->rxcpl_ptr = (rxcpl_info_t *)(g_rxcplid_list + 1); g_rxcplid_list->free_list = g_rxcplid_list->rxcpl_ptr + 1; ptr = g_rxcplid_list->free_list; for (i = 1; i <= g_rxcplid_list->max; i++) { ptr->rxcpl_id.idx = i; if (i != g_rxcplid_list->max) { ptr->free_next = ptr + 1; ptr = ptr->free_next; } else ptr->free_next = NULL; } g_rxcplid_list->avail = g_rxcplid_list->max; return TRUE; } rxcpl_info_t * bcm_alloc_rxcplinfo() { rxcpl_info_t *ptr; if (g_rxcplid_list == NULL) { return NULL; } if (g_rxcplid_list->avail == 0) { return NULL; } if (g_rxcplid_list->free_list == NULL) { return NULL; } ptr = g_rxcplid_list->free_list; g_rxcplid_list->free_list = ptr->free_next; g_rxcplid_list->avail--; if ((g_rxcplid_list->free_list == NULL) && (g_rxcplid_list->avail != 0)) { printf("ERROR :something is really wrong here, idx is %d, avail %d\n", ptr->rxcpl_id.idx, g_rxcplid_list->avail); ASSERT(0); } ptr->rxcpl_id.next_idx = 0; ptr->rxcpl_id.flags = 0; ptr->free_next = NULL; if (ptr->rxcpl_id.idx == 0) { printf("ERROR: allocating rxpl_info id %d\n", ptr->rxcpl_id.idx); ASSERT(0); } BCM_RXCPL_SET_IN_TRANSIT(ptr); return ptr; } void bcm_free_rxcplinfo(rxcpl_info_t *ptr) { if (g_rxcplid_list == NULL) return; if (g_rxcplid_list->avail == g_rxcplid_list->max) { printf("ERROR: fail to free the rxcpl entry %d, avail %d\n", ptr->rxcpl_id.idx, g_rxcplid_list->avail); ASSERT(0); return; } if (ptr->rxcpl_id.idx == 0) { printf("ERROR: freeing rxpl_info id %d\n", ptr->rxcpl_id.idx); ASSERT(0); } ptr->free_next = g_rxcplid_list->free_list; g_rxcplid_list->free_list = ptr; g_rxcplid_list->avail++; ptr->rxcpl_id.next_idx = 0; ptr->rxcpl_id.flags = 0; } void bcm_chain_rxcplid(uint16 first, uint16 next) { rxcpl_info_t *ptr; if (g_rxcplid_list == NULL) return; if ((first == 0) || (next == 0)) { printf("ERROR: chaining a zero entry first %d, next %d\n", first, next); ASSERT(0); } if ((first >= g_rxcplid_list->max) || (next >= g_rxcplid_list->max)) return; ptr = bcm_id2rxcplinfo(first); ptr->rxcpl_id.next_idx = next; } rxcpl_info_t * bcm_id2rxcplinfo(uint16 id) { if (id == 0) { ASSERT(0); return NULL; } return (&g_rxcplid_list->rxcpl_ptr[id]); } uint16 bcm_rxcplinfo2id(rxcpl_info_t *ptr) { return (uint16)(ptr->rxcpl_id.idx); } rxcpl_info_t * bcm_rxcpllist_end(rxcpl_info_t *ptr, uint32 *count) { uint32 cnt = 1; while (ptr->rxcpl_id.next_idx != 0) { ptr = bcm_id2rxcplinfo((uint16)(ptr->rxcpl_id.next_idx)); cnt++; } *count = cnt; return ptr; } /* Registry size is one larger than max pools, as slot #0 is reserved */ #define PKTPOOLREG_RSVD_ID (0U) #define PKTPOOLREG_RSVD_PTR (POOLPTR(0xdeaddead)) #define PKTPOOLREG_FREE_PTR (POOLPTR(NULL)) #define PKTPOOL_REGISTRY_SET(id, pp) (pktpool_registry_set((id), (pp))) #define PKTPOOL_REGISTRY_CMP(id, pp) (pktpool_registry_cmp((id), (pp))) /* Tag a registry entry as free for use */ #define PKTPOOL_REGISTRY_CLR(id) \ PKTPOOL_REGISTRY_SET((id), PKTPOOLREG_FREE_PTR) #define PKTPOOL_REGISTRY_ISCLR(id) \ (PKTPOOL_REGISTRY_CMP((id), PKTPOOLREG_FREE_PTR)) /* Tag registry entry 0 as reserved */ #define PKTPOOL_REGISTRY_RSV() \ PKTPOOL_REGISTRY_SET(PKTPOOLREG_RSVD_ID, PKTPOOLREG_RSVD_PTR) #define PKTPOOL_REGISTRY_ISRSVD() \ (PKTPOOL_REGISTRY_CMP(PKTPOOLREG_RSVD_ID, PKTPOOLREG_RSVD_PTR)) /* Walk all un-reserved entries in registry */ #define PKTPOOL_REGISTRY_FOREACH(id) \ for ((id) = 1U; (id) <= pktpools_max; (id)++) uint32 pktpools_max = 0U; /* maximum number of pools that may be initialized */ pktpool_t *pktpools_registry[PKTPOOL_MAXIMUM_ID + 1]; /* Pktpool registry */ /* Register/Deregister a pktpool with registry during pktpool_init/deinit */ static int pktpool_register(pktpool_t * poolptr); static int pktpool_deregister(pktpool_t * poolptr); /** accessor functions required when ROMming this file, forced into RAM */ static void BCMRAMFN(pktpool_registry_set)(int id, pktpool_t *pp) { pktpools_registry[id] = pp; } static bool BCMRAMFN(pktpool_registry_cmp)(int id, pktpool_t *pp) { return pktpools_registry[id] == pp; } int /* Construct a pool registry to serve a maximum of total_pools */ BCMATTACHFN(pktpool_attach)(osl_t *osh, uint32 total_pools) { uint32 poolid; if (pktpools_max != 0U) { return BCME_ERROR; } ASSERT(total_pools <= PKTPOOL_MAXIMUM_ID); /* Initialize registry: reserve slot#0 and tag others as free */ PKTPOOL_REGISTRY_RSV(); /* reserve slot#0 */ PKTPOOL_REGISTRY_FOREACH(poolid) { /* tag all unreserved entries as free */ PKTPOOL_REGISTRY_CLR(poolid); } pktpools_max = total_pools; return (int)pktpools_max; } int /* Destruct the pool registry. Ascertain all pools were first de-inited */ BCMATTACHFN(pktpool_dettach)(osl_t *osh) { uint32 poolid; if (pktpools_max == 0U) { return BCME_OK; } /* Ascertain that no pools are still registered */ ASSERT(PKTPOOL_REGISTRY_ISRSVD()); /* assert reserved slot */ PKTPOOL_REGISTRY_FOREACH(poolid) { /* ascertain all others are free */ ASSERT(PKTPOOL_REGISTRY_ISCLR(poolid)); } pktpools_max = 0U; /* restore boot state */ return BCME_OK; } static int /* Register a pool in a free slot; return the registry slot index */ pktpool_register(pktpool_t * poolptr) { uint32 poolid; if (pktpools_max == 0U) { return PKTPOOL_INVALID_ID; /* registry has not yet been constructed */ } ASSERT(pktpools_max != 0U); /* find an empty slot in pktpools_registry */ PKTPOOL_REGISTRY_FOREACH(poolid) { if (PKTPOOL_REGISTRY_ISCLR(poolid)) { PKTPOOL_REGISTRY_SET(poolid, POOLPTR(poolptr)); /* register pool */ return (int)poolid; /* return pool ID */ } } /* FOREACH */ return PKTPOOL_INVALID_ID; /* error: registry is full */ } static int /* Deregister a pktpool, given the pool pointer; tag slot as free */ pktpool_deregister(pktpool_t * poolptr) { uint32 poolid; ASSERT(POOLPTR(poolptr) != POOLPTR(NULL)); poolid = POOLID(poolptr); ASSERT(poolid <= pktpools_max); /* Asertain that a previously registered poolptr is being de-registered */ if (PKTPOOL_REGISTRY_CMP(poolid, POOLPTR(poolptr))) { PKTPOOL_REGISTRY_CLR(poolid); /* mark as free */ } else { ASSERT(0); return BCME_ERROR; /* mismatch in registry */ } return BCME_OK; } /* * pktpool_init: * User provides a pktpool_t sturcture and specifies the number of packets to * be pre-filled into the pool (pplen). The size of all packets in a pool must * be the same and is specified by plen. * pktpool_init first attempts to register the pool and fetch a unique poolid. * If registration fails, it is considered an BCME_ERR, caused by either the * registry was not pre-created (pktpool_attach) or the registry is full. * If registration succeeds, then the requested number of packets will be filled * into the pool as part of initialization. In the event that there is no * available memory to service the request, then BCME_NOMEM will be returned * along with the count of how many packets were successfully allocated. * In dongle builds, prior to memory reclaimation, one should limit the number * of packets to be allocated during pktpool_init and fill the pool up after * reclaim stage. */ int BCMATTACHFN(pktpool_init)(osl_t *osh, pktpool_t *pktp, int *pplen, int plen, bool istx, uint8 type) { int i, err = BCME_OK; int pktplen; uint8 pktp_id; ASSERT(pktp != NULL); ASSERT(osh != NULL); ASSERT(pplen != NULL); pktplen = *pplen; bzero(pktp, sizeof(pktpool_t)); /* assign a unique pktpool id */ if ((pktp_id = (uint8) pktpool_register(pktp)) == PKTPOOL_INVALID_ID) { return BCME_ERROR; } POOLSETID(pktp, pktp_id); pktp->inited = TRUE; pktp->istx = istx ? TRUE : FALSE; pktp->plen = (uint16)plen; pktp->type = type; pktp->maxlen = PKTPOOL_LEN_MAX; pktplen = LIMIT_TO_MAX(pktplen, pktp->maxlen); for (i = 0; i < pktplen; i++) { void *p; p = PKTGET(osh, plen, TRUE); if (p == NULL) { /* Not able to allocate all requested pkts * so just return what was actually allocated * We can add to the pool later */ if (pktp->freelist == NULL) /* pktpool free list is empty */ err = BCME_NOMEM; goto exit; } PKTSETPOOL(osh, p, TRUE, pktp); /* Tag packet with pool ID */ PKTSETFREELIST(p, pktp->freelist); /* insert p at head of free list */ pktp->freelist = p; pktp->avail++; #ifdef BCMDBG_POOL pktp->dbg_q[pktp->dbg_qlen++].p = p; #endif } exit: pktp->len = pktp->avail; *pplen = pktp->len; return err; } /* * pktpool_deinit: * Prior to freeing a pktpool, all packets must be first freed into the pktpool. * Upon pktpool_deinit, all packets in the free pool will be freed to the heap. * An assert is in place to ensure that there are no packets still lingering * around. Packets freed to a pool after the deinit will cause a memory * corruption as the pktpool_t structure no longer exists. */ int BCMATTACHFN(pktpool_deinit)(osl_t *osh, pktpool_t *pktp) { uint16 freed = 0; ASSERT(osh != NULL); ASSERT(pktp != NULL); #ifdef BCMDBG_POOL { int i; for (i = 0; i <= pktp->len; i++) { pktp->dbg_q[i].p = NULL; } } #endif while (pktp->freelist != NULL) { void * p = pktp->freelist; pktp->freelist = PKTFREELIST(p); /* unlink head packet from free list */ PKTSETFREELIST(p, NULL); PKTSETPOOL(osh, p, FALSE, NULL); /* clear pool ID tag in pkt */ PKTFREE(osh, p, pktp->istx); /* free the packet */ freed++; ASSERT(freed <= pktp->len); } pktp->avail -= freed; ASSERT(pktp->avail == 0); pktp->len -= freed; pktpool_deregister(pktp); /* release previously acquired unique pool id */ POOLSETID(pktp, PKTPOOL_INVALID_ID); pktp->inited = FALSE; /* Are there still pending pkts? */ ASSERT(pktp->len == 0); return 0; } int pktpool_fill(osl_t *osh, pktpool_t *pktp, bool minimal) { void *p; int err = 0; int len, psize, maxlen; ASSERT(pktp->plen != 0); maxlen = pktp->maxlen; psize = minimal ? (maxlen >> 2) : maxlen; for (len = (int)pktp->len; len < psize; len++) { p = PKTGET(osh, pktp->len, TRUE); if (p == NULL) { err = BCME_NOMEM; break; } if (pktpool_add(pktp, p) != BCME_OK) { PKTFREE(osh, p, FALSE); err = BCME_ERROR; break; } } return err; } static void * pktpool_deq(pktpool_t *pktp) { void *p; if (pktp->avail == 0) return NULL; ASSERT(pktp->freelist != NULL); p = pktp->freelist; /* dequeue packet from head of pktpool free list */ pktp->freelist = PKTFREELIST(p); /* free list points to next packet */ PKTSETFREELIST(p, NULL); pktp->avail--; return p; } static void pktpool_enq(pktpool_t *pktp, void *p) { ASSERT(p != NULL); PKTSETFREELIST(p, pktp->freelist); /* insert at head of pktpool free list */ pktp->freelist = p; /* free list points to newly inserted packet */ pktp->avail++; ASSERT(pktp->avail <= pktp->len); } /* utility for registering host addr fill function called from pciedev */ int BCMATTACHFN(pktpool_hostaddr_fill_register)(pktpool_t *pktp, pktpool_cb_extn_t cb, void *arg) { ASSERT(cb != NULL); ASSERT(pktp->cbext.cb == NULL); pktp->cbext.cb = cb; pktp->cbext.arg = arg; return 0; } int BCMATTACHFN(pktpool_rxcplid_fill_register)(pktpool_t *pktp, pktpool_cb_extn_t cb, void *arg) { ASSERT(cb != NULL); ASSERT(pktp->rxcplidfn.cb == NULL); pktp->rxcplidfn.cb = cb; pktp->rxcplidfn.arg = arg; return 0; } int BCMATTACHFN(pktpool_avail_register)(pktpool_t *pktp, pktpool_cb_t cb, void *arg) { int i; ASSERT(cb != NULL); i = pktp->cbcnt; if (i == PKTPOOL_CB_MAX) return BCME_ERROR; ASSERT(pktp->cbs[i].cb == NULL); pktp->cbs[i].cb = cb; pktp->cbs[i].arg = arg; pktp->cbcnt++; return 0; } int BCMATTACHFN(pktpool_empty_register)(pktpool_t *pktp, pktpool_cb_t cb, void *arg) { int i; ASSERT(cb != NULL); i = pktp->ecbcnt; if (i == PKTPOOL_CB_MAX) return BCME_ERROR; ASSERT(pktp->ecbs[i].cb == NULL); pktp->ecbs[i].cb = cb; pktp->ecbs[i].arg = arg; pktp->ecbcnt++; return 0; } static int pktpool_empty_notify(pktpool_t *pktp) { int i; pktp->empty = TRUE; for (i = 0; i < pktp->ecbcnt; i++) { ASSERT(pktp->ecbs[i].cb != NULL); pktp->ecbs[i].cb(pktp, pktp->ecbs[i].arg); } pktp->empty = FALSE; return 0; } #ifdef BCMDBG_POOL int pktpool_dbg_register(pktpool_t *pktp, pktpool_cb_t cb, void *arg) { int i; ASSERT(cb); i = pktp->dbg_cbcnt; if (i == PKTPOOL_CB_MAX) return BCME_ERROR; ASSERT(pktp->dbg_cbs[i].cb == NULL); pktp->dbg_cbs[i].cb = cb; pktp->dbg_cbs[i].arg = arg; pktp->dbg_cbcnt++; return 0; } int pktpool_dbg_notify(pktpool_t *pktp); int pktpool_dbg_notify(pktpool_t *pktp) { int i; for (i = 0; i < pktp->dbg_cbcnt; i++) { ASSERT(pktp->dbg_cbs[i].cb); pktp->dbg_cbs[i].cb(pktp, pktp->dbg_cbs[i].arg); } return 0; } int pktpool_dbg_dump(pktpool_t *pktp) { int i; printf("pool len=%d maxlen=%d\n", pktp->dbg_qlen, pktp->maxlen); for (i = 0; i < pktp->dbg_qlen; i++) { ASSERT(pktp->dbg_q[i].p); printf("%d, p: 0x%x dur:%lu us state:%d\n", i, pktp->dbg_q[i].p, pktp->dbg_q[i].dur/100, PKTPOOLSTATE(pktp->dbg_q[i].p)); } return 0; } int pktpool_stats_dump(pktpool_t *pktp, pktpool_stats_t *stats) { int i; int state; bzero(stats, sizeof(pktpool_stats_t)); for (i = 0; i < pktp->dbg_qlen; i++) { ASSERT(pktp->dbg_q[i].p != NULL); state = PKTPOOLSTATE(pktp->dbg_q[i].p); switch (state) { case POOL_TXENQ: stats->enq++; break; case POOL_TXDH: stats->txdh++; break; case POOL_TXD11: stats->txd11++; break; case POOL_RXDH: stats->rxdh++; break; case POOL_RXD11: stats->rxd11++; break; case POOL_RXFILL: stats->rxfill++; break; case POOL_IDLE: stats->idle++; break; } } return 0; } int pktpool_start_trigger(pktpool_t *pktp, void *p) { uint32 cycles, i; if (!PKTPOOL(OSH_NULL, p)) return 0; OSL_GETCYCLES(cycles); for (i = 0; i < pktp->dbg_qlen; i++) { ASSERT(pktp->dbg_q[i].p != NULL); if (pktp->dbg_q[i].p == p) { pktp->dbg_q[i].cycles = cycles; break; } } return 0; } int pktpool_stop_trigger(pktpool_t *pktp, void *p); int pktpool_stop_trigger(pktpool_t *pktp, void *p) { uint32 cycles, i; if (!PKTPOOL(OSH_NULL, p)) return 0; OSL_GETCYCLES(cycles); for (i = 0; i < pktp->dbg_qlen; i++) { ASSERT(pktp->dbg_q[i].p != NULL); if (pktp->dbg_q[i].p == p) { if (pktp->dbg_q[i].cycles == 0) break; if (cycles >= pktp->dbg_q[i].cycles) pktp->dbg_q[i].dur = cycles - pktp->dbg_q[i].cycles; else pktp->dbg_q[i].dur = (((uint32)-1) - pktp->dbg_q[i].cycles) + cycles + 1; pktp->dbg_q[i].cycles = 0; break; } } return 0; } #endif /* BCMDBG_POOL */ int pktpool_avail_notify_normal(osl_t *osh, pktpool_t *pktp) { ASSERT(pktp); pktp->availcb_excl = NULL; return 0; } int pktpool_avail_notify_exclusive(osl_t *osh, pktpool_t *pktp, pktpool_cb_t cb) { int i; ASSERT(pktp); ASSERT(pktp->availcb_excl == NULL); for (i = 0; i < pktp->cbcnt; i++) { if (cb == pktp->cbs[i].cb) { pktp->availcb_excl = &pktp->cbs[i]; break; } } if (pktp->availcb_excl == NULL) return BCME_ERROR; else return 0; } static int pktpool_avail_notify(pktpool_t *pktp) { int i, k, idx; int avail; ASSERT(pktp); if (pktp->availcb_excl != NULL) { pktp->availcb_excl->cb(pktp, pktp->availcb_excl->arg); return 0; } k = pktp->cbcnt - 1; for (i = 0; i < pktp->cbcnt; i++) { avail = pktp->avail; if (avail) { if (pktp->cbtoggle) idx = i; else idx = k--; ASSERT(pktp->cbs[idx].cb != NULL); pktp->cbs[idx].cb(pktp, pktp->cbs[idx].arg); } } /* Alternate between filling from head or tail */ pktp->cbtoggle ^= 1; return 0; } void * pktpool_get(pktpool_t *pktp) { void *p; p = pktpool_deq(pktp); if (p == NULL) { /* Notify and try to reclaim tx pkts */ if (pktp->ecbcnt) pktpool_empty_notify(pktp); p = pktpool_deq(pktp); if (p == NULL) return NULL; } return p; } void pktpool_free(pktpool_t *pktp, void *p) { ASSERT(p != NULL); #ifdef BCMDBG_POOL /* pktpool_stop_trigger(pktp, p); */ #endif pktpool_enq(pktp, p); if (pktp->emptycb_disable) return; if (pktp->cbcnt) { if (pktp->empty == FALSE) pktpool_avail_notify(pktp); } } int pktpool_add(pktpool_t *pktp, void *p) { ASSERT(p != NULL); if (pktp->len == pktp->maxlen) return BCME_RANGE; /* pkts in pool have same length */ ASSERT(pktp->plen == PKTLEN(OSH_NULL, p)); PKTSETPOOL(OSH_NULL, p, TRUE, pktp); pktp->len++; pktpool_enq(pktp, p); #ifdef BCMDBG_POOL pktp->dbg_q[pktp->dbg_qlen++].p = p; #endif return 0; } int BCMRAMFN(pktpool_setmaxlen)(pktpool_t *pktp, uint16 maxlen) { if (maxlen > PKTPOOL_LEN_MAX) maxlen = PKTPOOL_LEN_MAX; /* if pool is already beyond maxlen, then just cap it * since we currently do not reduce the pool len * already allocated */ pktp->maxlen = (pktp->len > maxlen) ? pktp->len : maxlen; return pktp->maxlen; } void pktpool_emptycb_disable(pktpool_t *pktp, bool disable) { ASSERT(pktp); pktp->emptycb_disable = disable; } bool pktpool_emptycb_disabled(pktpool_t *pktp) { ASSERT(pktp); return pktp->emptycb_disable; } /* copy a pkt buffer chain into a buffer */ uint pktcopy(osl_t *osh, void *p, uint offset, int len, uchar *buf) { uint n, ret = 0; if (len < 0) len = 4096; /* "infinite" */ /* skip 'offset' bytes */ for (; p && offset; p = PKTNEXT(osh, p)) { if (offset < (uint)PKTLEN(osh, p)) break; offset -= PKTLEN(osh, p); } if (!p) return 0; /* copy the data */ for (; p && len; p = PKTNEXT(osh, p)) { n = MIN((uint)PKTLEN(osh, p) - offset, (uint)len); bcopy(PKTDATA(osh, p) + offset, buf, n); buf += n; len -= n; ret += n; offset = 0; } return ret; } /* copy a buffer into a pkt buffer chain */ uint pktfrombuf(osl_t *osh, void *p, uint offset, int len, uchar *buf) { uint n, ret = 0; /* skip 'offset' bytes */ for (; p && offset; p = PKTNEXT(osh, p)) { if (offset < (uint)PKTLEN(osh, p)) break; offset -= PKTLEN(osh, p); } if (!p) return 0; /* copy the data */ for (; p && len; p = PKTNEXT(osh, p)) { n = MIN((uint)PKTLEN(osh, p) - offset, (uint)len); bcopy(buf, PKTDATA(osh, p) + offset, n); buf += n; len -= n; ret += n; offset = 0; } return ret; } #ifdef NOTYET /* copy data from one pkt buffer (chain) to another */ uint pkt2pktcopy(osl_t *osh, void *p1, uint offs1, void *p2, uint offs2, int maxlen) { uint8 *dp1, *dp2; uint len1, len2, copylen, totallen; for (; p1 && offs; p1 = PKTNEXT(osh, p1)) { if (offs1 < (uint)PKTLEN(osh, p1)) break; offs1 -= PKTLEN(osh, p1); } for (; p2 && offs; p2 = PKTNEXT(osh, p2)) { if (offs2 < (uint)PKTLEN(osh, p2)) break; offs2 -= PKTLEN(osh, p2); } /* Heck w/it, only need the above for now */ } #endif /* NOTYET */ /* return total length of buffer chain */ uint BCMFASTPATH pkttotlen(osl_t *osh, void *p) { uint total; int len; total = 0; for (; p; p = PKTNEXT(osh, p)) { len = PKTLEN(osh, p); #ifdef MACOSX if (len < 0) { /* Bad packet length, just drop and exit */ break; } #endif /* MACOSX */ total += len; #ifdef BCMLFRAG if (BCMLFRAG_ENAB()) { if (PKTISFRAG(osh, p)) { total += PKTFRAGTOTLEN(osh, p); } } #endif } return (total); } /* return the last buffer of chained pkt */ void * pktlast(osl_t *osh, void *p) { for (; PKTNEXT(osh, p); p = PKTNEXT(osh, p)) ; return (p); } /* count segments of a chained packet */ uint BCMFASTPATH pktsegcnt(osl_t *osh, void *p) { uint cnt; for (cnt = 0; p; p = PKTNEXT(osh, p)) { cnt++; #ifdef BCMLFRAG if (BCMLFRAG_ENAB()) { if (PKTISFRAG(osh, p)) { cnt += PKTFRAGTOTNUM(osh, p); } } #endif } return cnt; } /* count segments of a chained packet */ uint BCMFASTPATH pktsegcnt_war(osl_t *osh, void *p) { uint cnt; uint8 *pktdata; uint len, remain, align64; for (cnt = 0; p; p = PKTNEXT(osh, p)) { cnt++; len = PKTLEN(osh, p); if (len > 128) { pktdata = (uint8 *)PKTDATA(osh, p); /* starting address of data */ /* Check for page boundary straddle (2048B) */ if (((uintptr)pktdata & ~0x7ff) != ((uintptr)(pktdata+len) & ~0x7ff)) cnt++; align64 = (uint)((uintptr)pktdata & 0x3f); /* aligned to 64B */ align64 = (64 - align64) & 0x3f; len -= align64; /* bytes from aligned 64B to end */ /* if aligned to 128B, check for MOD 128 between 1 to 4B */ remain = len % 128; if (remain > 0 && remain <= 4) cnt++; /* add extra seg */ } } return cnt; } uint8 * BCMFASTPATH pktdataoffset(osl_t *osh, void *p, uint offset) { uint total = pkttotlen(osh, p); uint pkt_off = 0, len = 0; uint8 *pdata = (uint8 *) PKTDATA(osh, p); if (offset > total) return NULL; for (; p; p = PKTNEXT(osh, p)) { pdata = (uint8 *) PKTDATA(osh, p); pkt_off = offset - len; len += PKTLEN(osh, p); if (len > offset) break; } return (uint8*) (pdata+pkt_off); } /* given a offset in pdata, find the pkt seg hdr */ void * pktoffset(osl_t *osh, void *p, uint offset) { uint total = pkttotlen(osh, p); uint len = 0; if (offset > total) return NULL; for (; p; p = PKTNEXT(osh, p)) { len += PKTLEN(osh, p); if (len > offset) break; } return p; } /* * osl multiple-precedence packet queue * hi_prec is always >= the number of the highest non-empty precedence */ void * BCMFASTPATH pktq_penq(struct pktq *pq, int prec, void *p) { struct pktq_prec *q; ASSERT(prec >= 0 && prec < pq->num_prec); ASSERT(PKTLINK(p) == NULL); /* queueing chains not allowed */ ASSERT(!pktq_full(pq)); ASSERT(!pktq_pfull(pq, prec)); q = &pq->q[prec]; if (q->head) PKTSETLINK(q->tail, p); else q->head = p; q->tail = p; q->len++; pq->len++; if (pq->hi_prec < prec) pq->hi_prec = (uint8)prec; return p; } void * BCMFASTPATH pktq_penq_head(struct pktq *pq, int prec, void *p) { struct pktq_prec *q; ASSERT(prec >= 0 && prec < pq->num_prec); ASSERT(PKTLINK(p) == NULL); /* queueing chains not allowed */ ASSERT(!pktq_full(pq)); ASSERT(!pktq_pfull(pq, prec)); q = &pq->q[prec]; if (q->head == NULL) q->tail = p; PKTSETLINK(p, q->head); q->head = p; q->len++; pq->len++; if (pq->hi_prec < prec) pq->hi_prec = (uint8)prec; return p; } void * BCMFASTPATH pktq_pdeq(struct pktq *pq, int prec) { struct pktq_prec *q; void *p; ASSERT(prec >= 0 && prec < pq->num_prec); q = &pq->q[prec]; if ((p = q->head) == NULL) return NULL; if ((q->head = PKTLINK(p)) == NULL) q->tail = NULL; q->len--; pq->len--; PKTSETLINK(p, NULL); return p; } void * BCMFASTPATH pktq_pdeq_prev(struct pktq *pq, int prec, void *prev_p) { struct pktq_prec *q; void *p; ASSERT(prec >= 0 && prec < pq->num_prec); q = &pq->q[prec]; if (prev_p == NULL) return NULL; if ((p = PKTLINK(prev_p)) == NULL) return NULL; q->len--; pq->len--; PKTSETLINK(prev_p, PKTLINK(p)); PKTSETLINK(p, NULL); return p; } void * BCMFASTPATH pktq_pdeq_with_fn(struct pktq *pq, int prec, ifpkt_cb_t fn, int arg) { struct pktq_prec *q; void *p, *prev = NULL; ASSERT(prec >= 0 && prec < pq->num_prec); q = &pq->q[prec]; p = q->head; while (p) { if (fn == NULL || (*fn)(p, arg)) { break; } else { prev = p; p = PKTLINK(p); } } if (p == NULL) return NULL; if (prev == NULL) { if ((q->head = PKTLINK(p)) == NULL) q->tail = NULL; } else { PKTSETLINK(prev, PKTLINK(p)); } q->len--; pq->len--; PKTSETLINK(p, NULL); return p; } void * BCMFASTPATH pktq_pdeq_tail(struct pktq *pq, int prec) { struct pktq_prec *q; void *p, *prev; ASSERT(prec >= 0 && prec < pq->num_prec); q = &pq->q[prec]; if ((p = q->head) == NULL) return NULL; for (prev = NULL; p != q->tail; p = PKTLINK(p)) prev = p; if (prev) PKTSETLINK(prev, NULL); else q->head = NULL; q->tail = prev; q->len--; pq->len--; return p; } void pktq_pflush(osl_t *osh, struct pktq *pq, int prec, bool dir, ifpkt_cb_t fn, int arg) { struct pktq_prec *q; void *p, *prev = NULL; q = &pq->q[prec]; p = q->head; while (p) { if (fn == NULL || (*fn)(p, arg)) { bool head = (p == q->head); if (head) q->head = PKTLINK(p); else PKTSETLINK(prev, PKTLINK(p)); PKTSETLINK(p, NULL); PKTFREE(osh, p, dir); q->len--; pq->len--; p = (head ? q->head : PKTLINK(prev)); } else { prev = p; p = PKTLINK(p); } } if (q->head == NULL) { ASSERT(q->len == 0); q->tail = NULL; } } bool BCMFASTPATH pktq_pdel(struct pktq *pq, void *pktbuf, int prec) { struct pktq_prec *q; void *p; ASSERT(prec >= 0 && prec < pq->num_prec); if (!pktbuf) return FALSE; q = &pq->q[prec]; if (q->head == pktbuf) { if ((q->head = PKTLINK(pktbuf)) == NULL) q->tail = NULL; } else { for (p = q->head; p && PKTLINK(p) != pktbuf; p = PKTLINK(p)) ; if (p == NULL) return FALSE; PKTSETLINK(p, PKTLINK(pktbuf)); if (q->tail == pktbuf) q->tail = p; } q->len--; pq->len--; PKTSETLINK(pktbuf, NULL); return TRUE; } void pktq_init(struct pktq *pq, int num_prec, int max_len) { int prec; ASSERT(num_prec > 0 && num_prec <= PKTQ_MAX_PREC); /* pq is variable size; only zero out what's requested */ bzero(pq, OFFSETOF(struct pktq, q) + (sizeof(struct pktq_prec) * num_prec)); pq->num_prec = (uint16)num_prec; pq->max = (uint16)max_len; for (prec = 0; prec < num_prec; prec++) pq->q[prec].max = pq->max; } void pktq_set_max_plen(struct pktq *pq, int prec, int max_len) { ASSERT(prec >= 0 && prec < pq->num_prec); if (prec < pq->num_prec) pq->q[prec].max = (uint16)max_len; } void * BCMFASTPATH pktq_deq(struct pktq *pq, int *prec_out) { struct pktq_prec *q; void *p; int prec; if (pq->len == 0) return NULL; while ((prec = pq->hi_prec) > 0 && pq->q[prec].head == NULL) pq->hi_prec--; q = &pq->q[prec]; if ((p = q->head) == NULL) return NULL; if ((q->head = PKTLINK(p)) == NULL) q->tail = NULL; q->len--; pq->len--; if (prec_out) *prec_out = prec; PKTSETLINK(p, NULL); return p; } void * BCMFASTPATH pktq_deq_tail(struct pktq *pq, int *prec_out) { struct pktq_prec *q; void *p, *prev; int prec; if (pq->len == 0) return NULL; for (prec = 0; prec < pq->hi_prec; prec++) if (pq->q[prec].head) break; q = &pq->q[prec]; if ((p = q->head) == NULL) return NULL; for (prev = NULL; p != q->tail; p = PKTLINK(p)) prev = p; if (prev) PKTSETLINK(prev, NULL); else q->head = NULL; q->tail = prev; q->len--; pq->len--; if (prec_out) *prec_out = prec; PKTSETLINK(p, NULL); return p; } void * pktq_peek(struct pktq *pq, int *prec_out) { int prec; if (pq->len == 0) return NULL; while ((prec = pq->hi_prec) > 0 && pq->q[prec].head == NULL) pq->hi_prec--; if (prec_out) *prec_out = prec; return (pq->q[prec].head); } void * pktq_peek_tail(struct pktq *pq, int *prec_out) { int prec; if (pq->len == 0) return NULL; for (prec = 0; prec < pq->hi_prec; prec++) if (pq->q[prec].head) break; if (prec_out) *prec_out = prec; return (pq->q[prec].tail); } void pktq_flush(osl_t *osh, struct pktq *pq, bool dir, ifpkt_cb_t fn, int arg) { int prec; /* Optimize flush, if pktq len = 0, just return. * pktq len of 0 means pktq's prec q's are all empty. */ if (pq->len == 0) { return; } for (prec = 0; prec < pq->num_prec; prec++) pktq_pflush(osh, pq, prec, dir, fn, arg); if (fn == NULL) ASSERT(pq->len == 0); } /* Return sum of lengths of a specific set of precedences */ int pktq_mlen(struct pktq *pq, uint prec_bmp) { int prec, len; len = 0; for (prec = 0; prec <= pq->hi_prec; prec++) if (prec_bmp & (1 << prec)) len += pq->q[prec].len; return len; } /* Priority peek from a specific set of precedences */ void * BCMFASTPATH pktq_mpeek(struct pktq *pq, uint prec_bmp, int *prec_out) { struct pktq_prec *q; void *p; int prec; if (pq->len == 0) { return NULL; } while ((prec = pq->hi_prec) > 0 && pq->q[prec].head == NULL) pq->hi_prec--; while ((prec_bmp & (1 << prec)) == 0 || pq->q[prec].head == NULL) if (prec-- == 0) return NULL; q = &pq->q[prec]; if ((p = q->head) == NULL) return NULL; if (prec_out) *prec_out = prec; return p; } /* Priority dequeue from a specific set of precedences */ void * BCMFASTPATH pktq_mdeq(struct pktq *pq, uint prec_bmp, int *prec_out) { struct pktq_prec *q; void *p; int prec; if (pq->len == 0) return NULL; while ((prec = pq->hi_prec) > 0 && pq->q[prec].head == NULL) pq->hi_prec--; while ((pq->q[prec].head == NULL) || ((prec_bmp & (1 << prec)) == 0)) if (prec-- == 0) return NULL; q = &pq->q[prec]; if ((p = q->head) == NULL) return NULL; if ((q->head = PKTLINK(p)) == NULL) q->tail = NULL; q->len--; if (prec_out) *prec_out = prec; pq->len--; PKTSETLINK(p, NULL); return p; } #endif /* BCMDRIVER */ #if !defined(BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS) #if defined(BCMROMBUILD) const unsigned char BCMROMDATA(bcm_ctype)[] = { #else const unsigned char bcm_ctype[] = { #endif _BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C, /* 0-7 */ _BCM_C, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C, _BCM_C, /* 8-15 */ _BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C, /* 16-23 */ _BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C, /* 24-31 */ _BCM_S|_BCM_SP,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 32-39 */ _BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 40-47 */ _BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D, /* 48-55 */ _BCM_D,_BCM_D,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 56-63 */ _BCM_P, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U, /* 64-71 */ _BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U, /* 72-79 */ _BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U, /* 80-87 */ _BCM_U,_BCM_U,_BCM_U,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 88-95 */ _BCM_P, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L, /* 96-103 */ _BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L, /* 104-111 */ _BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L, /* 112-119 */ _BCM_L,_BCM_L,_BCM_L,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_C, /* 120-127 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 128-143 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 144-159 */ _BCM_S|_BCM_SP, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, /* 160-175 */ _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, /* 176-191 */ _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, /* 192-207 */ _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_P, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_L, /* 208-223 */ _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, /* 224-239 */ _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_P, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L /* 240-255 */ }; ulong BCMROMFN(bcm_strtoul)(const char *cp, char **endp, uint base) { ulong result, last_result = 0, value; bool minus; minus = FALSE; while (bcm_isspace(*cp)) cp++; if (cp[0] == '+') cp++; else if (cp[0] == '-') { minus = TRUE; cp++; } if (base == 0) { if (cp[0] == '0') { if ((cp[1] == 'x') || (cp[1] == 'X')) { base = 16; cp = &cp[2]; } else { base = 8; cp = &cp[1]; } } else base = 10; } else if (base == 16 && (cp[0] == '0') && ((cp[1] == 'x') || (cp[1] == 'X'))) { cp = &cp[2]; } result = 0; while (bcm_isxdigit(*cp) && (value = bcm_isdigit(*cp) ? *cp-'0' : bcm_toupper(*cp)-'A'+10) < base) { result = result*base + value; /* Detected overflow */ if (result < last_result && !minus) return (ulong)-1; last_result = result; cp++; } if (minus) result = (ulong)(-(long)result); if (endp) *endp = DISCARD_QUAL(cp, char); return (result); } int BCMROMFN(bcm_atoi)(const char *s) { return (int)bcm_strtoul(s, NULL, 10); } /* return pointer to location of substring 'needle' in 'haystack' */ char * BCMROMFN(bcmstrstr)(const char *haystack, const char *needle) { int len, nlen; int i; if ((haystack == NULL) || (needle == NULL)) return DISCARD_QUAL(haystack, char); nlen = strlen(needle); len = strlen(haystack) - nlen + 1; for (i = 0; i < len; i++) if (memcmp(needle, &haystack[i], nlen) == 0) return DISCARD_QUAL(&haystack[i], char); return (NULL); } char * BCMROMFN(bcmstrcat)(char *dest, const char *src) { char *p; p = dest + strlen(dest); while ((*p++ = *src++) != '\0') ; return (dest); } char * BCMROMFN(bcmstrncat)(char *dest, const char *src, uint size) { char *endp; char *p; p = dest + strlen(dest); endp = p + size; while (p != endp && (*p++ = *src++) != '\0') ; return (dest); } /**************************************************************************** * Function: bcmstrtok * * Purpose: * Tokenizes a string. This function is conceptually similiar to ANSI C strtok(), * but allows strToken() to be used by different strings or callers at the same * time. Each call modifies '*string' by substituting a NULL character for the * first delimiter that is encountered, and updates 'string' to point to the char * after the delimiter. Leading delimiters are skipped. * * Parameters: * string (mod) Ptr to string ptr, updated by token. * delimiters (in) Set of delimiter characters. * tokdelim (out) Character that delimits the returned token. (May * be set to NULL if token delimiter is not required). * * Returns: Pointer to the next token found. NULL when no more tokens are found. ***************************************************************************** */ char * bcmstrtok(char **string, const char *delimiters, char *tokdelim) { unsigned char *str; unsigned long map[8]; int count; char *nextoken; if (tokdelim != NULL) { /* Prime the token delimiter */ *tokdelim = '\0'; } /* Clear control map */ for (count = 0; count < 8; count++) { map[count] = 0; } /* Set bits in delimiter table */ do { map[*delimiters >> 5] |= (1 << (*delimiters & 31)); } while (*delimiters++); str = (unsigned char*)*string; /* Find beginning of token (skip over leading delimiters). Note that * there is no token iff this loop sets str to point to the terminal * null (*str == '\0') */ while (((map[*str >> 5] & (1 << (*str & 31))) && *str) || (*str == ' ')) { str++; } nextoken = (char*)str; /* Find the end of the token. If it is not the end of the string, * put a null there. */ for (; *str; str++) { if (map[*str >> 5] & (1 << (*str & 31))) { if (tokdelim != NULL) { *tokdelim = *str; } *str++ = '\0'; break; } } *string = (char*)str; /* Determine if a token has been found. */ if (nextoken == (char *) str) { return NULL; } else { return nextoken; } } #define xToLower(C) \ ((C >= 'A' && C <= 'Z') ? (char)((int)C - (int)'A' + (int)'a') : C) /**************************************************************************** * Function: bcmstricmp * * Purpose: Compare to strings case insensitively. * * Parameters: s1 (in) First string to compare. * s2 (in) Second string to compare. * * Returns: Return 0 if the two strings are equal, -1 if t1 < t2 and 1 if * t1 > t2, when ignoring case sensitivity. ***************************************************************************** */ int bcmstricmp(const char *s1, const char *s2) { char dc, sc; while (*s2 && *s1) { dc = xToLower(*s1); sc = xToLower(*s2); if (dc < sc) return -1; if (dc > sc) return 1; s1++; s2++; } if (*s1 && !*s2) return 1; if (!*s1 && *s2) return -1; return 0; } /**************************************************************************** * Function: bcmstrnicmp * * Purpose: Compare to strings case insensitively, upto a max of 'cnt' * characters. * * Parameters: s1 (in) First string to compare. * s2 (in) Second string to compare. * cnt (in) Max characters to compare. * * Returns: Return 0 if the two strings are equal, -1 if t1 < t2 and 1 if * t1 > t2, when ignoring case sensitivity. ***************************************************************************** */ int bcmstrnicmp(const char* s1, const char* s2, int cnt) { char dc, sc; while (*s2 && *s1 && cnt) { dc = xToLower(*s1); sc = xToLower(*s2); if (dc < sc) return -1; if (dc > sc) return 1; s1++; s2++; cnt--; } if (!cnt) return 0; if (*s1 && !*s2) return 1; if (!*s1 && *s2) return -1; return 0; } /* parse a xx:xx:xx:xx:xx:xx format ethernet address */ int BCMROMFN(bcm_ether_atoe)(const char *p, struct ether_addr *ea) { int i = 0; char *ep; for (;;) { ea->octet[i++] = (char) bcm_strtoul(p, &ep, 16); p = ep; if (!*p++ || i == 6) break; } return (i == 6); } #endif /* !BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS */ #if defined(CONFIG_USBRNDIS_RETAIL) || defined(NDIS_MINIPORT_DRIVER) /* registry routine buffer preparation utility functions: * parameter order is like strncpy, but returns count * of bytes copied. Minimum bytes copied is null char(1)/wchar(2) */ ulong wchar2ascii(char *abuf, ushort *wbuf, ushort wbuflen, ulong abuflen) { ulong copyct = 1; ushort i; if (abuflen == 0) return 0; /* wbuflen is in bytes */ wbuflen /= sizeof(ushort); for (i = 0; i < wbuflen; ++i) { if (--abuflen == 0) break; *abuf++ = (char) *wbuf++; ++copyct; } *abuf = '\0'; return copyct; } #endif /* CONFIG_USBRNDIS_RETAIL || NDIS_MINIPORT_DRIVER */ char * bcm_ether_ntoa(const struct ether_addr *ea, char *buf) { static const char hex[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' }; const uint8 *octet = ea->octet; char *p = buf; int i; for (i = 0; i < 6; i++, octet++) { *p++ = hex[(*octet >> 4) & 0xf]; *p++ = hex[*octet & 0xf]; *p++ = ':'; } *(p-1) = '\0'; return (buf); } char * bcm_ip_ntoa(struct ipv4_addr *ia, char *buf) { snprintf(buf, 16, "%d.%d.%d.%d", ia->addr[0], ia->addr[1], ia->addr[2], ia->addr[3]); return (buf); } char * bcm_ipv6_ntoa(void *ipv6, char *buf) { /* Implementing RFC 5952 Sections 4 + 5 */ /* Not thoroughly tested */ uint16 tmp[8]; uint16 *a = &tmp[0]; char *p = buf; int i, i_max = -1, cnt = 0, cnt_max = 1; uint8 *a4 = NULL; memcpy((uint8 *)&tmp[0], (uint8 *)ipv6, IPV6_ADDR_LEN); for (i = 0; i < IPV6_ADDR_LEN/2; i++) { if (a[i]) { if (cnt > cnt_max) { cnt_max = cnt; i_max = i - cnt; } cnt = 0; } else cnt++; } if (cnt > cnt_max) { cnt_max = cnt; i_max = i - cnt; } if (i_max == 0 && /* IPv4-translated: ::ffff:0:a.b.c.d */ ((cnt_max == 4 && a[4] == 0xffff && a[5] == 0) || /* IPv4-mapped: ::ffff:a.b.c.d */ (cnt_max == 5 && a[5] == 0xffff))) a4 = (uint8*) (a + 6); for (i = 0; i < IPV6_ADDR_LEN/2; i++) { if ((uint8*) (a + i) == a4) { snprintf(p, 16, ":%u.%u.%u.%u", a4[0], a4[1], a4[2], a4[3]); break; } else if (i == i_max) { *p++ = ':'; i += cnt_max - 1; p[0] = ':'; p[1] = '\0'; } else { if (i) *p++ = ':'; p += snprintf(p, 8, "%x", ntoh16(a[i])); } } return buf; } #ifdef BCMDRIVER void bcm_mdelay(uint ms) { uint i; for (i = 0; i < ms; i++) { OSL_DELAY(1000); } } /* * Search the name=value vars for a specific one and return its value. * Returns NULL if not found. */ char * getvar(char *vars, const char *name) { NVRAM_RECLAIM_CHECK(name); return getvar_internal(vars, name); } static char * #if defined(BCMROMBUILD) || defined(WLTEST) || defined(BCMDBG_DUMP) || \ !defined(WLC_HIGH) || defined(ATE_BUILD) getvar_internal(char *vars, const char *name) #else BCMATTACHFN(getvar_internal)(char *vars, const char *name) #endif { #ifdef _MINOSL_ return NULL; #else char *s; int len; if (!name) return NULL; len = strlen(name); if (len == 0) return NULL; /* first look in vars[] */ for (s = vars; s && *s;) { if ((bcmp(s, name, len) == 0) && (s[len] == '=')) return (&s[len+1]); while (*s++) ; } /* then query nvram */ return (nvram_get(name)); #endif /* defined(_MINOSL_) */ } /* * Search the vars for a specific one and return its value as * an integer. Returns 0 if not found. */ int getintvar(char *vars, const char *name) { NVRAM_RECLAIM_CHECK(name); return getintvar_internal(vars, name); } static int getintvar_internal(char *vars, const char *name) { #ifdef _MINOSL_ return 0; #else char *val; if ((val = getvar_internal(vars, name)) == NULL) return (0); return (bcm_strtoul(val, NULL, 0)); #endif /* _MINOSL_ */ } int getintvararray(char *vars, const char *name, int index) { NVRAM_RECLAIM_CHECK(name); return getintvararray_internal(vars, name, index); } static int getintvararray_internal(char *vars, const char *name, int index) { #ifdef _MINOSL_ return 0; #else char *buf, *endp; int i = 0; int val = 0; if ((buf = getvar_internal(vars, name)) == NULL) { return (0); } /* table values are always separated by "," or " " */ while (*buf != '\0') { val = bcm_strtoul(buf, &endp, 0); if (i == index) { return val; } buf = endp; /* delimiter is ',' */ if (*buf == ',') buf++; i++; } return (0); #endif /* _MINOSL_ */ } int getintvararraysize(char *vars, const char *name) { NVRAM_RECLAIM_CHECK(name); return getintvararraysize_internal(vars, name); } static int getintvararraysize_internal(char *vars, const char *name) { #ifdef _MINOSL_ return 0; #else char *buf, *endp; int count = 0; int val = 0; if ((buf = getvar_internal(vars, name)) == NULL) { return (0); } /* table values are always separated by "," or " " */ while (*buf != '\0') { val = bcm_strtoul(buf, &endp, 0); buf = endp; /* delimiter is ',' */ if (*buf == ',') buf++; count++; } BCM_REFERENCE(val); return count; #endif /* _MINOSL_ */ } /* Search for token in comma separated token-string */ static int findmatch(const char *string, const char *name) { uint len; char *c; len = strlen(name); while ((c = strchr(string, ',')) != NULL) { if (len == (uint)(c - string) && !strncmp(string, name, len)) return 1; string = c + 1; } return (!strcmp(string, name)); } /* Return gpio pin number assigned to the named pin * * Variable should be in format: * * gpio=pin_name,pin_name * * This format allows multiple features to share the gpio with mutual * understanding. * * 'def_pin' is returned if a specific gpio is not defined for the requested functionality * and if def_pin is not used by others. */ uint getgpiopin(char *vars, char *pin_name, uint def_pin) { char name[] = "gpioXXXX"; char *val; uint pin; /* Go thru all possibilities till a match in pin name */ for (pin = 0; pin < GPIO_NUMPINS; pin ++) { snprintf(name, sizeof(name), "gpio%d", pin); val = getvar(vars, name); if (val && findmatch(val, pin_name)) return pin; } if (def_pin != GPIO_PIN_NOTDEFINED) { /* make sure the default pin is not used by someone else */ snprintf(name, sizeof(name), "gpio%d", def_pin); if (getvar(vars, name)) { def_pin = GPIO_PIN_NOTDEFINED; } } return def_pin; } #if defined(BCMPERFSTATS) || defined(BCMTSTAMPEDLOGS) #if defined(__ARM_ARCH_7R__) #define BCMLOG_CYCLE_OVERHEAD 54 /* Number of CPU cycle overhead due to bcmlog(). * This is to compensate CPU cycle incurred by * added bcmlog() function call for profiling. */ #else #define BCMLOG_CYCLE_OVERHEAD 0 #endif #define LOGSIZE 256 /* should be power of 2 to avoid div below */ static struct { uint cycles; char *fmt; uint a1; uint a2; uchar indent; /* track indent level for nice printing */ } logtab[LOGSIZE]; /* last entry logged */ static uint logi = 0; /* next entry to read */ static uint volatile readi = 0; #endif /* defined(BCMPERFSTATS) || defined(BCMTSTAMPEDLOGS) */ #ifdef BCMPERFSTATS void bcm_perf_enable() { BCMPERF_ENABLE_INSTRCOUNT(); BCMPERF_ENABLE_ICACHE_MISS(); BCMPERF_ENABLE_ICACHE_HIT(); } /* WARNING: This routine uses OSL_GETCYCLES(), which can give unexpected results on * modern speed stepping CPUs. Use bcmtslog() instead in combination with TSF counter. */ void bcmlog(char *fmt, uint a1, uint a2) { static uint last = 0; uint cycles, i, elapsed; OSL_GETCYCLES(cycles); i = logi; elapsed = cycles - last; if (elapsed > BCMLOG_CYCLE_OVERHEAD) logtab[i].cycles = elapsed - BCMLOG_CYCLE_OVERHEAD; else logtab[i].cycles = 0; logtab[i].fmt = fmt; logtab[i].a1 = a1; logtab[i].a2 = a2; logi = (i + 1) % LOGSIZE; last = cycles; /* if log buffer is overflowing, readi should be advanced. * Otherwise logi and readi will become out of sync. */ if (logi == readi) { readi = (readi + 1) % LOGSIZE; } else { /* This redundant else is to make CPU cycles of bcmlog() function to be uniform, * so that the cycle compensation with BCMLOG_CYCLE_OVERHEAD is more accurate. */ readi = readi % LOGSIZE; } } void bcmstats(char *fmt) { static uint last = 0; static uint32 ic_miss = 0; static uint32 instr_count = 0; uint32 ic_miss_cur; uint32 instr_count_cur; uint cycles, i; OSL_GETCYCLES(cycles); BCMPERF_GETICACHE_MISS(ic_miss_cur); BCMPERF_GETINSTRCOUNT(instr_count_cur); i = logi; logtab[i].cycles = cycles - last; logtab[i].a1 = ic_miss_cur - ic_miss; logtab[i].a2 = instr_count_cur - instr_count; logtab[i].fmt = fmt; logi = (i + 1) % LOGSIZE; last = cycles; instr_count = instr_count_cur; ic_miss = ic_miss_cur; /* if log buffer is overflowing, readi should be advanced. * Otherwise logi and readi will become out of sync. */ if (logi == readi) { readi = (readi + 1) % LOGSIZE; } else { /* This redundant else is to make CPU cycles of bcmstats() function to be uniform */ readi = readi % LOGSIZE; } } void bcmdumplog(char *buf, int size) { char *limit; int j = 0; int num; limit = buf + size - 80; *buf = '\0'; num = logi - readi; if (num < 0) num += LOGSIZE; /* print in chronological order */ for (j = 0; j < num && (buf < limit); readi = (readi + 1) % LOGSIZE, j++) { if (logtab[readi].fmt == NULL) continue; buf += snprintf(buf, (limit - buf), "%d\t", logtab[readi].cycles); buf += snprintf(buf, (limit - buf), logtab[readi].fmt, logtab[readi].a1, logtab[readi].a2); buf += snprintf(buf, (limit - buf), "\n"); } } /* * Dump one log entry at a time. * Return index of next entry or -1 when no more . */ int bcmdumplogent(char *buf, uint i) { bool hit; /* * If buf is NULL, return the starting index, * interpreting i as the indicator of last 'i' entries to dump. */ if (buf == NULL) { i = ((i > 0) && (i < (LOGSIZE - 1))) ? i : (LOGSIZE - 1); return ((logi - i) % LOGSIZE); } *buf = '\0'; ASSERT(i < LOGSIZE); if (i == logi) return (-1); hit = FALSE; for (; (i != logi) && !hit; i = (i + 1) % LOGSIZE) { if (logtab[i].fmt == NULL) continue; buf += sprintf(buf, "%d: %d\t", i, logtab[i].cycles); buf += sprintf(buf, logtab[i].fmt, logtab[i].a1, logtab[i].a2); buf += sprintf(buf, "\n"); hit = TRUE; } return (i); } #endif /* BCMPERFSTATS */ #if defined(BCMTSTAMPEDLOGS) /* Store a TSF timestamp and a log line in the log buffer */ /* a1 is used to signify entering/exiting a routine. When entering the indent level is increased. When exiting, the delta since entering is printed and the indent level is bumped back out. Nesting can go up to level MAX_TS_INDENTS deep. */ #define MAX_TS_INDENTS 20 void bcmtslog(uint32 tstamp, char *fmt, uint a1, uint a2) { uint i = logi; bool use_delta = TRUE; static uint32 last = 0; /* used only when use_delta is true */ static uchar indent = 0; static uint32 indents[MAX_TS_INDENTS]; logtab[i].cycles = tstamp; if (use_delta) logtab[i].cycles -= last; logtab[i].a2 = a2; if (a1 == TS_EXIT && indent) { indent--; logtab[i].a2 = tstamp - indents[indent]; } logtab[i].fmt = fmt; logtab[i].a1 = a1; logtab[i].indent = indent; if (a1 == TS_ENTER) { indents[indent] = tstamp; if (indent < MAX_TS_INDENTS - 1) indent++; } if (use_delta) last = tstamp; logi = (i + 1) % LOGSIZE; } /* Print out a microsecond timestamp as "sec.ms.us " */ void bcmprinttstamp(uint32 ticks) { uint us, ms, sec; us = (ticks % TSF_TICKS_PER_MS) * 1000 / TSF_TICKS_PER_MS; ms = ticks / TSF_TICKS_PER_MS; sec = ms / 1000; ms -= sec * 1000; printf("%04u.%03u.%03u ", sec, ms, us); } /* Print out the log buffer with timestamps */ void bcmprinttslogs(void) { int j = 0; int num; num = logi - readi; if (num < 0) num += LOGSIZE; /* Format and print the log entries directly in chronological order */ for (j = 0; j < num; readi = (readi + 1) % LOGSIZE, j++) { if (logtab[readi].fmt == NULL) continue; bcmprinttstamp(logtab[readi].cycles); printf(logtab[readi].fmt, logtab[readi].a1, logtab[readi].a2); printf("\n"); } } /* Identical to bcmdumplog, but output is based on tsf instead of cycles. a1 is used to signify entering/exiting a routine. When entering the indent level is increased. When exiting, the delta since entering is printed and the indent level is bumped back out. */ void bcmdumptslog(char *buf, int size) { char *limit; int j = 0; int num; uint us, ms, sec; int skip; char *lines = "| | | | | | | | | | | | | | | | | | | |"; limit = buf + size - 80; *buf = '\0'; num = logi - readi; if (num < 0) num += LOGSIZE; /* print in chronological order */ for (j = 0; j < num && (buf < limit); readi = (readi + 1) % LOGSIZE, j++) { char *last_buf = buf; if (logtab[readi].fmt == NULL) continue; us = (logtab[readi].cycles % TSF_TICKS_PER_MS) * 1000 / TSF_TICKS_PER_MS; ms = logtab[readi].cycles / TSF_TICKS_PER_MS; sec = ms / 1000; ms -= sec * 1000; buf += snprintf(buf, (limit - buf), "%04u.%03u.%03u ", sec, ms, us); /* 2 spaces for each indent level */ buf += snprintf(buf, (limit - buf), "%.*s", logtab[readi].indent * 2, lines); buf += snprintf(buf, (limit - buf), logtab[readi].fmt); /* If a1 is ENTER or EXIT, print the + or - */ skip = 0; if (logtab[readi].a1 == TS_ENTER) { buf += snprintf(buf, (limit - buf), " +"); skip++; } if (logtab[readi].a1 == TS_EXIT) { buf += snprintf(buf, (limit - buf), " -"); skip++; } /* else print the real a1 */ if (logtab[readi].a1 && !skip) buf += snprintf(buf, (limit - buf), " %d", logtab[readi].a1); /* If exiting routine, print a nicely formatted delta since entering. Otherwise, just print a2 normally. */ if (logtab[readi].a2) { if (logtab[readi].a1 == TS_EXIT) { int num_space = 75 - (buf - last_buf); buf += snprintf(buf, (limit - buf), "%*.s", num_space, ""); buf += snprintf(buf, (limit - buf), "%5d usecs", logtab[readi].a2); } else buf += snprintf(buf, (limit - buf), " %d", logtab[readi].a2); } buf += snprintf(buf, (limit - buf), "\n"); last_buf = buf; } } #endif /* BCMTSTAMPEDLOGS */ #if defined(DHD_DEBUG) /* pretty hex print a pkt buffer chain */ void prpkt(const char *msg, osl_t *osh, void *p0) { void *p; if (msg && (msg[0] != '\0')) printf("%s:\n", msg); for (p = p0; p; p = PKTNEXT(osh, p)) prhex(NULL, PKTDATA(osh, p), PKTLEN(osh, p)); } #endif /* Takes an Ethernet frame and sets out-of-bound PKTPRIO. * Also updates the inplace vlan tag if requested. * For debugging, it returns an indication of what it did. */ uint BCMFASTPATH pktsetprio(void *pkt, bool update_vtag) { struct ether_header *eh; struct ethervlan_header *evh; uint8 *pktdata; int priority = 0; int rc = 0; pktdata = (uint8 *)PKTDATA(OSH_NULL, pkt); ASSERT(ISALIGNED((uintptr)pktdata, sizeof(uint16))); if (PKTLEN(OSH_NULL, pkt) <= ETHER_HDR_LEN) return 0; eh = (struct ether_header *) pktdata; if (eh->ether_type == hton16(ETHER_TYPE_8021Q)) { uint16 vlan_tag; int vlan_prio, dscp_prio = 0; evh = (struct ethervlan_header *)eh; vlan_tag = ntoh16(evh->vlan_tag); vlan_prio = (int) (vlan_tag >> VLAN_PRI_SHIFT) & VLAN_PRI_MASK; if ((evh->ether_type == hton16(ETHER_TYPE_IP)) || (evh->ether_type == hton16(ETHER_TYPE_IPV6))) { uint8 *ip_body = pktdata + sizeof(struct ethervlan_header); uint8 tos_tc = IP_TOS46(ip_body); dscp_prio = (int)(tos_tc >> IPV4_TOS_PREC_SHIFT); } /* DSCP priority gets precedence over 802.1P (vlan tag) */ if (dscp_prio != 0) { priority = dscp_prio; rc |= PKTPRIO_VDSCP; } else { priority = vlan_prio; rc |= PKTPRIO_VLAN; } /* * If the DSCP priority is not the same as the VLAN priority, * then overwrite the priority field in the vlan tag, with the * DSCP priority value. This is required for Linux APs because * the VLAN driver on Linux, overwrites the skb->priority field * with the priority value in the vlan tag */ if (update_vtag && (priority != vlan_prio)) { vlan_tag &= ~(VLAN_PRI_MASK << VLAN_PRI_SHIFT); vlan_tag |= (uint16)priority << VLAN_PRI_SHIFT; evh->vlan_tag = hton16(vlan_tag); rc |= PKTPRIO_UPD; } } else if ((eh->ether_type == hton16(ETHER_TYPE_IP)) || (eh->ether_type == hton16(ETHER_TYPE_IPV6))) { uint8 *ip_body = pktdata + sizeof(struct ether_header); uint8 tos_tc = IP_TOS46(ip_body); uint8 dscp = tos_tc >> IPV4_TOS_DSCP_SHIFT; switch (dscp) { case DSCP_EF: priority = PRIO_8021D_VO; break; case DSCP_AF31: case DSCP_AF32: case DSCP_AF33: priority = PRIO_8021D_CL; break; case DSCP_AF21: case DSCP_AF22: case DSCP_AF23: case DSCP_AF11: case DSCP_AF12: case DSCP_AF13: priority = PRIO_8021D_EE; break; default: priority = (int)(tos_tc >> IPV4_TOS_PREC_SHIFT); break; } rc |= PKTPRIO_DSCP; } ASSERT(priority >= 0 && priority <= MAXPRIO); PKTSETPRIO(pkt, priority); return (rc | priority); } /* Returns TRUE and DSCP if IP header found, FALSE otherwise. */ bool BCMFASTPATH pktgetdscp(uint8 *pktdata, uint pktlen, uint8 *dscp) { struct ether_header *eh; struct ethervlan_header *evh; uint8 *ip_body; bool rc = FALSE; /* minimum length is ether header and IP header */ if (pktlen < sizeof(struct ether_header) + IPV4_MIN_HEADER_LEN) return FALSE; eh = (struct ether_header *) pktdata; if (eh->ether_type == HTON16(ETHER_TYPE_IP)) { ip_body = pktdata + sizeof(struct ether_header); *dscp = IP_DSCP46(ip_body); rc = TRUE; } else if (eh->ether_type == HTON16(ETHER_TYPE_8021Q)) { evh = (struct ethervlan_header *)eh; /* minimum length is ethervlan header and IP header */ if (pktlen >= sizeof(struct ethervlan_header) + IPV4_MIN_HEADER_LEN && evh->ether_type == HTON16(ETHER_TYPE_IP)) { ip_body = pktdata + sizeof(struct ethervlan_header); *dscp = IP_DSCP46(ip_body); rc = TRUE; } } return rc; } #ifndef BCM_BOOTLOADER static char bcm_undeferrstr[32]; static const char *bcmerrorstrtable[] = BCMERRSTRINGTABLE; /* Convert the error codes into related error strings */ const char * bcmerrorstr(int bcmerror) { /* check if someone added a bcmerror code but forgot to add errorstring */ ASSERT(ABS(BCME_LAST) == (ARRAYSIZE(bcmerrorstrtable) - 1)); if (bcmerror > 0 || bcmerror < BCME_LAST) { snprintf(bcm_undeferrstr, sizeof(bcm_undeferrstr), "Undefined error %d", bcmerror); return bcm_undeferrstr; } ASSERT(strlen(bcmerrorstrtable[-bcmerror]) < BCME_STRLEN); return bcmerrorstrtable[-bcmerror]; } #endif /* !BCM_BOOTLOADER */ #ifdef WLC_LOW static void BCMATTACHFN(bcm_nvram_refresh)(char *flash) { int i; int ret = 0; ASSERT(flash != NULL); /* default "empty" vars cache */ bzero(flash, 2); if ((ret = nvram_getall(flash, MAX_NVRAM_SPACE))) return; /* determine nvram length */ for (i = 0; i < MAX_NVRAM_SPACE; i++) { if (flash[i] == '\0' && flash[i+1] == '\0') break; } if (i > 1) vars_len = i + 2; else vars_len = 0; } char * BCMATTACHFN(bcm_nvram_vars)(uint *length) { #ifndef BCMNVRAMR /* cache may be stale if nvram is read/write */ if (nvram_vars) { ASSERT(!bcmreclaimed); bcm_nvram_refresh(nvram_vars); } #endif if (length) *length = vars_len; return nvram_vars; } /* copy nvram vars into locally-allocated multi-string array */ int BCMATTACHFN(bcm_nvram_cache)(void *sih) { int ret = 0; void *osh; char *flash = NULL; if (vars_len >= 0) { #ifndef BCMNVRAMR bcm_nvram_refresh(nvram_vars); #endif return 0; } osh = si_osh((si_t *)sih); /* allocate memory and read in flash */ if (!(flash = MALLOC(osh, MAX_NVRAM_SPACE))) { ret = BCME_NOMEM; goto exit; } bcm_nvram_refresh(flash); #ifdef BCMNVRAMR if (vars_len > 3) { /* copy into a properly-sized buffer */ if (!(nvram_vars = MALLOC(osh, vars_len))) { ret = BCME_NOMEM; } else bcopy(flash, nvram_vars, vars_len); } MFREE(osh, flash, MAX_NVRAM_SPACE); #else /* cache must be full size of nvram if read/write */ nvram_vars = flash; #endif /* BCMNVRAMR */ exit: return ret; } #endif /* WLC_LOW */ #ifdef BCMDBG_PKT /* pkt logging for debugging */ /* Add a packet to the pktlist */ static void _pktlist_add(pktlist_info_t *pktlist, void *pkt, int line, char *file) { uint16 i; char *basename; #ifdef BCMDBG_PTRACE uint16 *idx = PKTLIST_IDX(pkt); #endif /* BCMDBG_PTRACE */ ASSERT(pktlist->count < PKTLIST_SIZE); /* Verify the packet is not already part of the list */ for (i = 0; i < pktlist->count; i++) { if (pktlist->list[i].pkt == pkt) ASSERT(0); } pktlist->list[pktlist->count].pkt = pkt; pktlist->list[pktlist->count].line = line; basename = strrchr(file, '/'); if (basename) basename++; else basename = file; pktlist->list[pktlist->count].file = basename; #ifdef BCMDBG_PTRACE *idx = pktlist->count; bzero(pktlist->list[pktlist->count].pkt_trace, PKTTRACE_MAX_BYTES); #endif /* BCMDBG_PTRACE */ pktlist->count++; return; } void pktlist_add(pktlist_info_t *pktlist, void *pkt, int line, char *file) { void *p; for (p = pkt; p != NULL; p = PKTCLINK(p)) _pktlist_add(pktlist, p, line, file); } /* Remove a packet from the pktlist */ static void _pktlist_remove(pktlist_info_t *pktlist, void *pkt) { uint16 i; uint16 num = pktlist->count; #ifdef BCMDBG_PTRACE uint16 *idx = PKTLIST_IDX(pkt); ASSERT((*idx) < pktlist->count); #endif /* BCMDBG_PTRACE */ /* find the index where pkt exists */ for (i = 0; i < num; i++) { /* check for the existence of pkt in the list */ if (pktlist->list[i].pkt == pkt) { #ifdef BCMDBG_PTRACE ASSERT((*idx) == i); #endif /* BCMDBG_PTRACE */ /* replace with the last element */ pktlist->list[i].pkt = pktlist->list[num-1].pkt; pktlist->list[i].line = pktlist->list[num-1].line; pktlist->list[i].file = pktlist->list[num-1].file; #ifdef BCMDBG_PTRACE memcpy(pktlist->list[i].pkt_trace, pktlist->list[num-1].pkt_trace, PKTTRACE_MAX_BYTES); idx = PKTLIST_IDX(pktlist->list[i].pkt); *idx = i; #endif /* BCMDBG_PTRACE */ pktlist->count--; return; } } ASSERT(0); } void pktlist_remove(pktlist_info_t *pktlist, void *pkt) { void *p; for (p = pkt; p != NULL; p = PKTCLINK(p)) _pktlist_remove(pktlist, p); } #ifdef BCMDBG_PTRACE static void _pktlist_trace(pktlist_info_t *pktlist, void *pkt, uint16 bit) { uint16 *idx = PKTLIST_IDX(pkt); ASSERT(((*idx) < pktlist->count) && (bit < PKTTRACE_MAX_BITS)); ASSERT(pktlist->list[(*idx)].pkt == pkt); pktlist->list[(*idx)].pkt_trace[bit/NBBY] |= (1 << ((bit)%NBBY)); } void pktlist_trace(pktlist_info_t *pktlist, void *pkt, uint16 bit) { void *p; for (p = pkt; p != NULL; p = PKTCLINK(p)) _pktlist_trace(pktlist, p, bit); } #endif /* BCMDBG_PTRACE */ /* Dump the pktlist (and the contents of each packet if 'data' * is set). 'buf' should be large enough */ char * pktlist_dump(pktlist_info_t *pktlist, char *buf) { char *obuf = buf; uint16 i; if (buf != NULL) buf += sprintf(buf, "Packet list dump:\n"); else printf("Packet list dump:\n"); for (i = 0; i < (pktlist->count); i++) { if (buf != NULL) buf += sprintf(buf, "Pkt_addr: 0x%p Line: %d File: %s\t", pktlist->list[i].pkt, pktlist->list[i].line, pktlist->list[i].file); else printf("Pkt_addr: 0x%p Line: %d File: %s\t", pktlist->list[i].pkt, pktlist->list[i].line, pktlist->list[i].file); /* #ifdef NOTDEF Remove this ifdef to print pkttag and pktdata */ if (buf != NULL) { if (PKTTAG(pktlist->list[i].pkt)) { /* Print pkttag */ buf += sprintf(buf, "Pkttag(in hex): "); buf += bcm_format_hex(buf, PKTTAG(pktlist->list[i].pkt), OSL_PKTTAG_SZ); } buf += sprintf(buf, "Pktdata(in hex): "); buf += bcm_format_hex(buf, PKTDATA(OSH_NULL, pktlist->list[i].pkt), PKTLEN(OSH_NULL, pktlist->list[i].pkt)); } else { void *pkt = pktlist->list[i].pkt, *npkt; printf("Pkt[%d] Dump:\n", i); while (pkt) { int hroom, pktlen; uchar *src; #ifdef BCMDBG_PTRACE uint16 *idx = PKTLIST_IDX(pkt); ASSERT((*idx) < pktlist->count); prhex("Pkt Trace (in hex):", pktlist->list[(*idx)].pkt_trace, PKTTRACE_MAX_BYTES); #endif /* BCMDBG_PTRACE */ npkt = (void *)PKTNEXT(OSH_NULL, pkt); PKTSETNEXT(OSH_NULL, pkt, NULL); src = (uchar *)(PKTTAG(pkt)); pktlen = PKTLEN(OSH_NULL, pkt); hroom = PKTHEADROOM(OSH_NULL, pkt); printf("Pkttag_addr: %p\n", src); if (src) prhex("Pkttag(in hex): ", src, OSL_PKTTAG_SZ); src = (uchar *) (PKTDATA(OSH_NULL, pkt)); printf("Pkthead_addr: %p len: %d\n", src - hroom, hroom); prhex("Pkt headroom content(in hex): ", src - hroom, hroom); printf("Pktdata_addr: %p len: %d\n", src, pktlen); prhex("Pktdata(in hex): ", src, pktlen); pkt = npkt; } } /* #endif NOTDEF */ if (buf != NULL) buf += sprintf(buf, "\n"); else printf("\n"); } return obuf; } #endif /* BCMDBG_PKT */ /* iovar table lookup */ const bcm_iovar_t* bcm_iovar_lookup(const bcm_iovar_t *table, const char *name) { const bcm_iovar_t *vi; const char *lookup_name; /* skip any ':' delimited option prefixes */ lookup_name = strrchr(name, ':'); if (lookup_name != NULL) lookup_name++; else lookup_name = name; ASSERT(table != NULL); for (vi = table; vi->name; vi++) { if (!strcmp(vi->name, lookup_name)) return vi; } /* ran to end of table */ return NULL; /* var name not found */ } int bcm_iovar_lencheck(const bcm_iovar_t *vi, void *arg, int len, bool set) { int bcmerror = 0; /* length check on io buf */ switch (vi->type) { case IOVT_BOOL: case IOVT_INT8: case IOVT_INT16: case IOVT_INT32: case IOVT_UINT8: case IOVT_UINT16: case IOVT_UINT32: /* all integers are int32 sized args at the ioctl interface */ if (len < (int)sizeof(int)) { bcmerror = BCME_BUFTOOSHORT; } break; case IOVT_BUFFER: /* buffer must meet minimum length requirement */ if (len < vi->minlen) { bcmerror = BCME_BUFTOOSHORT; } break; case IOVT_VOID: if (!set) { /* Cannot return nil... */ bcmerror = BCME_UNSUPPORTED; } else if (len) { /* Set is an action w/o parameters */ bcmerror = BCME_BUFTOOLONG; } break; default: /* unknown type for length check in iovar info */ ASSERT(0); bcmerror = BCME_UNSUPPORTED; } return bcmerror; } #endif /* BCMDRIVER */ uint8 * bcm_write_tlv(int type, const void *data, int datalen, uint8 *dst) { uint8 *new_dst = dst; bcm_tlv_t *dst_tlv = (bcm_tlv_t *)dst; /* dst buffer should always be valid */ ASSERT(dst); /* data len must be within valid range */ ASSERT((datalen >= 0) && (datalen <= BCM_TLV_MAX_DATA_SIZE)); /* source data buffer pointer should be valid, unless datalen is 0 * meaning no data with this TLV */ ASSERT((data != NULL) || (datalen == 0)); /* only do work if the inputs are valid * - must have a dst to write to AND * - datalen must be within range AND * - the source data pointer must be non-NULL if datalen is non-zero * (this last condition detects datalen > 0 with a NULL data pointer) */ if ((dst != NULL) && ((datalen >= 0) && (datalen <= BCM_TLV_MAX_DATA_SIZE)) && ((data != NULL) || (datalen == 0))) { /* write type, len fields */ dst_tlv->id = (uint8)type; dst_tlv->len = (uint8)datalen; /* if data is present, copy to the output buffer and update * pointer to output buffer */ if (datalen > 0) { memcpy(dst_tlv->data, data, datalen); } /* update the output destination poitner to point past * the TLV written */ new_dst = dst + BCM_TLV_HDR_SIZE + datalen; } return (new_dst); } uint8 * bcm_write_tlv_safe(int type, const void *data, int datalen, uint8 *dst, int dst_maxlen) { uint8 *new_dst = dst; if ((datalen >= 0) && (datalen <= BCM_TLV_MAX_DATA_SIZE)) { /* if len + tlv hdr len is more than destlen, don't do anything * just return the buffer untouched */ if ((int)(datalen + BCM_TLV_HDR_SIZE) <= dst_maxlen) { new_dst = bcm_write_tlv(type, data, datalen, dst); } } return (new_dst); } uint8 * bcm_copy_tlv(const void *src, uint8 *dst) { uint8 *new_dst = dst; const bcm_tlv_t *src_tlv = (const bcm_tlv_t *)src; uint totlen; ASSERT(dst && src); if (dst && src) { totlen = BCM_TLV_HDR_SIZE + src_tlv->len; memcpy(dst, src_tlv, totlen); new_dst = dst + totlen; } return (new_dst); } uint8 *bcm_copy_tlv_safe(const void *src, uint8 *dst, int dst_maxlen) { uint8 *new_dst = dst; const bcm_tlv_t *src_tlv = (const bcm_tlv_t *)src; ASSERT(src); if (src) { if (bcm_valid_tlv(src_tlv, dst_maxlen)) { new_dst = bcm_copy_tlv(src, dst); } } return (new_dst); } #if !defined(BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS) /******************************************************************************* * crc8 * * Computes a crc8 over the input data using the polynomial: * * x^8 + x^7 +x^6 + x^4 + x^2 + 1 * * The caller provides the initial value (either CRC8_INIT_VALUE * or the previous returned value) to allow for processing of * discontiguous blocks of data. When generating the CRC the * caller is responsible for complementing the final return value * and inserting it into the byte stream. When checking, a final * return value of CRC8_GOOD_VALUE indicates a valid CRC. * * Reference: Dallas Semiconductor Application Note 27 * Williams, Ross N., "A Painless Guide to CRC Error Detection Algorithms", * ver 3, Aug 1993, ross@guest.adelaide.edu.au, Rocksoft Pty Ltd., * ftp://ftp.rocksoft.com/clients/rocksoft/papers/crc_v3.txt * * **************************************************************************** */ static const uint8 crc8_table[256] = { 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B, 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21, 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF, 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5, 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14, 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E, 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80, 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA, 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95, 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF, 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01, 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B, 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA, 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0, 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E, 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34, 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0, 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A, 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54, 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E, 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF, 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5, 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B, 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61, 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E, 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74, 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA, 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0, 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41, 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B, 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5, 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F }; #define CRC_INNER_LOOP(n, c, x) \ (c) = ((c) >> 8) ^ crc##n##_table[((c) ^ (x)) & 0xff] uint8 BCMROMFN(hndcrc8)( uint8 *pdata, /* pointer to array of data to process */ uint nbytes, /* number of input data bytes to process */ uint8 crc /* either CRC8_INIT_VALUE or previous return value */ ) { /* hard code the crc loop instead of using CRC_INNER_LOOP macro * to avoid the undefined and unnecessary (uint8 >> 8) operation. */ while (nbytes-- > 0) crc = crc8_table[(crc ^ *pdata++) & 0xff]; return crc; } /******************************************************************************* * crc16 * * Computes a crc16 over the input data using the polynomial: * * x^16 + x^12 +x^5 + 1 * * The caller provides the initial value (either CRC16_INIT_VALUE * or the previous returned value) to allow for processing of * discontiguous blocks of data. When generating the CRC the * caller is responsible for complementing the final return value * and inserting it into the byte stream. When checking, a final * return value of CRC16_GOOD_VALUE indicates a valid CRC. * * Reference: Dallas Semiconductor Application Note 27 * Williams, Ross N., "A Painless Guide to CRC Error Detection Algorithms", * ver 3, Aug 1993, ross@guest.adelaide.edu.au, Rocksoft Pty Ltd., * ftp://ftp.rocksoft.com/clients/rocksoft/papers/crc_v3.txt * * **************************************************************************** */ static const uint16 crc16_table[256] = { 0x0000, 0x1189, 0x2312, 0x329B, 0x4624, 0x57AD, 0x6536, 0x74BF, 0x8C48, 0x9DC1, 0xAF5A, 0xBED3, 0xCA6C, 0xDBE5, 0xE97E, 0xF8F7, 0x1081, 0x0108, 0x3393, 0x221A, 0x56A5, 0x472C, 0x75B7, 0x643E, 0x9CC9, 0x8D40, 0xBFDB, 0xAE52, 0xDAED, 0xCB64, 0xF9FF, 0xE876, 0x2102, 0x308B, 0x0210, 0x1399, 0x6726, 0x76AF, 0x4434, 0x55BD, 0xAD4A, 0xBCC3, 0x8E58, 0x9FD1, 0xEB6E, 0xFAE7, 0xC87C, 0xD9F5, 0x3183, 0x200A, 0x1291, 0x0318, 0x77A7, 0x662E, 0x54B5, 0x453C, 0xBDCB, 0xAC42, 0x9ED9, 0x8F50, 0xFBEF, 0xEA66, 0xD8FD, 0xC974, 0x4204, 0x538D, 0x6116, 0x709F, 0x0420, 0x15A9, 0x2732, 0x36BB, 0xCE4C, 0xDFC5, 0xED5E, 0xFCD7, 0x8868, 0x99E1, 0xAB7A, 0xBAF3, 0x5285, 0x430C, 0x7197, 0x601E, 0x14A1, 0x0528, 0x37B3, 0x263A, 0xDECD, 0xCF44, 0xFDDF, 0xEC56, 0x98E9, 0x8960, 0xBBFB, 0xAA72, 0x6306, 0x728F, 0x4014, 0x519D, 0x2522, 0x34AB, 0x0630, 0x17B9, 0xEF4E, 0xFEC7, 0xCC5C, 0xDDD5, 0xA96A, 0xB8E3, 0x8A78, 0x9BF1, 0x7387, 0x620E, 0x5095, 0x411C, 0x35A3, 0x242A, 0x16B1, 0x0738, 0xFFCF, 0xEE46, 0xDCDD, 0xCD54, 0xB9EB, 0xA862, 0x9AF9, 0x8B70, 0x8408, 0x9581, 0xA71A, 0xB693, 0xC22C, 0xD3A5, 0xE13E, 0xF0B7, 0x0840, 0x19C9, 0x2B52, 0x3ADB, 0x4E64, 0x5FED, 0x6D76, 0x7CFF, 0x9489, 0x8500, 0xB79B, 0xA612, 0xD2AD, 0xC324, 0xF1BF, 0xE036, 0x18C1, 0x0948, 0x3BD3, 0x2A5A, 0x5EE5, 0x4F6C, 0x7DF7, 0x6C7E, 0xA50A, 0xB483, 0x8618, 0x9791, 0xE32E, 0xF2A7, 0xC03C, 0xD1B5, 0x2942, 0x38CB, 0x0A50, 0x1BD9, 0x6F66, 0x7EEF, 0x4C74, 0x5DFD, 0xB58B, 0xA402, 0x9699, 0x8710, 0xF3AF, 0xE226, 0xD0BD, 0xC134, 0x39C3, 0x284A, 0x1AD1, 0x0B58, 0x7FE7, 0x6E6E, 0x5CF5, 0x4D7C, 0xC60C, 0xD785, 0xE51E, 0xF497, 0x8028, 0x91A1, 0xA33A, 0xB2B3, 0x4A44, 0x5BCD, 0x6956, 0x78DF, 0x0C60, 0x1DE9, 0x2F72, 0x3EFB, 0xD68D, 0xC704, 0xF59F, 0xE416, 0x90A9, 0x8120, 0xB3BB, 0xA232, 0x5AC5, 0x4B4C, 0x79D7, 0x685E, 0x1CE1, 0x0D68, 0x3FF3, 0x2E7A, 0xE70E, 0xF687, 0xC41C, 0xD595, 0xA12A, 0xB0A3, 0x8238, 0x93B1, 0x6B46, 0x7ACF, 0x4854, 0x59DD, 0x2D62, 0x3CEB, 0x0E70, 0x1FF9, 0xF78F, 0xE606, 0xD49D, 0xC514, 0xB1AB, 0xA022, 0x92B9, 0x8330, 0x7BC7, 0x6A4E, 0x58D5, 0x495C, 0x3DE3, 0x2C6A, 0x1EF1, 0x0F78 }; uint16 BCMROMFN(hndcrc16)( uint8 *pdata, /* pointer to array of data to process */ uint nbytes, /* number of input data bytes to process */ uint16 crc /* either CRC16_INIT_VALUE or previous return value */ ) { while (nbytes-- > 0) CRC_INNER_LOOP(16, crc, *pdata++); return crc; } static const uint32 crc32_table[256] = { 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D }; /* * crc input is CRC32_INIT_VALUE for a fresh start, or previous return value if * accumulating over multiple pieces. */ uint32 BCMROMFN(hndcrc32)(uint8 *pdata, uint nbytes, uint32 crc) { uint8 *pend; #ifdef __mips__ uint8 tmp[4]; ulong *tptr = (ulong *)tmp; if (nbytes > 3) { /* in case the beginning of the buffer isn't aligned */ pend = (uint8 *)((uint)(pdata + 3) & ~0x3); nbytes -= (pend - pdata); while (pdata < pend) CRC_INNER_LOOP(32, crc, *pdata++); } if (nbytes > 3) { /* handle bulk of data as 32-bit words */ pend = pdata + (nbytes & ~0x3); while (pdata < pend) { *tptr = *(ulong *)pdata; pdata += sizeof(ulong *); CRC_INNER_LOOP(32, crc, tmp[0]); CRC_INNER_LOOP(32, crc, tmp[1]); CRC_INNER_LOOP(32, crc, tmp[2]); CRC_INNER_LOOP(32, crc, tmp[3]); } } /* 1-3 bytes at end of buffer */ pend = pdata + (nbytes & 0x03); while (pdata < pend) CRC_INNER_LOOP(32, crc, *pdata++); #else pend = pdata + nbytes; while (pdata < pend) CRC_INNER_LOOP(32, crc, *pdata++); #endif /* __mips__ */ return crc; } #ifdef notdef #define CLEN 1499 /* CRC Length */ #define CBUFSIZ (CLEN+4) #define CNBUFS 5 /* # of bufs */ void testcrc32(void) { uint j, k, l; uint8 *buf; uint len[CNBUFS]; uint32 crcr; uint32 crc32tv[CNBUFS] = {0xd2cb1faa, 0xd385c8fa, 0xf5b4f3f3, 0x55789e20, 0x00343110}; ASSERT((buf = MALLOC(CBUFSIZ*CNBUFS)) != NULL); /* step through all possible alignments */ for (l = 0; l <= 4; l++) { for (j = 0; j < CNBUFS; j++) { len[j] = CLEN; for (k = 0; k < len[j]; k++) *(buf + j*CBUFSIZ + (k+l)) = (j+k) & 0xff; } for (j = 0; j < CNBUFS; j++) { crcr = crc32(buf + j*CBUFSIZ + l, len[j], CRC32_INIT_VALUE); ASSERT(crcr == crc32tv[j]); } } MFREE(buf, CBUFSIZ*CNBUFS); return; } #endif /* notdef */ /* * Advance from the current 1-byte tag/1-byte length/variable-length value * triple, to the next, returning a pointer to the next. * If the current or next TLV is invalid (does not fit in given buffer length), * NULL is returned. * *buflen is not modified if the TLV elt parameter is invalid, or is decremented * by the TLV parameter's length if it is valid. */ bcm_tlv_t * BCMROMFN(bcm_next_tlv)(bcm_tlv_t *elt, int *buflen) { int len; /* validate current elt */ if (!bcm_valid_tlv(elt, *buflen)) { return NULL; } /* advance to next elt */ len = elt->len; elt = (bcm_tlv_t*)(elt->data + len); *buflen -= (TLV_HDR_LEN + len); /* validate next elt */ if (!bcm_valid_tlv(elt, *buflen)) { return NULL; } return elt; } /* * Traverse a string of 1-byte tag/1-byte length/variable-length value * triples, returning a pointer to the substring whose first element * matches tag */ bcm_tlv_t * BCMROMFN(bcm_parse_tlvs)(void *buf, int buflen, uint key) { bcm_tlv_t *elt; int totlen; elt = (bcm_tlv_t*)buf; totlen = buflen; /* find tagged parameter */ while (totlen >= TLV_HDR_LEN) { int len = elt->len; /* validate remaining totlen */ if ((elt->id == key) && (totlen >= (int)(len + TLV_HDR_LEN))) { return (elt); } elt = (bcm_tlv_t*)((uint8*)elt + (len + TLV_HDR_LEN)); totlen -= (len + TLV_HDR_LEN); } return NULL; } /* * Traverse a string of 1-byte tag/1-byte length/variable-length value * triples, returning a pointer to the substring whose first element * matches tag. Stop parsing when we see an element whose ID is greater * than the target key. */ bcm_tlv_t * BCMROMFN(bcm_parse_ordered_tlvs)(void *buf, int buflen, uint key) { bcm_tlv_t *elt; int totlen; elt = (bcm_tlv_t*)buf; totlen = buflen; /* find tagged parameter */ while (totlen >= TLV_HDR_LEN) { uint id = elt->id; int len = elt->len; /* Punt if we start seeing IDs > than target key */ if (id > key) { return (NULL); } /* validate remaining totlen */ if ((id == key) && (totlen >= (int)(len + TLV_HDR_LEN))) { return (elt); } elt = (bcm_tlv_t*)((uint8*)elt + (len + TLV_HDR_LEN)); totlen -= (len + TLV_HDR_LEN); } return NULL; } #endif /* !BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS */ #if defined(WLMSG_PRHDRS) || defined(WLMSG_PRPKT) || defined(WLMSG_ASSOC) || \ defined(BCMDBG_DUMP) || defined(DHD_DEBUG) int bcm_format_field(const bcm_bit_desc_ex_t *bd, uint32 flags, char* buf, int len) { int i, slen = 0; uint32 bit, mask; const char *name; mask = bd->mask; if (len < 2 || !buf) return 0; buf[0] = '\0'; for (i = 0; (name = bd->bitfield[i].name) != NULL; i++) { bit = bd->bitfield[i].bit; if ((flags & mask) == bit) { if (len > (int)strlen(name)) { slen = strlen(name); strncpy(buf, name, slen+1); } break; } } return slen; } int bcm_format_flags(const bcm_bit_desc_t *bd, uint32 flags, char* buf, int len) { int i; char* p = buf; char hexstr[16]; int slen = 0, nlen = 0; uint32 bit; const char* name; if (len < 2 || !buf) return 0; buf[0] = '\0'; for (i = 0; flags != 0; i++) { bit = bd[i].bit; name = bd[i].name; if (bit == 0 && flags != 0) { /* print any unnamed bits */ snprintf(hexstr, 16, "0x%X", flags); name = hexstr; flags = 0; /* exit loop */ } else if ((flags & bit) == 0) continue; flags &= ~bit; nlen = strlen(name); slen += nlen; /* count btwn flag space */ if (flags != 0) slen += 1; /* need NULL char as well */ if (len <= slen) break; /* copy NULL char but don't count it */ strncpy(p, name, nlen + 1); p += nlen; /* copy btwn flag space and NULL char */ if (flags != 0) p += snprintf(p, 2, " "); } /* indicate the str was too short */ if (flags != 0) { if (len < 2) p -= 2 - len; /* overwrite last char */ p += snprintf(p, 2, ">"); } return (int)(p - buf); } /* print bytes formatted as hex to a string. return the resulting string length */ int bcm_format_hex(char *str, const void *bytes, int len) { int i; char *p = str; const uint8 *src = (const uint8*)bytes; for (i = 0; i < len; i++) { p += snprintf(p, 3, "%02X", *src); src++; } return (int)(p - str); } #endif /* pretty hex print a contiguous buffer */ void prhex(const char *msg, uchar *buf, uint nbytes) { char line[128], *p; int len = sizeof(line); int nchar; uint i; if (msg && (msg[0] != '\0')) printf("%s:\n", msg); p = line; for (i = 0; i < nbytes; i++) { if (i % 16 == 0) { nchar = snprintf(p, len, " %04d: ", i); /* line prefix */ p += nchar; len -= nchar; } if (len > 0) { nchar = snprintf(p, len, "%02x ", buf[i]); p += nchar; len -= nchar; } if (i % 16 == 15) { printf("%s\n", line); /* flush line */ p = line; len = sizeof(line); } } /* flush last partial line */ if (p != line) printf("%s\n", line); } static const char *crypto_algo_names[] = { "NONE", "WEP1", "TKIP", "WEP128", "AES_CCM", "AES_OCB_MSDU", "AES_OCB_MPDU", "NALG" "UNDEF", "UNDEF", "UNDEF", "UNDEF" }; const char * bcm_crypto_algo_name(uint algo) { return (algo < ARRAYSIZE(crypto_algo_names)) ? crypto_algo_names[algo] : "ERR"; } char * bcm_chipname(uint chipid, char *buf, uint len) { const char *fmt; fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x"; snprintf(buf, len, fmt, chipid); return buf; } /* Produce a human-readable string for boardrev */ char * bcm_brev_str(uint32 brev, char *buf) { if (brev < 0x100) snprintf(buf, 8, "%d.%d", (brev & 0xf0) >> 4, brev & 0xf); else snprintf(buf, 8, "%c%03x", ((brev & 0xf000) == 0x1000) ? 'P' : 'A', brev & 0xfff); return (buf); } #define BUFSIZE_TODUMP_ATONCE 512 /* Buffer size */ /* dump large strings to console */ void printbig(char *buf) { uint len, max_len; char c; len = strlen(buf); max_len = BUFSIZE_TODUMP_ATONCE; while (len > max_len) { c = buf[max_len]; buf[max_len] = '\0'; printf("%s", buf); buf[max_len] = c; buf += max_len; len -= max_len; } /* print the remaining string */ printf("%s\n", buf); return; } /* routine to dump fields in a fileddesc structure */ uint bcmdumpfields(bcmutl_rdreg_rtn read_rtn, void *arg0, uint arg1, struct fielddesc *fielddesc_array, char *buf, uint32 bufsize) { uint filled_len; int len; struct fielddesc *cur_ptr; filled_len = 0; cur_ptr = fielddesc_array; while (bufsize > 1) { if (cur_ptr->nameandfmt == NULL) break; len = snprintf(buf, bufsize, cur_ptr->nameandfmt, read_rtn(arg0, arg1, cur_ptr->offset)); /* check for snprintf overflow or error */ if (len < 0 || (uint32)len >= bufsize) len = bufsize - 1; buf += len; bufsize -= len; filled_len += len; cur_ptr++; } return filled_len; } uint bcm_mkiovar(char *name, char *data, uint datalen, char *buf, uint buflen) { uint len; len = strlen(name) + 1; if ((len + datalen) > buflen) return 0; strncpy(buf, name, buflen); /* append data onto the end of the name string */ memcpy(&buf[len], data, datalen); len += datalen; return len; } /* Quarter dBm units to mW * Table starts at QDBM_OFFSET, so the first entry is mW for qdBm=153 * Table is offset so the last entry is largest mW value that fits in * a uint16. */ #define QDBM_OFFSET 153 /* Offset for first entry */ #define QDBM_TABLE_LEN 40 /* Table size */ /* Smallest mW value that will round up to the first table entry, QDBM_OFFSET. * Value is ( mW(QDBM_OFFSET - 1) + mW(QDBM_OFFSET) ) / 2 */ #define QDBM_TABLE_LOW_BOUND 6493 /* Low bound */ /* Largest mW value that will round down to the last table entry, * QDBM_OFFSET + QDBM_TABLE_LEN-1. * Value is ( mW(QDBM_OFFSET + QDBM_TABLE_LEN - 1) + mW(QDBM_OFFSET + QDBM_TABLE_LEN) ) / 2. */ #define QDBM_TABLE_HIGH_BOUND 64938 /* High bound */ static const uint16 nqdBm_to_mW_map[QDBM_TABLE_LEN] = { /* qdBm: +0 +1 +2 +3 +4 +5 +6 +7 */ /* 153: */ 6683, 7079, 7499, 7943, 8414, 8913, 9441, 10000, /* 161: */ 10593, 11220, 11885, 12589, 13335, 14125, 14962, 15849, /* 169: */ 16788, 17783, 18836, 19953, 21135, 22387, 23714, 25119, /* 177: */ 26607, 28184, 29854, 31623, 33497, 35481, 37584, 39811, /* 185: */ 42170, 44668, 47315, 50119, 53088, 56234, 59566, 63096 }; uint16 BCMROMFN(bcm_qdbm_to_mw)(uint8 qdbm) { uint factor = 1; int idx = qdbm - QDBM_OFFSET; if (idx >= QDBM_TABLE_LEN) { /* clamp to max uint16 mW value */ return 0xFFFF; } /* scale the qdBm index up to the range of the table 0-40 * where an offset of 40 qdBm equals a factor of 10 mW. */ while (idx < 0) { idx += 40; factor *= 10; } /* return the mW value scaled down to the correct factor of 10, * adding in factor/2 to get proper rounding. */ return ((nqdBm_to_mW_map[idx] + factor/2) / factor); } uint8 BCMROMFN(bcm_mw_to_qdbm)(uint16 mw) { uint8 qdbm; int offset; uint mw_uint = mw; uint boundary; /* handle boundary case */ if (mw_uint <= 1) return 0; offset = QDBM_OFFSET; /* move mw into the range of the table */ while (mw_uint < QDBM_TABLE_LOW_BOUND) { mw_uint *= 10; offset -= 40; } for (qdbm = 0; qdbm < QDBM_TABLE_LEN-1; qdbm++) { boundary = nqdBm_to_mW_map[qdbm] + (nqdBm_to_mW_map[qdbm+1] - nqdBm_to_mW_map[qdbm])/2; if (mw_uint < boundary) break; } qdbm += (uint8)offset; return (qdbm); } uint BCMROMFN(bcm_bitcount)(uint8 *bitmap, uint length) { uint bitcount = 0, i; uint8 tmp; for (i = 0; i < length; i++) { tmp = bitmap[i]; while (tmp) { bitcount++; tmp &= (tmp - 1); } } return bitcount; } #ifdef BCMDRIVER /* Initialization of bcmstrbuf structure */ void bcm_binit(struct bcmstrbuf *b, char *buf, uint size) { b->origsize = b->size = size; b->origbuf = b->buf = buf; } /* Buffer sprintf wrapper to guard against buffer overflow */ int bcm_bprintf(struct bcmstrbuf *b, const char *fmt, ...) { va_list ap; int r; va_start(ap, fmt); r = vsnprintf(b->buf, b->size, fmt, ap); /* Non Ansi C99 compliant returns -1, * Ansi compliant return r >= b->size, * bcmstdlib returns 0, handle all */ /* r == 0 is also the case when strlen(fmt) is zero. * typically the case when "" is passed as argument. */ if ((r == -1) || (r >= (int)b->size)) { b->size = 0; } else { b->size -= r; b->buf += r; } va_end(ap); return r; } void bcm_bprhex(struct bcmstrbuf *b, const char *msg, bool newline, uint8 *buf, int len) { int i; if (msg != NULL && msg[0] != '\0') bcm_bprintf(b, "%s", msg); for (i = 0; i < len; i ++) bcm_bprintf(b, "%02X", buf[i]); if (newline) bcm_bprintf(b, "\n"); } void bcm_inc_bytes(uchar *num, int num_bytes, uint8 amount) { int i; for (i = 0; i < num_bytes; i++) { num[i] += amount; if (num[i] >= amount) break; amount = 1; } } int bcm_cmp_bytes(const uchar *arg1, const uchar *arg2, uint8 nbytes) { int i; for (i = nbytes - 1; i >= 0; i--) { if (arg1[i] != arg2[i]) return (arg1[i] - arg2[i]); } return 0; } void bcm_print_bytes(const char *name, const uchar *data, int len) { int i; int per_line = 0; printf("%s: %d \n", name ? name : "", len); for (i = 0; i < len; i++) { printf("%02x ", *data++); per_line++; if (per_line == 16) { per_line = 0; printf("\n"); } } printf("\n"); } /* Look for vendor-specific IE with specified OUI and optional type */ bcm_tlv_t * bcm_find_vendor_ie(void *tlvs, int tlvs_len, const char *voui, uint8 *type, int type_len) { bcm_tlv_t *ie; uint8 ie_len; ie = (bcm_tlv_t*)tlvs; /* make sure we are looking at a valid IE */ if (ie == NULL || !bcm_valid_tlv(ie, tlvs_len)) { return NULL; } /* Walk through the IEs looking for an OUI match */ do { ie_len = ie->len; if ((ie->id == DOT11_MNG_PROPR_ID) && (ie_len >= (DOT11_OUI_LEN + type_len)) && !bcmp(ie->data, voui, DOT11_OUI_LEN)) { /* compare optional type */ if (type_len == 0 || !bcmp(&ie->data[DOT11_OUI_LEN], type, type_len)) { return (ie); /* a match */ } } } while ((ie = bcm_next_tlv(ie, &tlvs_len)) != NULL); return NULL; } #if defined(WLTINYDUMP) || defined(WLMSG_INFORM) || defined(WLMSG_ASSOC) || \ defined(WLMSG_PRPKT) || defined(WLMSG_WSEC) #define SSID_FMT_BUF_LEN ((4 * DOT11_MAX_SSID_LEN) + 1) int bcm_format_ssid(char* buf, const uchar ssid[], uint ssid_len) { uint i, c; char *p = buf; char *endp = buf + SSID_FMT_BUF_LEN; if (ssid_len > DOT11_MAX_SSID_LEN) ssid_len = DOT11_MAX_SSID_LEN; for (i = 0; i < ssid_len; i++) { c = (uint)ssid[i]; if (c == '\\') { *p++ = '\\'; *p++ = '\\'; } else if (bcm_isprint((uchar)c)) { *p++ = (char)c; } else { p += snprintf(p, (endp - p), "\\x%02X", c); } } *p = '\0'; ASSERT(p < endp); return (int)(p - buf); } #endif #endif /* BCMDRIVER */ /* * ProcessVars:Takes a buffer of "=\n" lines read from a file and ending in a NUL. * also accepts nvram files which are already in the format of =\0\=\0 * Removes carriage returns, empty lines, comment lines, and converts newlines to NULs. * Shortens buffer as needed and pads with NULs. End of buffer is marked by two NULs. */ unsigned int process_nvram_vars(char *varbuf, unsigned int len) { char *dp; bool findNewline; int column; unsigned int buf_len, n; unsigned int pad = 0; dp = varbuf; findNewline = FALSE; column = 0; for (n = 0; n < len; n++) { if (varbuf[n] == '\r') continue; if (findNewline && varbuf[n] != '\n') continue; findNewline = FALSE; if (varbuf[n] == '#') { findNewline = TRUE; continue; } if (varbuf[n] == '\n') { if (column == 0) continue; *dp++ = 0; column = 0; continue; } *dp++ = varbuf[n]; column++; } buf_len = (unsigned int)(dp - varbuf); if (buf_len % 4) { pad = 4 - buf_len % 4; if (pad && (buf_len + pad <= len)) { buf_len += pad; } } while (dp < varbuf + n) *dp++ = 0; return buf_len; } /* calculate a * b + c */ void bcm_uint64_multiple_add(uint32* r_high, uint32* r_low, uint32 a, uint32 b, uint32 c) { #define FORMALIZE(var) {cc += (var & 0x80000000) ? 1 : 0; var &= 0x7fffffff;} uint32 r1, r0; uint32 a1, a0, b1, b0, t, cc = 0; a1 = a >> 16; a0 = a & 0xffff; b1 = b >> 16; b0 = b & 0xffff; r0 = a0 * b0; FORMALIZE(r0); t = (a1 * b0) << 16; FORMALIZE(t); r0 += t; FORMALIZE(r0); t = (a0 * b1) << 16; FORMALIZE(t); r0 += t; FORMALIZE(r0); FORMALIZE(c); r0 += c; FORMALIZE(r0); r0 |= (cc % 2) ? 0x80000000 : 0; r1 = a1 * b1 + ((a1 * b0) >> 16) + ((b1 * a0) >> 16) + (cc / 2); *r_high = r1; *r_low = r0; } /* calculate a / b */ void bcm_uint64_divide(uint32* r, uint32 a_high, uint32 a_low, uint32 b) { uint32 a1 = a_high, a0 = a_low, r0 = 0; if (b < 2) return; while (a1 != 0) { r0 += (0xffffffff / b) * a1; bcm_uint64_multiple_add(&a1, &a0, ((0xffffffff % b) + 1) % b, a1, a0); } r0 += a0 / b; *r = r0; } #ifndef setbit /* As in the header file */ #ifdef BCMUTILS_BIT_MACROS_USE_FUNCS /* Set bit in byte array. */ void setbit(void *array, uint bit) { ((uint8 *)array)[bit / NBBY] |= 1 << (bit % NBBY); } /* Clear bit in byte array. */ void clrbit(void *array, uint bit) { ((uint8 *)array)[bit / NBBY] &= ~(1 << (bit % NBBY)); } /* Test if bit is set in byte array. */ bool isset(const void *array, uint bit) { return (((const uint8 *)array)[bit / NBBY] & (1 << (bit % NBBY))); } /* Test if bit is clear in byte array. */ bool isclr(const void *array, uint bit) { return ((((const uint8 *)array)[bit / NBBY] & (1 << (bit % NBBY))) == 0); } #endif /* BCMUTILS_BIT_MACROS_USE_FUNCS */ #endif /* setbit */ void bcm_bitprint32(const uint32 u32) { int i; for (i = NBITS(uint32) - 1; i >= 0; i--) { isbitset(u32, i) ? printf("1") : printf("0"); if ((i % NBBY) == 0) printf(" "); } printf("\n"); } #ifdef BCMDRIVER /* * Hierarchical Multiword bitmap based small id allocator. * * Multilevel hierarchy bitmap. (maximum 2 levels) * First hierarchy uses a multiword bitmap to identify 32bit words in the * second hierarchy that have at least a single bit set. Each bit in a word of * the second hierarchy represents a unique ID that may be allocated. * * BCM_MWBMAP_ITEMS_MAX: Maximum number of IDs managed. * BCM_MWBMAP_BITS_WORD: Number of bits in a bitmap word word * BCM_MWBMAP_WORDS_MAX: Maximum number of bitmap words needed for free IDs. * BCM_MWBMAP_WDMAP_MAX: Maximum number of bitmap wordss identifying first non * non-zero bitmap word carrying at least one free ID. * BCM_MWBMAP_SHIFT_OP: Used in MOD, DIV and MUL operations. * BCM_MWBMAP_INVALID_IDX: Value ~0U is treated as an invalid ID * * Design Notes: * BCM_MWBMAP_USE_CNTSETBITS trades CPU for memory. A runtime count of how many * bits are computed each time on allocation and deallocation, requiring 4 * array indexed access and 3 arithmetic operations. When not defined, a runtime * count of set bits state is maintained. Upto 32 Bytes per 1024 IDs is needed. * In a 4K max ID allocator, up to 128Bytes are hence used per instantiation. * In a memory limited system e.g. dongle builds, a CPU for memory tradeoff may * be used by defining BCM_MWBMAP_USE_CNTSETBITS. * * Note: wd_bitmap[] is statically declared and is not ROM friendly ... array * size is fixed. No intention to support larger than 4K indice allocation. ID * allocators for ranges smaller than 4K will have a wastage of only 12Bytes * with savings in not having to use an indirect access, had it been dynamically * allocated. */ #if defined(DONGLEBUILD) #define BCM_MWBMAP_USE_CNTSETBITS /* runtime count set bits */ #define BCM_MWBMAP_ITEMS_MAX (4 * 1024) #else /* ! DONGLEBUILD */ #define BCM_MWBMAP_ITEMS_MAX (4 * 1024) /* May increase to 16K */ #endif /* DONGLEBUILD */ #define BCM_MWBMAP_BITS_WORD (NBITS(uint32)) #define BCM_MWBMAP_WORDS_MAX (BCM_MWBMAP_ITEMS_MAX / BCM_MWBMAP_BITS_WORD) #define BCM_MWBMAP_WDMAP_MAX (BCM_MWBMAP_WORDS_MAX / BCM_MWBMAP_BITS_WORD) #define BCM_MWBMAP_SHIFT_OP (5) #define BCM_MWBMAP_MODOP(ix) ((ix) & (BCM_MWBMAP_BITS_WORD - 1)) #define BCM_MWBMAP_DIVOP(ix) ((ix) >> BCM_MWBMAP_SHIFT_OP) #define BCM_MWBMAP_MULOP(ix) ((ix) << BCM_MWBMAP_SHIFT_OP) /* Redefine PTR() and/or HDL() conversion to invoke audit for debugging */ #define BCM_MWBMAP_PTR(hdl) ((struct bcm_mwbmap *)(hdl)) #define BCM_MWBMAP_HDL(ptr) ((void *)(ptr)) #if defined(BCM_MWBMAP_DEBUG) #define BCM_MWBMAP_AUDIT(mwb) \ do { \ ASSERT((mwb != NULL) && \ (((struct bcm_mwbmap *)(mwb))->magic == (void *)(mwb))); \ bcm_mwbmap_audit(mwb); \ } while (0) #define MWBMAP_ASSERT(exp) ASSERT(exp) #define MWBMAP_DBG(x) printf x #else /* !BCM_MWBMAP_DEBUG */ #define BCM_MWBMAP_AUDIT(mwb) do {} while (0) #define MWBMAP_ASSERT(exp) do {} while (0) #define MWBMAP_DBG(x) #endif /* !BCM_MWBMAP_DEBUG */ typedef struct bcm_mwbmap { /* Hierarchical multiword bitmap allocator */ uint16 wmaps; /* Total number of words in free wd bitmap */ uint16 imaps; /* Total number of words in free id bitmap */ int16 ifree; /* Count of free indices. Used only in audits */ uint16 total; /* Total indices managed by multiword bitmap */ void * magic; /* Audit handle parameter from user */ uint32 wd_bitmap[BCM_MWBMAP_WDMAP_MAX]; /* 1st level bitmap of */ #if !defined(BCM_MWBMAP_USE_CNTSETBITS) int8 wd_count[BCM_MWBMAP_WORDS_MAX]; /* free id running count, 1st lvl */ #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ uint32 id_bitmap[0]; /* Second level bitmap */ } bcm_mwbmap_t; /* Incarnate a hierarchical multiword bitmap based small index allocator. */ struct bcm_mwbmap * BCMATTACHFN(bcm_mwbmap_init)(osl_t *osh, uint32 items_max) { struct bcm_mwbmap * mwbmap_p; uint32 wordix, size, words, extra; /* Implementation Constraint: Uses 32bit word bitmap */ MWBMAP_ASSERT(BCM_MWBMAP_BITS_WORD == 32U); MWBMAP_ASSERT(BCM_MWBMAP_SHIFT_OP == 5U); MWBMAP_ASSERT(ISPOWEROF2(BCM_MWBMAP_ITEMS_MAX)); MWBMAP_ASSERT((BCM_MWBMAP_ITEMS_MAX % BCM_MWBMAP_BITS_WORD) == 0U); ASSERT(items_max <= BCM_MWBMAP_ITEMS_MAX); /* Determine the number of words needed in the multiword bitmap */ extra = BCM_MWBMAP_MODOP(items_max); words = BCM_MWBMAP_DIVOP(items_max) + ((extra != 0U) ? 1U : 0U); /* Allocate runtime state of multiword bitmap */ /* Note: wd_count[] or wd_bitmap[] are not dynamically allocated */ size = sizeof(bcm_mwbmap_t) + (sizeof(uint32) * words); mwbmap_p = (bcm_mwbmap_t *)MALLOC(osh, size); if (mwbmap_p == (bcm_mwbmap_t *)NULL) { ASSERT(0); goto error1; } memset(mwbmap_p, 0, size); /* Initialize runtime multiword bitmap state */ mwbmap_p->imaps = (uint16)words; mwbmap_p->ifree = (int16)items_max; mwbmap_p->total = (uint16)items_max; /* Setup magic, for use in audit of handle */ mwbmap_p->magic = BCM_MWBMAP_HDL(mwbmap_p); /* Setup the second level bitmap of free indices */ /* Mark all indices as available */ for (wordix = 0U; wordix < mwbmap_p->imaps; wordix++) { mwbmap_p->id_bitmap[wordix] = (uint32)(~0U); #if !defined(BCM_MWBMAP_USE_CNTSETBITS) mwbmap_p->wd_count[wordix] = BCM_MWBMAP_BITS_WORD; #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ } /* Ensure that extra indices are tagged as un-available */ if (extra) { /* fixup the free ids in last bitmap and wd_count */ uint32 * bmap_p = &mwbmap_p->id_bitmap[mwbmap_p->imaps - 1]; *bmap_p ^= (uint32)(~0U << extra); /* fixup bitmap */ #if !defined(BCM_MWBMAP_USE_CNTSETBITS) mwbmap_p->wd_count[mwbmap_p->imaps - 1] = (int8)extra; /* fixup count */ #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ } /* Setup the first level bitmap hierarchy */ extra = BCM_MWBMAP_MODOP(mwbmap_p->imaps); words = BCM_MWBMAP_DIVOP(mwbmap_p->imaps) + ((extra != 0U) ? 1U : 0U); mwbmap_p->wmaps = (uint16)words; for (wordix = 0U; wordix < mwbmap_p->wmaps; wordix++) mwbmap_p->wd_bitmap[wordix] = (uint32)(~0U); if (extra) { uint32 * bmap_p = &mwbmap_p->wd_bitmap[mwbmap_p->wmaps - 1]; *bmap_p ^= (uint32)(~0U << extra); /* fixup bitmap */ } return mwbmap_p; error1: return BCM_MWBMAP_INVALID_HDL; } /* Release resources used by multiword bitmap based small index allocator. */ void BCMATTACHFN(bcm_mwbmap_fini)(osl_t * osh, struct bcm_mwbmap * mwbmap_hdl) { bcm_mwbmap_t * mwbmap_p; BCM_MWBMAP_AUDIT(mwbmap_hdl); mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); MFREE(osh, mwbmap_p, sizeof(struct bcm_mwbmap) + (sizeof(uint32) * mwbmap_p->imaps)); return; } /* Allocate a unique small index using a multiword bitmap index allocator. */ uint32 bcm_mwbmap_alloc(struct bcm_mwbmap * mwbmap_hdl) { bcm_mwbmap_t * mwbmap_p; uint32 wordix, bitmap; BCM_MWBMAP_AUDIT(mwbmap_hdl); mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); /* Start with the first hierarchy */ for (wordix = 0; wordix < mwbmap_p->wmaps; ++wordix) { bitmap = mwbmap_p->wd_bitmap[wordix]; /* get the word bitmap */ if (bitmap != 0U) { uint32 count, bitix, *bitmap_p; bitmap_p = &mwbmap_p->wd_bitmap[wordix]; /* clear all except trailing 1 */ bitmap = (uint32)(((int)(bitmap)) & (-((int)(bitmap)))); MWBMAP_ASSERT(C_bcm_count_leading_zeros(bitmap) == bcm_count_leading_zeros(bitmap)); bitix = (BCM_MWBMAP_BITS_WORD - 1) - bcm_count_leading_zeros(bitmap); /* use asm clz */ wordix = BCM_MWBMAP_MULOP(wordix) + bitix; /* Clear bit if wd count is 0, without conditional branch */ #if defined(BCM_MWBMAP_USE_CNTSETBITS) count = bcm_cntsetbits(mwbmap_p->id_bitmap[wordix]) - 1; #else /* ! BCM_MWBMAP_USE_CNTSETBITS */ mwbmap_p->wd_count[wordix]--; count = mwbmap_p->wd_count[wordix]; MWBMAP_ASSERT(count == (bcm_cntsetbits(mwbmap_p->id_bitmap[wordix]) - 1)); #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ MWBMAP_ASSERT(count >= 0); /* clear wd_bitmap bit if id_map count is 0 */ bitmap = (count == 0) << bitix; MWBMAP_DBG(( "Lvl1: bitix<%02u> wordix<%02u>: %08x ^ %08x = %08x wfree %d", bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) ^ bitmap, count)); *bitmap_p ^= bitmap; /* Use bitix in the second hierarchy */ bitmap_p = &mwbmap_p->id_bitmap[wordix]; bitmap = mwbmap_p->id_bitmap[wordix]; /* get the id bitmap */ MWBMAP_ASSERT(bitmap != 0U); /* clear all except trailing 1 */ bitmap = (uint32)(((int)(bitmap)) & (-((int)(bitmap)))); MWBMAP_ASSERT(C_bcm_count_leading_zeros(bitmap) == bcm_count_leading_zeros(bitmap)); bitix = BCM_MWBMAP_MULOP(wordix) + (BCM_MWBMAP_BITS_WORD - 1) - bcm_count_leading_zeros(bitmap); /* use asm clz */ mwbmap_p->ifree--; /* decrement system wide free count */ MWBMAP_ASSERT(mwbmap_p->ifree >= 0); MWBMAP_DBG(( "Lvl2: bitix<%02u> wordix<%02u>: %08x ^ %08x = %08x ifree %d", bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) ^ bitmap, mwbmap_p->ifree)); *bitmap_p ^= bitmap; /* mark as allocated = 1b0 */ return bitix; } } ASSERT(mwbmap_p->ifree == 0); return BCM_MWBMAP_INVALID_IDX; } /* Force an index at a specified position to be in use */ void bcm_mwbmap_force(struct bcm_mwbmap * mwbmap_hdl, uint32 bitix) { bcm_mwbmap_t * mwbmap_p; uint32 count, wordix, bitmap, *bitmap_p; BCM_MWBMAP_AUDIT(mwbmap_hdl); mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); ASSERT(bitix < mwbmap_p->total); /* Start with second hierarchy */ wordix = BCM_MWBMAP_DIVOP(bitix); bitmap = (uint32)(1U << BCM_MWBMAP_MODOP(bitix)); bitmap_p = &mwbmap_p->id_bitmap[wordix]; ASSERT((*bitmap_p & bitmap) == bitmap); mwbmap_p->ifree--; /* update free count */ ASSERT(mwbmap_p->ifree >= 0); MWBMAP_DBG(("Lvl2: bitix<%u> wordix<%u>: %08x ^ %08x = %08x ifree %d", bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) ^ bitmap, mwbmap_p->ifree)); *bitmap_p ^= bitmap; /* mark as in use */ /* Update first hierarchy */ bitix = wordix; wordix = BCM_MWBMAP_DIVOP(bitix); bitmap_p = &mwbmap_p->wd_bitmap[wordix]; #if defined(BCM_MWBMAP_USE_CNTSETBITS) count = bcm_cntsetbits(mwbmap_p->id_bitmap[bitix]); #else /* ! BCM_MWBMAP_USE_CNTSETBITS */ mwbmap_p->wd_count[bitix]--; count = mwbmap_p->wd_count[bitix]; MWBMAP_ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[bitix])); #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ MWBMAP_ASSERT(count >= 0); bitmap = (count == 0) << BCM_MWBMAP_MODOP(bitix); MWBMAP_DBG(("Lvl1: bitix<%02lu> wordix<%02u>: %08x ^ %08x = %08x wfree %d", BCM_MWBMAP_MODOP(bitix), wordix, *bitmap_p, bitmap, (*bitmap_p) ^ bitmap, count)); *bitmap_p ^= bitmap; /* mark as in use */ return; } /* Free a previously allocated index back into the multiword bitmap allocator */ void bcm_mwbmap_free(struct bcm_mwbmap * mwbmap_hdl, uint32 bitix) { bcm_mwbmap_t * mwbmap_p; uint32 wordix, bitmap, *bitmap_p; BCM_MWBMAP_AUDIT(mwbmap_hdl); mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); ASSERT(bitix < mwbmap_p->total); /* Start with second level hierarchy */ wordix = BCM_MWBMAP_DIVOP(bitix); bitmap = (1U << BCM_MWBMAP_MODOP(bitix)); bitmap_p = &mwbmap_p->id_bitmap[wordix]; ASSERT((*bitmap_p & bitmap) == 0U); /* ASSERT not a double free */ mwbmap_p->ifree++; /* update free count */ ASSERT(mwbmap_p->ifree <= mwbmap_p->total); MWBMAP_DBG(("Lvl2: bitix<%02u> wordix<%02u>: %08x | %08x = %08x ifree %d", bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) | bitmap, mwbmap_p->ifree)); *bitmap_p |= bitmap; /* mark as available */ /* Now update first level hierarchy */ bitix = wordix; wordix = BCM_MWBMAP_DIVOP(bitix); /* first level's word index */ bitmap = (1U << BCM_MWBMAP_MODOP(bitix)); bitmap_p = &mwbmap_p->wd_bitmap[wordix]; #if !defined(BCM_MWBMAP_USE_CNTSETBITS) mwbmap_p->wd_count[bitix]++; #endif #if defined(BCM_MWBMAP_DEBUG) { uint32 count; #if defined(BCM_MWBMAP_USE_CNTSETBITS) count = bcm_cntsetbits(mwbmap_p->id_bitmap[bitix]); #else /* ! BCM_MWBMAP_USE_CNTSETBITS */ count = mwbmap_p->wd_count[bitix]; MWBMAP_ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[bitix])); #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ MWBMAP_ASSERT(count <= BCM_MWBMAP_BITS_WORD); MWBMAP_DBG(("Lvl1: bitix<%02u> wordix<%02u>: %08x | %08x = %08x wfree %d", bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) | bitmap, count)); } #endif /* BCM_MWBMAP_DEBUG */ *bitmap_p |= bitmap; return; } /* Fetch the toal number of free indices in the multiword bitmap allocator */ uint32 bcm_mwbmap_free_cnt(struct bcm_mwbmap * mwbmap_hdl) { bcm_mwbmap_t * mwbmap_p; BCM_MWBMAP_AUDIT(mwbmap_hdl); mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); ASSERT(mwbmap_p->ifree >= 0); return mwbmap_p->ifree; } /* Determine whether an index is inuse or free */ bool bcm_mwbmap_isfree(struct bcm_mwbmap * mwbmap_hdl, uint32 bitix) { bcm_mwbmap_t * mwbmap_p; uint32 wordix, bitmap; BCM_MWBMAP_AUDIT(mwbmap_hdl); mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); ASSERT(bitix < mwbmap_p->total); wordix = BCM_MWBMAP_DIVOP(bitix); bitmap = (1U << BCM_MWBMAP_MODOP(bitix)); return ((mwbmap_p->id_bitmap[wordix] & bitmap) != 0U); } /* Debug dump a multiword bitmap allocator */ void bcm_mwbmap_show(struct bcm_mwbmap * mwbmap_hdl) { uint32 ix, count; bcm_mwbmap_t * mwbmap_p; BCM_MWBMAP_AUDIT(mwbmap_hdl); mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); printf("mwbmap_p %p wmaps %u imaps %u ifree %d total %u\n", mwbmap_p, mwbmap_p->wmaps, mwbmap_p->imaps, mwbmap_p->ifree, mwbmap_p->total); for (ix = 0U; ix < mwbmap_p->wmaps; ix++) { printf("\tWDMAP:%2u. 0x%08x\t", ix, mwbmap_p->wd_bitmap[ix]); bcm_bitprint32(mwbmap_p->wd_bitmap[ix]); printf("\n"); } for (ix = 0U; ix < mwbmap_p->imaps; ix++) { #if defined(BCM_MWBMAP_USE_CNTSETBITS) count = bcm_cntsetbits(mwbmap_p->id_bitmap[ix]); #else /* ! BCM_MWBMAP_USE_CNTSETBITS */ count = mwbmap_p->wd_count[ix]; MWBMAP_ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[ix])); #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ printf("\tIDMAP:%2u. 0x%08x %02u\t", ix, mwbmap_p->id_bitmap[ix], count); bcm_bitprint32(mwbmap_p->id_bitmap[ix]); printf("\n"); } return; } /* Audit a hierarchical multiword bitmap */ void bcm_mwbmap_audit(struct bcm_mwbmap * mwbmap_hdl) { bcm_mwbmap_t * mwbmap_p; uint32 count, free_cnt = 0U, wordix, idmap_ix, bitix, *bitmap_p; mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); for (wordix = 0U; wordix < mwbmap_p->wmaps; ++wordix) { bitmap_p = &mwbmap_p->wd_bitmap[wordix]; for (bitix = 0U; bitix < BCM_MWBMAP_BITS_WORD; bitix++) { if ((*bitmap_p) & (1 << bitix)) { idmap_ix = BCM_MWBMAP_MULOP(wordix) + bitix; #if defined(BCM_MWBMAP_USE_CNTSETBITS) count = bcm_cntsetbits(mwbmap_p->id_bitmap[idmap_ix]); #else /* ! BCM_MWBMAP_USE_CNTSETBITS */ count = mwbmap_p->wd_count[idmap_ix]; ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[idmap_ix])); #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ ASSERT(count != 0U); free_cnt += count; } } } ASSERT((int)free_cnt == mwbmap_p->ifree); } /* END : Multiword bitmap based 64bit to Unique 32bit Id allocator. */ #endif /* BCMDRIVER */ /* calculate a >> b; and returns only lower 32 bits */ void bcm_uint64_right_shift(uint32* r, uint32 a_high, uint32 a_low, uint32 b) { uint32 a1 = a_high, a0 = a_low, r0 = 0; if (b == 0) { r0 = a_low; *r = r0; return; } if (b < 32) { a0 = a0 >> b; a1 = a1 & ((1 << b) - 1); a1 = a1 << (32 - b); r0 = a0 | a1; *r = r0; return; } else { r0 = a1 >> (b - 32); *r = r0; return; } } /* calculate a + b where a is a 64 bit number and b is a 32 bit number */ void bcm_add_64(uint32* r_hi, uint32* r_lo, uint32 offset) { uint32 r1_lo = *r_lo; (*r_lo) += offset; if (*r_lo < r1_lo) (*r_hi) ++; } /* calculate a - b where a is a 64 bit number and b is a 32 bit number */ void bcm_sub_64(uint32* r_hi, uint32* r_lo, uint32 offset) { uint32 r1_lo = *r_lo; (*r_lo) -= offset; if (*r_lo > r1_lo) (*r_hi) --; }