#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Processor type for cache alignment. */ #include #include #include /* User space memory access functions */ #include "sis900.h" #define SIS900_MODULE_NAME "sis900" #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006" static const char version[] __devinitconst = KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n"; static int max_interrupt_work = 40; static int multicast_filter_limit = 128; static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */ #define SIS900_DEF_MSG \ (NETIF_MSG_DRV | \ NETIF_MSG_LINK | \ NETIF_MSG_RX_ERR | \ NETIF_MSG_TX_ERR) /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT (4*HZ) enum { SIS_900 = 0, SIS_7016 }; static const char * card_names[] = { "SiS 900 PCI Fast Ethernet", "SiS 7016 PCI Fast Ethernet" }; static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = { {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900}, {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016, PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016}, {0,} }; MODULE_DEVICE_TABLE (pci, sis900_pci_tbl); static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex); static const struct mii_chip_info { const char * name; u16 phy_id0; u16 phy_id1; u8 phy_types; #define HOME 0x0001 #define LAN 0x0002 #define MIX 0x0003 #define UNKNOWN 0x0 } mii_chip_table[] = { { "SiS 900 Internal MII PHY", 0x001d, 0x8000, LAN }, { "SiS 7014 Physical Layer Solution", 0x0016, 0xf830, LAN }, { "SiS 900 on Foxconn 661 7MI", 0x0143, 0xBC70, LAN }, { "Altimata AC101LF PHY", 0x0022, 0x5520, LAN }, { "ADM 7001 LAN PHY", 0x002e, 0xcc60, LAN }, { "AMD 79C901 10BASE-T PHY", 0x0000, 0x6B70, LAN }, { "AMD 79C901 HomePNA PHY", 0x0000, 0x6B90, HOME}, { "ICS LAN PHY", 0x0015, 0xF440, LAN }, { "ICS LAN PHY", 0x0143, 0xBC70, LAN }, { "NS 83851 PHY", 0x2000, 0x5C20, MIX }, { "NS 83847 PHY", 0x2000, 0x5C30, MIX }, { "Realtek RTL8201 PHY", 0x0000, 0x8200, LAN }, { "VIA 6103 PHY", 0x0101, 0x8f20, LAN }, {NULL,}, }; struct mii_phy { struct mii_phy * next; int phy_addr; u16 phy_id0; u16 phy_id1; u16 status; u8 phy_types; }; typedef struct _BufferDesc { u32 link; u32 cmdsts; u32 bufptr; } BufferDesc; struct sis900_private { struct pci_dev * pci_dev; spinlock_t lock; struct mii_phy * mii; struct mii_phy * first_mii; /* record the first mii structure */ unsigned int cur_phy; struct mii_if_info mii_info; struct timer_list timer; /* Link status detection timer. */ u8 autong_complete; /* 1: auto-negotiate complete */ u32 msg_enable; unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */ unsigned int cur_tx, dirty_tx; /* The saved address of a sent/receive-in-place packet buffer */ struct sk_buff *tx_skbuff[NUM_TX_DESC]; struct sk_buff *rx_skbuff[NUM_RX_DESC]; BufferDesc *tx_ring; BufferDesc *rx_ring; dma_addr_t tx_ring_dma; dma_addr_t rx_ring_dma; unsigned int tx_full; /* The Tx queue is full. */ u8 host_bridge_rev; u8 chipset_rev; }; MODULE_AUTHOR("Jim Huang , Ollie Lho "); MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver"); MODULE_LICENSE("GPL"); module_param(multicast_filter_limit, int, 0444); module_param(max_interrupt_work, int, 0444); module_param(sis900_debug, int, 0444); MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses"); MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt"); MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level"); #ifdef CONFIG_NET_POLL_CONTROLLER static void sis900_poll(struct net_device *dev); #endif static int sis900_open(struct net_device *net_dev); static int sis900_mii_probe (struct net_device * net_dev); static void sis900_init_rxfilter (struct net_device * net_dev); static u16 read_eeprom(long ioaddr, int location); static int mdio_read(struct net_device *net_dev, int phy_id, int location); static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val); static void sis900_timer(unsigned long data); static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy); static void sis900_tx_timeout(struct net_device *net_dev); static void sis900_init_tx_ring(struct net_device *net_dev); static void sis900_init_rx_ring(struct net_device *net_dev); static netdev_tx_t sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev); static int sis900_rx(struct net_device *net_dev); static void sis900_finish_xmit (struct net_device *net_dev); static irqreturn_t sis900_interrupt(int irq, void *dev_instance); static int sis900_close(struct net_device *net_dev); static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd); static u16 sis900_mcast_bitnr(u8 *addr, u8 revision); static void set_rx_mode(struct net_device *net_dev); static void sis900_reset(struct net_device *net_dev); static void sis630_set_eq(struct net_device *net_dev, u8 revision); static int sis900_set_config(struct net_device *dev, struct ifmap *map); static u16 sis900_default_phy(struct net_device * net_dev); static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy); static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr); static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr); static void sis900_set_mode (long ioaddr, int speed, int duplex); static const struct ethtool_ops sis900_ethtool_ops; /** * sis900_get_mac_addr - Get MAC address for stand alone SiS900 model * @pci_dev: the sis900 pci device * @net_dev: the net device to get address for * * Older SiS900 and friends, use EEPROM to store MAC address. * MAC address is read from read_eeprom() into @net_dev->dev_addr. */ static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev) { long ioaddr = pci_resource_start(pci_dev, 0); u16 signature; int i; /* check to see if we have sane EEPROM */ signature = (u16) read_eeprom(ioaddr, EEPROMSignature); if (signature == 0xffff || signature == 0x0000) { printk (KERN_WARNING "%s: Error EERPOM read %x\n", pci_name(pci_dev), signature); return 0; } /* get MAC address from EEPROM */ for (i = 0; i < 3; i++) ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr); return 1; } /** * sis630e_get_mac_addr - Get MAC address for SiS630E model * @pci_dev: the sis900 pci device * @net_dev: the net device to get address for * * SiS630E model, use APC CMOS RAM to store MAC address. * APC CMOS RAM is accessed through ISA bridge. * MAC address is read into @net_dev->dev_addr. */ static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev) { struct pci_dev *isa_bridge = NULL; u8 reg; int i; isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge); if (!isa_bridge) isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge); if (!isa_bridge) { printk(KERN_WARNING "%s: Can not find ISA bridge\n", pci_name(pci_dev)); return 0; } pci_read_config_byte(isa_bridge, 0x48, ®); pci_write_config_byte(isa_bridge, 0x48, reg | 0x40); for (i = 0; i < 6; i++) { outb(0x09 + i, 0x70); ((u8 *)(net_dev->dev_addr))[i] = inb(0x71); } pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40); pci_dev_put(isa_bridge); return 1; } /** * sis635_get_mac_addr - Get MAC address for SIS635 model * @pci_dev: the sis900 pci device * @net_dev: the net device to get address for * * SiS635 model, set MAC Reload Bit to load Mac address from APC * to rfdr. rfdr is accessed through rfcr. MAC address is read into * @net_dev->dev_addr. */ static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev) { long ioaddr = net_dev->base_addr; u32 rfcrSave; u32 i; rfcrSave = inl(rfcr + ioaddr); outl(rfcrSave | RELOAD, ioaddr + cr); outl(0, ioaddr + cr); /* disable packet filtering before setting filter */ outl(rfcrSave & ~RFEN, rfcr + ioaddr); /* load MAC addr to filter data register */ for (i = 0 ; i < 3 ; i++) { outl((i << RFADDR_shift), ioaddr + rfcr); *( ((u16 *)net_dev->dev_addr) + i) = inw(ioaddr + rfdr); } /* enable packet filtering */ outl(rfcrSave | RFEN, rfcr + ioaddr); return 1; } /** * sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model * @pci_dev: the sis900 pci device * @net_dev: the net device to get address for * * SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM * is shared by * LAN and 1394. When access EEPROM, send EEREQ signal to hardware first * and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access * by LAN, otherwise is not. After MAC address is read from EEPROM, send * EEDONE signal to refuse EEPROM access by LAN. * The EEPROM map of SiS962 or SiS963 is different to SiS900. * The signature field in SiS962 or SiS963 spec is meaningless. * MAC address is read into @net_dev->dev_addr. */ static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev) { long ioaddr = net_dev->base_addr; long ee_addr = ioaddr + mear; u32 waittime = 0; int i; outl(EEREQ, ee_addr); while(waittime < 2000) { if(inl(ee_addr) & EEGNT) { /* get MAC address from EEPROM */ for (i = 0; i < 3; i++) ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr); outl(EEDONE, ee_addr); return 1; } else { udelay(1); waittime ++; } } outl(EEDONE, ee_addr); return 0; } static const struct net_device_ops sis900_netdev_ops = { .ndo_open = sis900_open, .ndo_stop = sis900_close, .ndo_start_xmit = sis900_start_xmit, .ndo_set_config = sis900_set_config, .ndo_set_multicast_list = set_rx_mode, .ndo_change_mtu = eth_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, .ndo_do_ioctl = mii_ioctl, .ndo_tx_timeout = sis900_tx_timeout, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = sis900_poll, #endif }; /** * sis900_probe - Probe for sis900 device * @pci_dev: the sis900 pci device * @pci_id: the pci device ID * * Check and probe sis900 net device for @pci_dev. * Get mac address according to the chip revision, * and assign SiS900-specific entries in the device structure. * ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc. */ static int __devinit sis900_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_id) { struct sis900_private *sis_priv; struct net_device *net_dev; struct pci_dev *dev; dma_addr_t ring_dma; void *ring_space; long ioaddr; int i, ret; const char *card_name = card_names[pci_id->driver_data]; const char *dev_name = pci_name(pci_dev); /* when built into the kernel, we only print version if device is found */ #ifndef MODULE static int printed_version; if (!printed_version++) printk(version); #endif /* setup various bits in PCI command register */ ret = pci_enable_device(pci_dev); if(ret) return ret; i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32)); if(i){ printk(KERN_ERR "sis900.c: architecture does not support " "32bit PCI busmaster DMA\n"); return i; } pci_set_master(pci_dev); net_dev = alloc_etherdev(sizeof(struct sis900_private)); if (!net_dev) return -ENOMEM; SET_NETDEV_DEV(net_dev, &pci_dev->dev); /* We do a request_region() to register /proc/ioports info. */ ioaddr = pci_resource_start(pci_dev, 0); ret = pci_request_regions(pci_dev, "sis900"); if (ret) goto err_out; sis_priv = netdev_priv(net_dev); net_dev->base_addr = ioaddr; net_dev->irq = pci_dev->irq; sis_priv->pci_dev = pci_dev; spin_lock_init(&sis_priv->lock); pci_set_drvdata(pci_dev, net_dev); ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma); if (!ring_space) { ret = -ENOMEM; goto err_out_cleardev; } sis_priv->tx_ring = (BufferDesc *)ring_space; sis_priv->tx_ring_dma = ring_dma; ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma); if (!ring_space) { ret = -ENOMEM; goto err_unmap_tx; } sis_priv->rx_ring = (BufferDesc *)ring_space; sis_priv->rx_ring_dma = ring_dma; /* The SiS900-specific entries in the device structure. */ net_dev->netdev_ops = &sis900_netdev_ops; net_dev->watchdog_timeo = TX_TIMEOUT; net_dev->ethtool_ops = &sis900_ethtool_ops; if (sis900_debug > 0) sis_priv->msg_enable = sis900_debug; else sis_priv->msg_enable = SIS900_DEF_MSG; sis_priv->mii_info.dev = net_dev; sis_priv->mii_info.mdio_read = mdio_read; sis_priv->mii_info.mdio_write = mdio_write; sis_priv->mii_info.phy_id_mask = 0x1f; sis_priv->mii_info.reg_num_mask = 0x1f; /* Get Mac address according to the chip revision */ pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &(sis_priv->chipset_rev)); if(netif_msg_probe(sis_priv)) printk(KERN_DEBUG "%s: detected revision %2.2x, " "trying to get MAC address...\n", dev_name, sis_priv->chipset_rev); ret = 0; if (sis_priv->chipset_rev == SIS630E_900_REV) ret = sis630e_get_mac_addr(pci_dev, net_dev); else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) ) ret = sis635_get_mac_addr(pci_dev, net_dev); else if (sis_priv->chipset_rev == SIS96x_900_REV) ret = sis96x_get_mac_addr(pci_dev, net_dev); else ret = sis900_get_mac_addr(pci_dev, net_dev); if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) { random_ether_addr(net_dev->dev_addr); printk(KERN_WARNING "%s: Unreadable or invalid MAC address," "using random generated one\n", dev_name); } /* 630ET : set the mii access mode as software-mode */ if (sis_priv->chipset_rev == SIS630ET_900_REV) outl(ACCESSMODE | inl(ioaddr + cr), ioaddr + cr); /* probe for mii transceiver */ if (sis900_mii_probe(net_dev) == 0) { printk(KERN_WARNING "%s: Error probing MII device.\n", dev_name); ret = -ENODEV; goto err_unmap_rx; } /* save our host bridge revision */ dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL); if (dev) { pci_read_config_byte(dev, PCI_CLASS_REVISION, &sis_priv->host_bridge_rev); pci_dev_put(dev); } ret = register_netdev(net_dev); if (ret) goto err_unmap_rx; /* print some information about our NIC */ printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %pM\n", net_dev->name, card_name, ioaddr, net_dev->irq, net_dev->dev_addr); /* Detect Wake on Lan support */ ret = (inl(net_dev->base_addr + CFGPMC) & PMESP) >> 27; if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0) printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name); return 0; err_unmap_rx: pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring, sis_priv->rx_ring_dma); err_unmap_tx: pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring, sis_priv->tx_ring_dma); err_out_cleardev: pci_set_drvdata(pci_dev, NULL); pci_release_regions(pci_dev); err_out: free_netdev(net_dev); return ret; } /** * sis900_mii_probe - Probe MII PHY for sis900 * @net_dev: the net device to probe for * * Search for total of 32 possible mii phy addresses. * Identify and set current phy if found one, * return error if it failed to found. */ static int __devinit sis900_mii_probe(struct net_device * net_dev) { struct sis900_private *sis_priv = netdev_priv(net_dev); const char *dev_name = pci_name(sis_priv->pci_dev); u16 poll_bit = MII_STAT_LINK, status = 0; unsigned long timeout = jiffies + 5 * HZ; int phy_addr; sis_priv->mii = NULL; /* search for total of 32 possible mii phy addresses */ for (phy_addr = 0; phy_addr < 32; phy_addr++) { struct mii_phy * mii_phy = NULL; u16 mii_status; int i; mii_phy = NULL; for(i = 0; i < 2; i++) mii_status = mdio_read(net_dev, phy_addr, MII_STATUS); if (mii_status == 0xffff || mii_status == 0x0000) { if (netif_msg_probe(sis_priv)) printk(KERN_DEBUG "%s: MII at address %d" " not accessible\n", dev_name, phy_addr); continue; } if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) { printk(KERN_WARNING "Cannot allocate mem for struct mii_phy\n"); mii_phy = sis_priv->first_mii; while (mii_phy) { struct mii_phy *phy; phy = mii_phy; mii_phy = mii_phy->next; kfree(phy); } return 0; } mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0); mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1); mii_phy->phy_addr = phy_addr; mii_phy->status = mii_status; mii_phy->next = sis_priv->mii; sis_priv->mii = mii_phy; sis_priv->first_mii = mii_phy; for (i = 0; mii_chip_table[i].phy_id1; i++) if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) && ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){ mii_phy->phy_types = mii_chip_table[i].phy_types; if (mii_chip_table[i].phy_types == MIX) mii_phy->phy_types = (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME; printk(KERN_INFO "%s: %s transceiver found " "at address %d.\n", dev_name, mii_chip_table[i].name, phy_addr); break; } if( !mii_chip_table[i].phy_id1 ) { printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n", dev_name, phy_addr); mii_phy->phy_types = UNKNOWN; } } if (sis_priv->mii == NULL) { printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name); return 0; } /* select default PHY for mac */ sis_priv->mii = NULL; sis900_default_phy( net_dev ); /* Reset phy if default phy is internal sis900 */ if ((sis_priv->mii->phy_id0 == 0x001D) && ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000)) status = sis900_reset_phy(net_dev, sis_priv->cur_phy); if ((sis_priv->mii->phy_id0 == 0x0015) && ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440)) mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200); if(status & MII_STAT_LINK){ while (poll_bit) { yield(); poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit); if (time_after_eq(jiffies, timeout)) { printk(KERN_WARNING "%s: reset phy and link down now\n", dev_name); return -ETIME; } } } if (sis_priv->chipset_rev == SIS630E_900_REV) { /* SiS 630E has some bugs on default value of PHY registers */ mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1); mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22); mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00); mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0); //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000); } if (sis_priv->mii->status & MII_STAT_LINK) netif_carrier_on(net_dev); else netif_carrier_off(net_dev); return 1; } /** * sis900_default_phy - Select default PHY for sis900 mac. * @net_dev: the net device to probe for * * Select first detected PHY with link as default. * If no one is link on, select PHY whose types is HOME as default. * If HOME doesn't exist, select LAN. */ static u16 sis900_default_phy(struct net_device * net_dev) { struct sis900_private *sis_priv = netdev_priv(net_dev); struct mii_phy *phy = NULL, *phy_home = NULL, *default_phy = NULL, *phy_lan = NULL; u16 status; for (phy=sis_priv->first_mii; phy; phy=phy->next) { status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); /* Link ON & Not select default PHY & not ghost PHY */ if ((status & MII_STAT_LINK) && !default_phy && (phy->phy_types != UNKNOWN)) default_phy = phy; else { status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL); mdio_write(net_dev, phy->phy_addr, MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_ISOLATE); if (phy->phy_types == HOME) phy_home = phy; else if(phy->phy_types == LAN) phy_lan = phy; } } if (!default_phy && phy_home) default_phy = phy_home; else if (!default_phy && phy_lan) default_phy = phy_lan; else if (!default_phy) default_phy = sis_priv->first_mii; if (sis_priv->mii != default_phy) { sis_priv->mii = default_phy; sis_priv->cur_phy = default_phy->phy_addr; printk(KERN_INFO "%s: Using transceiver found at address %d as default\n", pci_name(sis_priv->pci_dev), sis_priv->cur_phy); } sis_priv->mii_info.phy_id = sis_priv->cur_phy; status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL); status &= (~MII_CNTL_ISOLATE); mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status); status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); return status; } /** * sis900_set_capability - set the media capability of network adapter. * @net_dev : the net device to probe for * @phy : default PHY * * Set the media capability of network adapter according to * mii status register. It's necessary before auto-negotiate. */ static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy) { u16 cap; u16 status; status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); cap = MII_NWAY_CSMA_CD | ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) | ((phy->status & MII_STAT_CAN_TX) ? MII_NWAY_TX:0) | ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)| ((phy->status & MII_STAT_CAN_T) ? MII_NWAY_T:0); mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap); } /* Delay between EEPROM clock transitions. */ #define eeprom_delay() inl(ee_addr) /** * read_eeprom - Read Serial EEPROM * @ioaddr: base i/o address * @location: the EEPROM location to read * * Read Serial EEPROM through EEPROM Access Register. * Note that location is in word (16 bits) unit */ static u16 __devinit read_eeprom(long ioaddr, int location) { int i; u16 retval = 0; long ee_addr = ioaddr + mear; u32 read_cmd = location | EEread; outl(0, ee_addr); eeprom_delay(); outl(EECS, ee_addr); eeprom_delay(); /* Shift the read command (9) bits out. */ for (i = 8; i >= 0; i--) { u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS; outl(dataval, ee_addr); eeprom_delay(); outl(dataval | EECLK, ee_addr); eeprom_delay(); } outl(EECS, ee_addr); eeprom_delay(); /* read the 16-bits data in */ for (i = 16; i > 0; i--) { outl(EECS, ee_addr); eeprom_delay(); outl(EECS | EECLK, ee_addr); eeprom_delay(); retval = (retval << 1) | ((inl(ee_addr) & EEDO) ? 1 : 0); eeprom_delay(); } /* Terminate the EEPROM access. */ outl(0, ee_addr); eeprom_delay(); return (retval); } /* Read and write the MII management registers using software-generated serial MDIO protocol. Note that the command bits and data bits are send out separately */ #define mdio_delay() inl(mdio_addr) static void mdio_idle(long mdio_addr) { outl(MDIO | MDDIR, mdio_addr); mdio_delay(); outl(MDIO | MDDIR | MDC, mdio_addr); } /* Syncronize the MII management interface by shifting 32 one bits out. */ static void mdio_reset(long mdio_addr) { int i; for (i = 31; i >= 0; i--) { outl(MDDIR | MDIO, mdio_addr); mdio_delay(); outl(MDDIR | MDIO | MDC, mdio_addr); mdio_delay(); } } /** * mdio_read - read MII PHY register * @net_dev: the net device to read * @phy_id: the phy address to read * @location: the phy regiester id to read * * Read MII registers through MDIO and MDC * using MDIO management frame structure and protocol(defined by ISO/IEC). * Please see SiS7014 or ICS spec */ static int mdio_read(struct net_device *net_dev, int phy_id, int location) { long mdio_addr = net_dev->base_addr + mear; int mii_cmd = MIIread|(phy_id<= 0; i--) { int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR; outl(dataval, mdio_addr); mdio_delay(); outl(dataval | MDC, mdio_addr); mdio_delay(); } /* Read the 16 data bits. */ for (i = 16; i > 0; i--) { outl(0, mdio_addr); mdio_delay(); retval = (retval << 1) | ((inl(mdio_addr) & MDIO) ? 1 : 0); outl(MDC, mdio_addr); mdio_delay(); } outl(0x00, mdio_addr); return retval; } /** * mdio_write - write MII PHY register * @net_dev: the net device to write * @phy_id: the phy address to write * @location: the phy regiester id to write * @value: the register value to write with * * Write MII registers with @value through MDIO and MDC * using MDIO management frame structure and protocol(defined by ISO/IEC) * please see SiS7014 or ICS spec */ static void mdio_write(struct net_device *net_dev, int phy_id, int location, int value) { long mdio_addr = net_dev->base_addr + mear; int mii_cmd = MIIwrite|(phy_id<= 0; i--) { int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR; outb(dataval, mdio_addr); mdio_delay(); outb(dataval | MDC, mdio_addr); mdio_delay(); } mdio_delay(); /* Shift the value bits out. */ for (i = 15; i >= 0; i--) { int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR; outl(dataval, mdio_addr); mdio_delay(); outl(dataval | MDC, mdio_addr); mdio_delay(); } mdio_delay(); /* Clear out extra bits. */ for (i = 2; i > 0; i--) { outb(0, mdio_addr); mdio_delay(); outb(MDC, mdio_addr); mdio_delay(); } outl(0x00, mdio_addr); } /** * sis900_reset_phy - reset sis900 mii phy. * @net_dev: the net device to write * @phy_addr: default phy address * * Some specific phy can't work properly without reset. * This function will be called during initialization and * link status change from ON to DOWN. */ static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr) { int i; u16 status; for (i = 0; i < 2; i++) status = mdio_read(net_dev, phy_addr, MII_STATUS); mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET ); return status; } #ifdef CONFIG_NET_POLL_CONTROLLER /* * Polling 'interrupt' - used by things like netconsole to send skbs * without having to re-enable interrupts. It's not called while * the interrupt routine is executing. */ static void sis900_poll(struct net_device *dev) { disable_irq(dev->irq); sis900_interrupt(dev->irq, dev); enable_irq(dev->irq); } #endif /** * sis900_open - open sis900 device * @net_dev: the net device to open * * Do some initialization and start net interface. * enable interrupts and set sis900 timer. */ static int sis900_open(struct net_device *net_dev) { struct sis900_private *sis_priv = netdev_priv(net_dev); long ioaddr = net_dev->base_addr; int ret; /* Soft reset the chip. */ sis900_reset(net_dev); sis630_set_eq(net_dev, sis_priv->chipset_rev); ret = request_irq(net_dev->irq, sis900_interrupt, IRQF_SHARED, net_dev->name, net_dev); if (ret) return ret; sis900_init_rxfilter(net_dev); sis900_init_tx_ring(net_dev); sis900_init_rx_ring(net_dev); set_rx_mode(net_dev); netif_start_queue(net_dev); sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED); /* Enable all known interrupts by setting the interrupt mask. */ outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr); outl(RxENA | inl(ioaddr + cr), ioaddr + cr); outl(IE, ioaddr + ier); sis900_check_mode(net_dev, sis_priv->mii); /* Set the timer to switch to check for link beat and perhaps switch to an alternate media type. */ init_timer(&sis_priv->timer); sis_priv->timer.expires = jiffies + HZ; sis_priv->timer.data = (unsigned long)net_dev; sis_priv->timer.function = &sis900_timer; add_timer(&sis_priv->timer); return 0; } /** * sis900_init_rxfilter - Initialize the Rx filter * @net_dev: the net device to initialize for * * Set receive filter address to our MAC address * and enable packet filtering. */ static void sis900_init_rxfilter (struct net_device * net_dev) { struct sis900_private *sis_priv = netdev_priv(net_dev); long ioaddr = net_dev->base_addr; u32 rfcrSave; u32 i; rfcrSave = inl(rfcr + ioaddr); /* disable packet filtering before setting filter */ outl(rfcrSave & ~RFEN, rfcr + ioaddr); /* load MAC addr to filter data register */ for (i = 0 ; i < 3 ; i++) { u32 w; w = (u32) *((u16 *)(net_dev->dev_addr)+i); outl((i << RFADDR_shift), ioaddr + rfcr); outl(w, ioaddr + rfdr); if (netif_msg_hw(sis_priv)) { printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n", net_dev->name, i, inl(ioaddr + rfdr)); } } /* enable packet filtering */ outl(rfcrSave | RFEN, rfcr + ioaddr); } /** * sis900_init_tx_ring - Initialize the Tx descriptor ring * @net_dev: the net device to initialize for * * Initialize the Tx descriptor ring, */ static void sis900_init_tx_ring(struct net_device *net_dev) { struct sis900_private *sis_priv = netdev_priv(net_dev); long ioaddr = net_dev->base_addr; int i; sis_priv->tx_full = 0; sis_priv->dirty_tx = sis_priv->cur_tx = 0; for (i = 0; i < NUM_TX_DESC; i++) { sis_priv->tx_skbuff[i] = NULL; sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma + ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc); sis_priv->tx_ring[i].cmdsts = 0; sis_priv->tx_ring[i].bufptr = 0; } /* load Transmit Descriptor Register */ outl(sis_priv->tx_ring_dma, ioaddr + txdp); if (netif_msg_hw(sis_priv)) printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n", net_dev->name, inl(ioaddr + txdp)); } /** * sis900_init_rx_ring - Initialize the Rx descriptor ring * @net_dev: the net device to initialize for * * Initialize the Rx descriptor ring, * and pre-allocate recevie buffers (socket buffer) */ static void sis900_init_rx_ring(struct net_device *net_dev) { struct sis900_private *sis_priv = netdev_priv(net_dev); long ioaddr = net_dev->base_addr; int i; sis_priv->cur_rx = 0; sis_priv->dirty_rx = 0; /* init RX descriptor */ for (i = 0; i < NUM_RX_DESC; i++) { sis_priv->rx_skbuff[i] = NULL; sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma + ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc); sis_priv->rx_ring[i].cmdsts = 0; sis_priv->rx_ring[i].bufptr = 0; } /* allocate sock buffers */ for (i = 0; i < NUM_RX_DESC; i++) { struct sk_buff *skb; if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) { /* not enough memory for skbuff, this makes a "hole" on the buffer ring, it is not clear how the hardware will react to this kind of degenerated buffer */ break; } sis_priv->rx_skbuff[i] = skb; sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE; sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev, skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE); } sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC); /* load Receive Descriptor Register */ outl(sis_priv->rx_ring_dma, ioaddr + rxdp); if (netif_msg_hw(sis_priv)) printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n", net_dev->name, inl(ioaddr + rxdp)); } static void sis630_set_eq(struct net_device *net_dev, u8 revision) { struct sis900_private *sis_priv = netdev_priv(net_dev); u16 reg14h, eq_value=0, max_value=0, min_value=0; int i, maxcount=10; if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV || revision == SIS630A_900_REV || revision == SIS630ET_900_REV) ) return; if (netif_carrier_ok(net_dev)) { reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV); mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, (0x2200 | reg14h) & 0xBFFF); for (i=0; i < maxcount; i++) { eq_value = (0x00F8 & mdio_read(net_dev, sis_priv->cur_phy, MII_RESV)) >> 3; if (i == 0) max_value=min_value=eq_value; max_value = (eq_value > max_value) ? eq_value : max_value; min_value = (eq_value < min_value) ? eq_value : min_value; } /* 630E rule to determine the equalizer value */ if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV || revision == SIS630ET_900_REV) { if (max_value < 5) eq_value = max_value; else if (max_value >= 5 && max_value < 15) eq_value = (max_value == min_value) ? max_value+2 : max_value+1; else if (max_value >= 15) eq_value=(max_value == min_value) ? max_value+6 : max_value+5; } /* 630B0&B1 rule to determine the equalizer value */ if (revision == SIS630A_900_REV && (sis_priv->host_bridge_rev == SIS630B0 || sis_priv->host_bridge_rev == SIS630B1)) { if (max_value == 0) eq_value = 3; else eq_value = (max_value + min_value + 1)/2; } /* write equalizer value and setting */ reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV); reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8); reg14h = (reg14h | 0x6000) & 0xFDFF; mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h); } else { reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV); if (revision == SIS630A_900_REV && (sis_priv->host_bridge_rev == SIS630B0 || sis_priv->host_bridge_rev == SIS630B1)) mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, (reg14h | 0x2200) & 0xBFFF); else mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, (reg14h | 0x2000) & 0xBFFF); } } /** * sis900_timer - sis900 timer routine * @data: pointer to sis900 net device * * On each timer ticks we check two things, * link status (ON/OFF) and link mode (10/100/Full/Half) */ static void sis900_timer(unsigned long data) { struct net_device *net_dev = (struct net_device *)data; struct sis900_private *sis_priv = netdev_priv(net_dev); struct mii_phy *mii_phy = sis_priv->mii; static const int next_tick = 5*HZ; u16 status; if (!sis_priv->autong_complete){ int uninitialized_var(speed), duplex = 0; sis900_read_mode(net_dev, &speed, &duplex); if (duplex){ sis900_set_mode(net_dev->base_addr, speed, duplex); sis630_set_eq(net_dev, sis_priv->chipset_rev); netif_start_queue(net_dev); } sis_priv->timer.expires = jiffies + HZ; add_timer(&sis_priv->timer); return; } status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); /* Link OFF -> ON */ if (!netif_carrier_ok(net_dev)) { LookForLink: /* Search for new PHY */ status = sis900_default_phy(net_dev); mii_phy = sis_priv->mii; if (status & MII_STAT_LINK){ sis900_check_mode(net_dev, mii_phy); netif_carrier_on(net_dev); } } else { /* Link ON -> OFF */ if (!(status & MII_STAT_LINK)){ netif_carrier_off(net_dev); if(netif_msg_link(sis_priv)) printk(KERN_INFO "%s: Media Link Off\n", net_dev->name); /* Change mode issue */ if ((mii_phy->phy_id0 == 0x001D) && ((mii_phy->phy_id1 & 0xFFF0) == 0x8000)) sis900_reset_phy(net_dev, sis_priv->cur_phy); sis630_set_eq(net_dev, sis_priv->chipset_rev); goto LookForLink; } } sis_priv->timer.expires = jiffies + next_tick; add_timer(&sis_priv->timer); } /** * sis900_check_mode - check the media mode for sis900 * @net_dev: the net device to be checked * @mii_phy: the mii phy * * Older driver gets the media mode from mii status output * register. Now we set our media capability and auto-negotiate * to get the upper bound of speed and duplex between two ends. * If the types of mii phy is HOME, it doesn't need to auto-negotiate * and autong_complete should be set to 1. */ static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy) { struct sis900_private *sis_priv = netdev_priv(net_dev); long ioaddr = net_dev->base_addr; int speed, duplex; if (mii_phy->phy_types == LAN) { outl(~EXD & inl(ioaddr + cfg), ioaddr + cfg); sis900_set_capability(net_dev , mii_phy); sis900_auto_negotiate(net_dev, sis_priv->cur_phy); } else { outl(EXD | inl(ioaddr + cfg), ioaddr + cfg); speed = HW_SPEED_HOME; duplex = FDX_CAPABLE_HALF_SELECTED; sis900_set_mode(ioaddr, speed, duplex); sis_priv->autong_complete = 1; } } /** * sis900_set_mode - Set the media mode of mac register. * @ioaddr: the address of the device * @speed : the transmit speed to be determined * @duplex: the duplex mode to be determined * * Set the media mode of mac register txcfg/rxcfg according to * speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB * bus is used instead of PCI bus. When this bit is set 1, the * Max DMA Burst Size for TX/RX DMA should be no larger than 16 * double words. */ static void sis900_set_mode (long ioaddr, int speed, int duplex) { u32 tx_flags = 0, rx_flags = 0; if (inl(ioaddr + cfg) & EDB_MASTER_EN) { tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) | (TX_FILL_THRESH << TxFILLT_shift); rx_flags = DMA_BURST_64 << RxMXDMA_shift; } else { tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) | (TX_FILL_THRESH << TxFILLT_shift); rx_flags = DMA_BURST_512 << RxMXDMA_shift; } if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) { rx_flags |= (RxDRNT_10 << RxDRNT_shift); tx_flags |= (TxDRNT_10 << TxDRNT_shift); } else { rx_flags |= (RxDRNT_100 << RxDRNT_shift); tx_flags |= (TxDRNT_100 << TxDRNT_shift); } if (duplex == FDX_CAPABLE_FULL_SELECTED) { tx_flags |= (TxCSI | TxHBI); rx_flags |= RxATX; } #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) /* Can accept Jumbo packet */ rx_flags |= RxAJAB; #endif outl (tx_flags, ioaddr + txcfg); outl (rx_flags, ioaddr + rxcfg); } /** * sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit. * @net_dev: the net device to read mode for * @phy_addr: mii phy address * * If the adapter is link-on, set the auto-negotiate enable/reset bit. * autong_complete should be set to 0 when starting auto-negotiation. * autong_complete should be set to 1 if we didn't start auto-negotiation. * sis900_timer will wait for link on again if autong_complete = 0. */ static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr) { struct sis900_private *sis_priv = netdev_priv(net_dev); int i = 0; u32 status; for (i = 0; i < 2; i++) status = mdio_read(net_dev, phy_addr, MII_STATUS); if (!(status & MII_STAT_LINK)){ if(netif_msg_link(sis_priv)) printk(KERN_INFO "%s: Media Link Off\n", net_dev->name); sis_priv->autong_complete = 1; netif_carrier_off(net_dev); return; } /* (Re)start AutoNegotiate */ mdio_write(net_dev, phy_addr, MII_CONTROL, MII_CNTL_AUTO | MII_CNTL_RST_AUTO); sis_priv->autong_complete = 0; } /** * sis900_read_mode - read media mode for sis900 internal phy * @net_dev: the net device to read mode for * @speed : the transmit speed to be determined * @duplex : the duplex mode to be determined * * The capability of remote end will be put in mii register autorec * after auto-negotiation. Use AND operation to get the upper bound * of speed and duplex between two ends. */ static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex) { struct sis900_private *sis_priv = netdev_priv(net_dev); struct mii_phy *phy = sis_priv->mii; int phy_addr = sis_priv->cur_phy; u32 status; u16 autoadv, autorec; int i; for (i = 0; i < 2; i++) status = mdio_read(net_dev, phy_addr, MII_STATUS); if (!(status & MII_STAT_LINK)) return; /* AutoNegotiate completed */ autoadv = mdio_read(net_dev, phy_addr, MII_ANADV); autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR); status = autoadv & autorec; *speed = HW_SPEED_10_MBPS; *duplex = FDX_CAPABLE_HALF_SELECTED; if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX)) *speed = HW_SPEED_100_MBPS; if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX)) *duplex = FDX_CAPABLE_FULL_SELECTED; sis_priv->autong_complete = 1; if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) { if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX) *duplex = FDX_CAPABLE_FULL_SELECTED; if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01) *speed = HW_SPEED_100_MBPS; } if(netif_msg_link(sis_priv)) printk(KERN_INFO "%s: Media Link On %s %s-duplex\n", net_dev->name, *speed == HW_SPEED_100_MBPS ? "100mbps" : "10mbps", *duplex == FDX_CAPABLE_FULL_SELECTED ? "full" : "half"); } /** * sis900_tx_timeout - sis900 transmit timeout routine * @net_dev: the net device to transmit * * print transmit timeout status * disable interrupts and do some tasks */ static void sis900_tx_timeout(struct net_device *net_dev) { struct sis900_private *sis_priv = netdev_priv(net_dev); long ioaddr = net_dev->base_addr; unsigned long flags; int i; if(netif_msg_tx_err(sis_priv)) printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n", net_dev->name, inl(ioaddr + cr), inl(ioaddr + isr)); /* Disable interrupts by clearing the interrupt mask. */ outl(0x0000, ioaddr + imr); /* use spinlock to prevent interrupt handler accessing buffer ring */ spin_lock_irqsave(&sis_priv->lock, flags); /* discard unsent packets */ sis_priv->dirty_tx = sis_priv->cur_tx = 0; for (i = 0; i < NUM_TX_DESC; i++) { struct sk_buff *skb = sis_priv->tx_skbuff[i]; if (skb) { pci_unmap_single(sis_priv->pci_dev, sis_priv->tx_ring[i].bufptr, skb->len, PCI_DMA_TODEVICE); dev_kfree_skb_irq(skb); sis_priv->tx_skbuff[i] = NULL; sis_priv->tx_ring[i].cmdsts = 0; sis_priv->tx_ring[i].bufptr = 0; net_dev->stats.tx_dropped++; } } sis_priv->tx_full = 0; netif_wake_queue(net_dev); spin_unlock_irqrestore(&sis_priv->lock, flags); net_dev->trans_start = jiffies; /* prevent tx timeout */ /* load Transmit Descriptor Register */ outl(sis_priv->tx_ring_dma, ioaddr + txdp); /* Enable all known interrupts by setting the interrupt mask. */ outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr); } /** * sis900_start_xmit - sis900 start transmit routine * @skb: socket buffer pointer to put the data being transmitted * @net_dev: the net device to transmit with * * Set the transmit buffer descriptor, * and write TxENA to enable transmit state machine. * tell upper layer if the buffer is full */ static netdev_tx_t sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev) { struct sis900_private *sis_priv = netdev_priv(net_dev); long ioaddr = net_dev->base_addr; unsigned int entry; unsigned long flags; unsigned int index_cur_tx, index_dirty_tx; unsigned int count_dirty_tx; /* Don't transmit data before the complete of auto-negotiation */ if(!sis_priv->autong_complete){ netif_stop_queue(net_dev); return NETDEV_TX_BUSY; } spin_lock_irqsave(&sis_priv->lock, flags); /* Calculate the next Tx descriptor entry. */ entry = sis_priv->cur_tx % NUM_TX_DESC; sis_priv->tx_skbuff[entry] = skb; /* set the transmit buffer descriptor and enable Transmit State Machine */ sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE); sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len); outl(TxENA | inl(ioaddr + cr), ioaddr + cr); sis_priv->cur_tx ++; index_cur_tx = sis_priv->cur_tx; index_dirty_tx = sis_priv->dirty_tx; for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++) count_dirty_tx ++; if (index_cur_tx == index_dirty_tx) { /* dirty_tx is met in the cycle of cur_tx, buffer full */ sis_priv->tx_full = 1; netif_stop_queue(net_dev); } else if (count_dirty_tx < NUM_TX_DESC) { /* Typical path, tell upper layer that more transmission is possible */ netif_start_queue(net_dev); } else { /* buffer full, tell upper layer no more transmission */ sis_priv->tx_full = 1; netif_stop_queue(net_dev); } spin_unlock_irqrestore(&sis_priv->lock, flags); if (netif_msg_tx_queued(sis_priv)) printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d " "to slot %d.\n", net_dev->name, skb->data, (int)skb->len, entry); return NETDEV_TX_OK; } /** * sis900_interrupt - sis900 interrupt handler * @irq: the irq number * @dev_instance: the client data object * * The interrupt handler does all of the Rx thread work, * and cleans up after the Tx thread */ static irqreturn_t sis900_interrupt(int irq, void *dev_instance) { struct net_device *net_dev = dev_instance; struct sis900_private *sis_priv = netdev_priv(net_dev); int boguscnt = max_interrupt_work; long ioaddr = net_dev->base_addr; u32 status; unsigned int handled = 0; spin_lock (&sis_priv->lock); do { status = inl(ioaddr + isr); if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0) /* nothing intresting happened */ break; handled = 1; /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */ if (status & (RxORN | RxERR | RxOK)) /* Rx interrupt */ sis900_rx(net_dev); if (status & (TxURN | TxERR | TxIDLE)) /* Tx interrupt */ sis900_finish_xmit(net_dev); /* something strange happened !!! */ if (status & HIBERR) { if(netif_msg_intr(sis_priv)) printk(KERN_INFO "%s: Abnormal interrupt, " "status %#8.8x.\n", net_dev->name, status); break; } if (--boguscnt < 0) { if(netif_msg_intr(sis_priv)) printk(KERN_INFO "%s: Too much work at interrupt, " "interrupt status = %#8.8x.\n", net_dev->name, status); break; } } while (1); if(netif_msg_intr(sis_priv)) printk(KERN_DEBUG "%s: exiting interrupt, " "interrupt status = 0x%#8.8x.\n", net_dev->name, inl(ioaddr + isr)); spin_unlock (&sis_priv->lock); return IRQ_RETVAL(handled); } /** * sis900_rx - sis900 receive routine * @net_dev: the net device which receives data * * Process receive interrupt events, * put buffer to higher layer and refill buffer pool * Note: This function is called by interrupt handler, * don't do "too much" work here */ static int sis900_rx(struct net_device *net_dev) { struct sis900_private *sis_priv = netdev_priv(net_dev); long ioaddr = net_dev->base_addr; unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC; u32 rx_status = sis_priv->rx_ring[entry].cmdsts; int rx_work_limit; if (netif_msg_rx_status(sis_priv)) printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d " "status:0x%8.8x\n", sis_priv->cur_rx, sis_priv->dirty_rx, rx_status); rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx; while (rx_status & OWN) { unsigned int rx_size; unsigned int data_size; if (--rx_work_limit < 0) break; data_size = rx_status & DSIZE; rx_size = data_size - CRC_SIZE; #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) /* ``TOOLONG'' flag means jumbo packet recived. */ if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE) rx_status &= (~ ((unsigned int)TOOLONG)); #endif if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) { /* corrupted packet received */ if (netif_msg_rx_err(sis_priv)) printk(KERN_DEBUG "%s: Corrupted packet " "received, buffer status = 0x%8.8x/%d.\n", net_dev->name, rx_status, data_size); net_dev->stats.rx_errors++; if (rx_status & OVERRUN) net_dev->stats.rx_over_errors++; if (rx_status & (TOOLONG|RUNT)) net_dev->stats.rx_length_errors++; if (rx_status & (RXISERR | FAERR)) net_dev->stats.rx_frame_errors++; if (rx_status & CRCERR) net_dev->stats.rx_crc_errors++; /* reset buffer descriptor state */ sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE; } else { struct sk_buff * skb; struct sk_buff * rx_skb; pci_unmap_single(sis_priv->pci_dev, sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE, PCI_DMA_FROMDEVICE); /* refill the Rx buffer, what if there is not enough * memory for new socket buffer ?? */ if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) { /* * Not enough memory to refill the buffer * so we need to recycle the old one so * as to avoid creating a memory hole * in the rx ring */ skb = sis_priv->rx_skbuff[entry]; net_dev->stats.rx_dropped++; goto refill_rx_ring; } /* This situation should never happen, but due to some unknown bugs, it is possible that we are working on NULL sk_buff :-( */ if (sis_priv->rx_skbuff[entry] == NULL) { if (netif_msg_rx_err(sis_priv)) printk(KERN_WARNING "%s: NULL pointer " "encountered in Rx ring\n" "cur_rx:%4.4d, dirty_rx:%4.4d\n", net_dev->name, sis_priv->cur_rx, sis_priv->dirty_rx); break; } /* give the socket buffer to upper layers */ rx_skb = sis_priv->rx_skbuff[entry]; skb_put(rx_skb, rx_size); rx_skb->protocol = eth_type_trans(rx_skb, net_dev); netif_rx(rx_skb); /* some network statistics */ if ((rx_status & BCAST) == MCAST) net_dev->stats.multicast++; net_dev->stats.rx_bytes += rx_size; net_dev->stats.rx_packets++; sis_priv->dirty_rx++; refill_rx_ring: sis_priv->rx_skbuff[entry] = skb; sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE; sis_priv->rx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev, skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE); } sis_priv->cur_rx++; entry = sis_priv->cur_rx % NUM_RX_DESC; rx_status = sis_priv->rx_ring[entry].cmdsts; } // while /* refill the Rx buffer, what if the rate of refilling is slower * than consuming ?? */ for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) { struct sk_buff *skb; entry = sis_priv->dirty_rx % NUM_RX_DESC; if (sis_priv->rx_skbuff[entry] == NULL) { if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) { /* not enough memory for skbuff, this makes a * "hole" on the buffer ring, it is not clear * how the hardware will react to this kind * of degenerated buffer */ if (netif_msg_rx_err(sis_priv)) printk(KERN_INFO "%s: Memory squeeze, " "deferring packet.\n", net_dev->name); net_dev->stats.rx_dropped++; break; } sis_priv->rx_skbuff[entry] = skb; sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE; sis_priv->rx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev, skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE); } } /* re-enable the potentially idle receive state matchine */ outl(RxENA | inl(ioaddr + cr), ioaddr + cr ); return 0; } /** * sis900_finish_xmit - finish up transmission of packets * @net_dev: the net device to be transmitted on * * Check for error condition and free socket buffer etc * schedule for more transmission as needed * Note: This function is called by interrupt handler, * don't do "too much" work here */ static void sis900_finish_xmit (struct net_device *net_dev) { struct sis900_private *sis_priv = netdev_priv(net_dev); for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) { struct sk_buff *skb; unsigned int entry; u32 tx_status; entry = sis_priv->dirty_tx % NUM_TX_DESC; tx_status = sis_priv->tx_ring[entry].cmdsts; if (tx_status & OWN) { /* The packet is not transmitted yet (owned by hardware) ! * Note: the interrupt is generated only when Tx Machine * is idle, so this is an almost impossible case */ break; } if (tx_status & (ABORT | UNDERRUN | OWCOLL)) { /* packet unsuccessfully transmitted */ if (netif_msg_tx_err(sis_priv)) printk(KERN_DEBUG "%s: Transmit " "error, Tx status %8.8x.\n", net_dev->name, tx_status); net_dev->stats.tx_errors++; if (tx_status & UNDERRUN) net_dev->stats.tx_fifo_errors++; if (tx_status & ABORT) net_dev->stats.tx_aborted_errors++; if (tx_status & NOCARRIER) net_dev->stats.tx_carrier_errors++; if (tx_status & OWCOLL) net_dev->stats.tx_window_errors++; } else { /* packet successfully transmitted */ net_dev->stats.collisions += (tx_status & COLCNT) >> 16; net_dev->stats.tx_bytes += tx_status & DSIZE; net_dev->stats.tx_packets++; } /* Free the original skb. */ skb = sis_priv->tx_skbuff[entry]; pci_unmap_single(sis_priv->pci_dev, sis_priv->tx_ring[entry].bufptr, skb->len, PCI_DMA_TODEVICE); dev_kfree_skb_irq(skb); sis_priv->tx_skbuff[entry] = NULL; sis_priv->tx_ring[entry].bufptr = 0; sis_priv->tx_ring[entry].cmdsts = 0; } if (sis_priv->tx_full && netif_queue_stopped(net_dev) && sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) { /* The ring is no longer full, clear tx_full and schedule * more transmission by netif_wake_queue(net_dev) */ sis_priv->tx_full = 0; netif_wake_queue (net_dev); } } /** * sis900_close - close sis900 device * @net_dev: the net device to be closed * * Disable interrupts, stop the Tx and Rx Status Machine * free Tx and RX socket buffer */ static int sis900_close(struct net_device *net_dev) { long ioaddr = net_dev->base_addr; struct sis900_private *sis_priv = netdev_priv(net_dev); struct sk_buff *skb; int i; netif_stop_queue(net_dev); /* Disable interrupts by clearing the interrupt mask. */ outl(0x0000, ioaddr + imr); outl(0x0000, ioaddr + ier); /* Stop the chip's Tx and Rx Status Machine */ outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr); del_timer(&sis_priv->timer); free_irq(net_dev->irq, net_dev); /* Free Tx and RX skbuff */ for (i = 0; i < NUM_RX_DESC; i++) { skb = sis_priv->rx_skbuff[i]; if (skb) { pci_unmap_single(sis_priv->pci_dev, sis_priv->rx_ring[i].bufptr, RX_BUF_SIZE, PCI_DMA_FROMDEVICE); dev_kfree_skb(skb); sis_priv->rx_skbuff[i] = NULL; } } for (i = 0; i < NUM_TX_DESC; i++) { skb = sis_priv->tx_skbuff[i]; if (skb) { pci_unmap_single(sis_priv->pci_dev, sis_priv->tx_ring[i].bufptr, skb->len, PCI_DMA_TODEVICE); dev_kfree_skb(skb); sis_priv->tx_skbuff[i] = NULL; } } /* Green! Put the chip in low-power mode. */ return 0; } /** * sis900_get_drvinfo - Return information about driver * @net_dev: the net device to probe * @info: container for info returned * * Process ethtool command such as "ehtool -i" to show information */ static void sis900_get_drvinfo(struct net_device *net_dev, struct ethtool_drvinfo *info) { struct sis900_private *sis_priv = netdev_priv(net_dev); strcpy (info->driver, SIS900_MODULE_NAME); strcpy (info->version, SIS900_DRV_VERSION); strcpy (info->bus_info, pci_name(sis_priv->pci_dev)); } static u32 sis900_get_msglevel(struct net_device *net_dev) { struct sis900_private *sis_priv = netdev_priv(net_dev); return sis_priv->msg_enable; } static void sis900_set_msglevel(struct net_device *net_dev, u32 value) { struct sis900_private *sis_priv = netdev_priv(net_dev); sis_priv->msg_enable = value; } static u32 sis900_get_link(struct net_device *net_dev) { struct sis900_private *sis_priv = netdev_priv(net_dev); return mii_link_ok(&sis_priv->mii_info); } static int sis900_get_settings(struct net_device *net_dev, struct ethtool_cmd *cmd) { struct sis900_private *sis_priv = netdev_priv(net_dev); spin_lock_irq(&sis_priv->lock); mii_ethtool_gset(&sis_priv->mii_info, cmd); spin_unlock_irq(&sis_priv->lock); return 0; } static int sis900_set_settings(struct net_device *net_dev, struct ethtool_cmd *cmd) { struct sis900_private *sis_priv = netdev_priv(net_dev); int rt; spin_lock_irq(&sis_priv->lock); rt = mii_ethtool_sset(&sis_priv->mii_info, cmd); spin_unlock_irq(&sis_priv->lock); return rt; } static int sis900_nway_reset(struct net_device *net_dev) { struct sis900_private *sis_priv = netdev_priv(net_dev); return mii_nway_restart(&sis_priv->mii_info); } /** * sis900_set_wol - Set up Wake on Lan registers * @net_dev: the net device to probe * @wol: container for info passed to the driver * * Process ethtool command "wol" to setup wake on lan features. * SiS900 supports sending WoL events if a correct packet is received, * but there is no simple way to filter them to only a subset (broadcast, * multicast, unicast or arp). */ static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol) { struct sis900_private *sis_priv = netdev_priv(net_dev); long pmctrl_addr = net_dev->base_addr + pmctrl; u32 cfgpmcsr = 0, pmctrl_bits = 0; if (wol->wolopts == 0) { pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr); cfgpmcsr &= ~PME_EN; pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr); outl(pmctrl_bits, pmctrl_addr); if (netif_msg_wol(sis_priv)) printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name); return 0; } if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_ARP)) return -EINVAL; if (wol->wolopts & WAKE_MAGIC) pmctrl_bits |= MAGICPKT; if (wol->wolopts & WAKE_PHY) pmctrl_bits |= LINKON; outl(pmctrl_bits, pmctrl_addr); pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr); cfgpmcsr |= PME_EN; pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr); if (netif_msg_wol(sis_priv)) printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name); return 0; } static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol) { long pmctrl_addr = net_dev->base_addr + pmctrl; u32 pmctrl_bits; pmctrl_bits = inl(pmctrl_addr); if (pmctrl_bits & MAGICPKT) wol->wolopts |= WAKE_MAGIC; if (pmctrl_bits & LINKON) wol->wolopts |= WAKE_PHY; wol->supported = (WAKE_PHY | WAKE_MAGIC); } static const struct ethtool_ops sis900_ethtool_ops = { .get_drvinfo = sis900_get_drvinfo, .get_msglevel = sis900_get_msglevel, .set_msglevel = sis900_set_msglevel, .get_link = sis900_get_link, .get_settings = sis900_get_settings, .set_settings = sis900_set_settings, .nway_reset = sis900_nway_reset, .get_wol = sis900_get_wol, .set_wol = sis900_set_wol }; /** * mii_ioctl - process MII i/o control command * @net_dev: the net device to command for * @rq: parameter for command * @cmd: the i/o command * * Process MII command like read/write MII register */ static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd) { struct sis900_private *sis_priv = netdev_priv(net_dev); struct mii_ioctl_data *data = if_mii(rq); switch(cmd) { case SIOCGMIIPHY: /* Get address of MII PHY in use. */ data->phy_id = sis_priv->mii->phy_addr; /* Fall Through */ case SIOCGMIIREG: /* Read MII PHY register. */ data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f); return 0; case SIOCSMIIREG: /* Write MII PHY register. */ mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in); return 0; default: return -EOPNOTSUPP; } } /** * sis900_set_config - Set media type by net_device.set_config * @dev: the net device for media type change * @map: ifmap passed by ifconfig * * Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig * we support only port changes. All other runtime configuration * changes will be ignored */ static int sis900_set_config(struct net_device *dev, struct ifmap *map) { struct sis900_private *sis_priv = netdev_priv(dev); struct mii_phy *mii_phy = sis_priv->mii; u16 status; if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) { /* we switch on the ifmap->port field. I couldn't find anything * like a definition or standard for the values of that field. * I think the meaning of those values is device specific. But * since I would like to change the media type via the ifconfig * command I use the definition from linux/netdevice.h * (which seems to be different from the ifport(pcmcia) definition) */ switch(map->port){ case IF_PORT_UNKNOWN: /* use auto here */ dev->if_port = map->port; /* we are going to change the media type, so the Link * will be temporary down and we need to reflect that * here. When the Link comes up again, it will be * sensed by the sis_timer procedure, which also does * all the rest for us */ netif_carrier_off(dev); /* read current state */ status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL); /* enable auto negotiation and reset the negotioation * (I don't really know what the auto negatiotiation * reset really means, but it sounds for me right to * do one here) */ mdio_write(dev, mii_phy->phy_addr, MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO); break; case IF_PORT_10BASET: /* 10BaseT */ dev->if_port = map->port; /* we are going to change the media type, so the Link * will be temporary down and we need to reflect that * here. When the Link comes up again, it will be * sensed by the sis_timer procedure, which also does * all the rest for us */ netif_carrier_off(dev); /* set Speed to 10Mbps */ /* read current state */ status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL); /* disable auto negotiation and force 10MBit mode*/ mdio_write(dev, mii_phy->phy_addr, MII_CONTROL, status & ~(MII_CNTL_SPEED | MII_CNTL_AUTO)); break; case IF_PORT_100BASET: /* 100BaseT */ case IF_PORT_100BASETX: /* 100BaseTx */ dev->if_port = map->port; /* we are going to change the media type, so the Link * will be temporary down and we need to reflect that * here. When the Link comes up again, it will be * sensed by the sis_timer procedure, which also does * all the rest for us */ netif_carrier_off(dev); /* set Speed to 100Mbps */ /* disable auto negotiation and enable 100MBit Mode */ status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL); mdio_write(dev, mii_phy->phy_addr, MII_CONTROL, (status & ~MII_CNTL_SPEED) | MII_CNTL_SPEED); break; case IF_PORT_10BASE2: /* 10Base2 */ case IF_PORT_AUI: /* AUI */ case IF_PORT_100BASEFX: /* 100BaseFx */ /* These Modes are not supported (are they?)*/ return -EOPNOTSUPP; break; default: return -EINVAL; } } return 0; } /** * sis900_mcast_bitnr - compute hashtable index * @addr: multicast address * @revision: revision id of chip * * SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast * hash table, which makes this function a little bit different from other drivers * SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits * multicast hash table. */ static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision) { u32 crc = ether_crc(6, addr); /* leave 8 or 7 most siginifant bits */ if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV)) return ((int)(crc >> 24)); else return ((int)(crc >> 25)); } /** * set_rx_mode - Set SiS900 receive mode * @net_dev: the net device to be set * * Set SiS900 receive mode for promiscuous, multicast, or broadcast mode. * And set the appropriate multicast filter. * Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0. */ static void set_rx_mode(struct net_device *net_dev) { long ioaddr = net_dev->base_addr; struct sis900_private *sis_priv = netdev_priv(net_dev); u16 mc_filter[16] = {0}; /* 256/128 bits multicast hash table */ int i, table_entries; u32 rx_mode; /* 635 Hash Table entries = 256(2^16) */ if((sis_priv->chipset_rev >= SIS635A_900_REV) || (sis_priv->chipset_rev == SIS900B_900_REV)) table_entries = 16; else table_entries = 8; if (net_dev->flags & IFF_PROMISC) { /* Accept any kinds of packets */ rx_mode = RFPromiscuous; for (i = 0; i < table_entries; i++) mc_filter[i] = 0xffff; } else if ((netdev_mc_count(net_dev) > multicast_filter_limit) || (net_dev->flags & IFF_ALLMULTI)) { /* too many multicast addresses or accept all multicast packet */ rx_mode = RFAAB | RFAAM; for (i = 0; i < table_entries; i++) mc_filter[i] = 0xffff; } else { /* Accept Broadcast packet, destination address matchs our * MAC address, use Receive Filter to reject unwanted MCAST * packets */ struct netdev_hw_addr *ha; rx_mode = RFAAB; netdev_for_each_mc_addr(ha, net_dev) { unsigned int bit_nr; bit_nr = sis900_mcast_bitnr(ha->addr, sis_priv->chipset_rev); mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf)); } } /* update Multicast Hash Table in Receive Filter */ for (i = 0; i < table_entries; i++) { /* why plus 0x04 ??, That makes the correct value for hash table. */ outl((u32)(0x00000004+i) << RFADDR_shift, ioaddr + rfcr); outl(mc_filter[i], ioaddr + rfdr); } outl(RFEN | rx_mode, ioaddr + rfcr); /* sis900 is capable of looping back packets at MAC level for * debugging purpose */ if (net_dev->flags & IFF_LOOPBACK) { u32 cr_saved; /* We must disable Tx/Rx before setting loopback mode */ cr_saved = inl(ioaddr + cr); outl(cr_saved | TxDIS | RxDIS, ioaddr + cr); /* enable loopback */ outl(inl(ioaddr + txcfg) | TxMLB, ioaddr + txcfg); outl(inl(ioaddr + rxcfg) | RxATX, ioaddr + rxcfg); /* restore cr */ outl(cr_saved, ioaddr + cr); } } /** * sis900_reset - Reset sis900 MAC * @net_dev: the net device to reset * * reset sis900 MAC and wait until finished * reset through command register * change backoff algorithm for 900B0 & 635 M/B */ static void sis900_reset(struct net_device *net_dev) { struct sis900_private *sis_priv = netdev_priv(net_dev); long ioaddr = net_dev->base_addr; int i = 0; u32 status = TxRCMP | RxRCMP; outl(0, ioaddr + ier); outl(0, ioaddr + imr); outl(0, ioaddr + rfcr); outl(RxRESET | TxRESET | RESET | inl(ioaddr + cr), ioaddr + cr); /* Check that the chip has finished the reset. */ while (status && (i++ < 1000)) { status ^= (inl(isr + ioaddr) & status); } if( (sis_priv->chipset_rev >= SIS635A_900_REV) || (sis_priv->chipset_rev == SIS900B_900_REV) ) outl(PESEL | RND_CNT, ioaddr + cfg); else outl(PESEL, ioaddr + cfg); } /** * sis900_remove - Remove sis900 device * @pci_dev: the pci device to be removed * * remove and release SiS900 net device */ static void __devexit sis900_remove(struct pci_dev *pci_dev) { struct net_device *net_dev = pci_get_drvdata(pci_dev); struct sis900_private *sis_priv = netdev_priv(net_dev); struct mii_phy *phy = NULL; while (sis_priv->first_mii) { phy = sis_priv->first_mii; sis_priv->first_mii = phy->next; kfree(phy); } pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring, sis_priv->rx_ring_dma); pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring, sis_priv->tx_ring_dma); unregister_netdev(net_dev); free_netdev(net_dev); pci_release_regions(pci_dev); pci_set_drvdata(pci_dev, NULL); } #ifdef CONFIG_PM static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state) { struct net_device *net_dev = pci_get_drvdata(pci_dev); long ioaddr = net_dev->base_addr; if(!netif_running(net_dev)) return 0; netif_stop_queue(net_dev); netif_device_detach(net_dev); /* Stop the chip's Tx and Rx Status Machine */ outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr); pci_set_power_state(pci_dev, PCI_D3hot); pci_save_state(pci_dev); return 0; } static int sis900_resume(struct pci_dev *pci_dev) { struct net_device *net_dev = pci_get_drvdata(pci_dev); struct sis900_private *sis_priv = netdev_priv(net_dev); long ioaddr = net_dev->base_addr; if(!netif_running(net_dev)) return 0; pci_restore_state(pci_dev); pci_set_power_state(pci_dev, PCI_D0); sis900_init_rxfilter(net_dev); sis900_init_tx_ring(net_dev); sis900_init_rx_ring(net_dev); set_rx_mode(net_dev); netif_device_attach(net_dev); netif_start_queue(net_dev); sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED); /* Enable all known interrupts by setting the interrupt mask. */ outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr); outl(RxENA | inl(ioaddr + cr), ioaddr + cr); outl(IE, ioaddr + ier); sis900_check_mode(net_dev, sis_priv->mii); return 0; } #endif /* CONFIG_PM */ static struct pci_driver sis900_pci_driver = { .name = SIS900_MODULE_NAME, .id_table = sis900_pci_tbl, .probe = sis900_probe, .remove = __devexit_p(sis900_remove), #ifdef CONFIG_PM .suspend = sis900_suspend, .resume = sis900_resume, #endif /* CONFIG_PM */ }; static int __init sis900_init_module(void) { /* when a module, this is printed whether or not devices are found in probe */ #ifdef MODULE printk(version); #endif return pci_register_driver(&sis900_pci_driver); } static void __exit sis900_cleanup_module(void) { pci_unregister_driver(&sis900_pci_driver); } module_init(sis900_init_module); module_exit(sis900_cleanup_module);