/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define K(x) ((x) << (PAGE_SHIFT-10)) /* * The normal show_free_areas() is too verbose on Tile, with dozens * of processors and often four NUMA zones each with high and lowmem. */ void show_mem(void) { struct zone *zone; pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu" " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu" " pagecache:%lu swap:%lu\n", (global_page_state(NR_ACTIVE_ANON) + global_page_state(NR_ACTIVE_FILE)), (global_page_state(NR_INACTIVE_ANON) + global_page_state(NR_INACTIVE_FILE)), global_page_state(NR_FILE_DIRTY), global_page_state(NR_WRITEBACK), global_page_state(NR_UNSTABLE_NFS), global_page_state(NR_FREE_PAGES), (global_page_state(NR_SLAB_RECLAIMABLE) + global_page_state(NR_SLAB_UNRECLAIMABLE)), global_page_state(NR_FILE_MAPPED), global_page_state(NR_PAGETABLE), global_page_state(NR_BOUNCE), global_page_state(NR_FILE_PAGES), nr_swap_pages); for_each_zone(zone) { unsigned long flags, order, total = 0, largest_order = -1; if (!populated_zone(zone)) continue; spin_lock_irqsave(&zone->lock, flags); for (order = 0; order < MAX_ORDER; order++) { int nr = zone->free_area[order].nr_free; total += nr << order; if (nr) largest_order = order; } spin_unlock_irqrestore(&zone->lock, flags); pr_err("Node %d %7s: %lukB (largest %luKb)\n", zone_to_nid(zone), zone->name, K(total), largest_order ? K(1UL) << largest_order : 0); } } /* * Associate a virtual page frame with a given physical page frame * and protection flags for that frame. */ static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; pgd = swapper_pg_dir + pgd_index(vaddr); if (pgd_none(*pgd)) { BUG(); return; } pud = pud_offset(pgd, vaddr); if (pud_none(*pud)) { BUG(); return; } pmd = pmd_offset(pud, vaddr); if (pmd_none(*pmd)) { BUG(); return; } pte = pte_offset_kernel(pmd, vaddr); /* stored as-is, to permit clearing entries */ set_pte(pte, pfn_pte(pfn, flags)); /* * It's enough to flush this one mapping. * This appears conservative since it is only called * from __set_fixmap. */ local_flush_tlb_page(NULL, vaddr, PAGE_SIZE); } void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags) { unsigned long address = __fix_to_virt(idx); if (idx >= __end_of_fixed_addresses) { BUG(); return; } set_pte_pfn(address, phys >> PAGE_SHIFT, flags); } #if defined(CONFIG_HIGHPTE) pte_t *_pte_offset_map(pmd_t *dir, unsigned long address, enum km_type type) { pte_t *pte = kmap_atomic(pmd_page(*dir), type) + (pmd_ptfn(*dir) << HV_LOG2_PAGE_TABLE_ALIGN) & ~PAGE_MASK; return &pte[pte_index(address)]; } #endif /* * List of all pgd's needed so it can invalidate entries in both cached * and uncached pgd's. This is essentially codepath-based locking * against pageattr.c; it is the unique case in which a valid change * of kernel pagetables can't be lazily synchronized by vmalloc faults. * vmalloc faults work because attached pagetables are never freed. * The locking scheme was chosen on the basis of manfred's * recommendations and having no core impact whatsoever. * -- wli */ DEFINE_SPINLOCK(pgd_lock); LIST_HEAD(pgd_list); static inline void pgd_list_add(pgd_t *pgd) { list_add(pgd_to_list(pgd), &pgd_list); } static inline void pgd_list_del(pgd_t *pgd) { list_del(pgd_to_list(pgd)); } #define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET) #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START) static void pgd_ctor(pgd_t *pgd) { unsigned long flags; memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t)); spin_lock_irqsave(&pgd_lock, flags); #ifndef __tilegx__ /* * Check that the user interrupt vector has no L2. * It never should for the swapper, and new page tables * should always start with an empty user interrupt vector. */ BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0); #endif clone_pgd_range(pgd + KERNEL_PGD_INDEX_START, swapper_pg_dir + KERNEL_PGD_INDEX_START, KERNEL_PGD_PTRS); pgd_list_add(pgd); spin_unlock_irqrestore(&pgd_lock, flags); } static void pgd_dtor(pgd_t *pgd) { unsigned long flags; /* can be called from interrupt context */ spin_lock_irqsave(&pgd_lock, flags); pgd_list_del(pgd); spin_unlock_irqrestore(&pgd_lock, flags); } pgd_t *pgd_alloc(struct mm_struct *mm) { pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL); if (pgd) pgd_ctor(pgd); return pgd; } void pgd_free(struct mm_struct *mm, pgd_t *pgd) { pgd_dtor(pgd); kmem_cache_free(pgd_cache, pgd); } #define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER) struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address) { gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO|__GFP_COMP; struct page *p; #ifdef CONFIG_HIGHPTE flags |= __GFP_HIGHMEM; #endif p = alloc_pages(flags, L2_USER_PGTABLE_ORDER); if (p == NULL) return NULL; pgtable_page_ctor(p); return p; } /* * Free page immediately (used in __pte_alloc if we raced with another * process). We have to correct whatever pte_alloc_one() did before * returning the pages to the allocator. */ void pte_free(struct mm_struct *mm, struct page *p) { pgtable_page_dtor(p); __free_pages(p, L2_USER_PGTABLE_ORDER); } void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte, unsigned long address) { int i; pgtable_page_dtor(pte); tlb->need_flush = 1; if (tlb_fast_mode(tlb)) { struct page *pte_pages[L2_USER_PGTABLE_PAGES]; for (i = 0; i < L2_USER_PGTABLE_PAGES; ++i) pte_pages[i] = pte + i; free_pages_and_swap_cache(pte_pages, L2_USER_PGTABLE_PAGES); return; } for (i = 0; i < L2_USER_PGTABLE_PAGES; ++i) { tlb->pages[tlb->nr++] = pte + i; if (tlb->nr >= FREE_PTE_NR) tlb_flush_mmu(tlb, 0, 0); } } #ifndef __tilegx__ int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { #if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16 # error Code assumes HV_PTE "accessed" bit in second byte #endif u8 *tmp = (u8 *)ptep; u8 second_byte = tmp[1]; if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8)))) return 0; tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8)); return 1; } /* * This implementation is atomic vs hypervisor writes, since the hypervisor * always writes the low word (where "accessed" and "dirty" are) and this * routine only writes the high word. */ void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { #if HV_PTE_INDEX_WRITABLE < 32 # error Code assumes HV_PTE "writable" bit in high word #endif u32 *tmp = (u32 *)ptep; tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32)); } #endif pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; if (pgd_addr_invalid(addr)) return NULL; pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr); pud = pud_offset(pgd, addr); if (!pud_present(*pud)) return NULL; pmd = pmd_offset(pud, addr); if (pmd_huge_page(*pmd)) return (pte_t *)pmd; if (!pmd_present(*pmd)) return NULL; return pte_offset_kernel(pmd, addr); } pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu) { unsigned int width = smp_width; int x = cpu % width; int y = cpu / width; BUG_ON(y >= smp_height); BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3); BUG_ON(cpu < 0 || cpu >= NR_CPUS); BUG_ON(!cpu_is_valid_lotar(cpu)); return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y)); } int get_remote_cache_cpu(pgprot_t prot) { HV_LOTAR lotar = hv_pte_get_lotar(prot); int x = HV_LOTAR_X(lotar); int y = HV_LOTAR_Y(lotar); BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3); return x + y * smp_width; } void set_pte_order(pte_t *ptep, pte_t pte, int order) { unsigned long pfn = pte_pfn(pte); struct page *page = pfn_to_page(pfn); /* Update the home of a PTE if necessary */ pte = pte_set_home(pte, page_home(page)); #ifdef __tilegx__ *ptep = pte; #else /* * When setting a PTE, write the high bits first, then write * the low bits. This sets the "present" bit only after the * other bits are in place. If a particular PTE update * involves transitioning from one valid PTE to another, it * may be necessary to call set_pte_order() more than once, * transitioning via a suitable intermediate state. * Note that this sequence also means that if we are transitioning * from any migrating PTE to a non-migrating one, we will not * see a half-updated PTE with the migrating bit off. */ #if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32 # error Must write the present and migrating bits last #endif ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32); barrier(); ((u32 *)ptep)[0] = (u32)(pte_val(pte)); #endif } /* Can this mm load a PTE with cached_priority set? */ static inline int mm_is_priority_cached(struct mm_struct *mm) { return mm->context.priority_cached; } /* * Add a priority mapping to an mm_context and * notify the hypervisor if this is the first one. */ void start_mm_caching(struct mm_struct *mm) { if (!mm_is_priority_cached(mm)) { mm->context.priority_cached = -1U; hv_set_caching(-1U); } } /* * Validate and return the priority_cached flag. We know if it's zero * that we don't need to scan, since we immediately set it non-zero * when we first consider a MAP_CACHE_PRIORITY mapping. * * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it, * since we're in an interrupt context (servicing switch_mm) we don't * worry about it and don't unset the "priority_cached" field. * Presumably we'll come back later and have more luck and clear * the value then; for now we'll just keep the cache marked for priority. */ static unsigned int update_priority_cached(struct mm_struct *mm) { if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) { struct vm_area_struct *vm; for (vm = mm->mmap; vm; vm = vm->vm_next) { if (hv_pte_get_cached_priority(vm->vm_page_prot)) break; } if (vm == NULL) mm->context.priority_cached = 0; up_write(&mm->mmap_sem); } return mm->context.priority_cached; } /* Set caching correctly for an mm that we are switching to. */ void check_mm_caching(struct mm_struct *prev, struct mm_struct *next) { if (!mm_is_priority_cached(next)) { /* * If the new mm doesn't use priority caching, just see if we * need the hv_set_caching(), or can assume it's already zero. */ if (mm_is_priority_cached(prev)) hv_set_caching(0); } else { hv_set_caching(update_priority_cached(next)); } } #if CHIP_HAS_MMIO() /* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */ void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, pgprot_t home) { void *addr; struct vm_struct *area; unsigned long offset, last_addr; pgprot_t pgprot; /* Don't allow wraparound or zero size */ last_addr = phys_addr + size - 1; if (!size || last_addr < phys_addr) return NULL; /* Create a read/write, MMIO VA mapping homed at the requested shim. */ pgprot = PAGE_KERNEL; pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO); pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home)); /* * Mappings have to be page-aligned */ offset = phys_addr & ~PAGE_MASK; phys_addr &= PAGE_MASK; size = PAGE_ALIGN(last_addr+1) - phys_addr; /* * Ok, go for it.. */ area = get_vm_area(size, VM_IOREMAP /* | other flags? */); if (!area) return NULL; area->phys_addr = phys_addr; addr = area->addr; if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size, phys_addr, pgprot)) { remove_vm_area((void *)(PAGE_MASK & (unsigned long) addr)); return NULL; } return (__force void __iomem *) (offset + (char *)addr); } EXPORT_SYMBOL(ioremap_prot); /* Map a PCI MMIO bus address into VA space. */ void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) { panic("ioremap for PCI MMIO is not supported"); } EXPORT_SYMBOL(ioremap); /* Unmap an MMIO VA mapping. */ void iounmap(volatile void __iomem *addr_in) { volatile void __iomem *addr = (volatile void __iomem *) (PAGE_MASK & (unsigned long __force)addr_in); vunmap((void * __force)addr); } EXPORT_SYMBOL(iounmap); #endif /* CHIP_HAS_MMIO() */