/***************************************************************************** ** Name: extended.c ** Purpose: IEEE Extended<->Double routines to save floats to file ** Maintainer: Ryan Norton ** Modified by: ** Created: 11/24/04 ** RCS-ID: $Id: extended.c 36952 2006-01-18 10:25:04Z JS $ *****************************************************************************/ #if defined(_WIN32_WCE) /* eVC cause warnings in its own headers: stdlib.h and winnt.h */ #pragma warning (disable:4115) #pragma warning (disable:4214) #endif #include #include #include #include #include #include "wx/defs.h" #if defined(_WIN32_WCE) #pragma warning (default:4115) #pragma warning (default:4214) #endif #if wxUSE_APPLE_IEEE #include "wx/math.h" /* Copyright (C) 1989-1991 Ken Turkowski. * * All rights reserved. * * Warranty Information * Even though I have reviewed this software, I make no warranty * or representation, either express or implied, with respect to this * software, its quality, accuracy, merchantability, or fitness for a * particular purpose. As a result, this software is provided "as is," * and you, its user, are assuming the entire risk as to its quality * and accuracy. * * This code may be used and freely distributed as long as it includes * this copyright notice and the above warranty information. * * Machine-independent I/O routines for IEEE floating-point numbers. * * NaN's and infinities are converted to HUGE_VAL or HUGE, which * happens to be infinity on IEEE machines. Unfortunately, it is * impossible to preserve NaN's in a machine-independent way. * Infinities are, however, preserved on IEEE machines. * * These routines have been tested on the following machines: * Apple Macintosh, MPW 3.1 C compiler * Apple Macintosh, THINK C compiler * Silicon Graphics IRIS, MIPS compiler * Cray X/MP and Y/MP * Digital Equipment VAX * Sequent Balance (Multiprocesor 386) * NeXT * * * Implemented by Malcolm Slaney and Ken Turkowski. * * Malcolm Slaney contributions during 1988-1990 include big- and little- * endian file I/O, conversion to and from Motorola's extended 80-bit * floating-point format, and conversions to and from IEEE single- * precision floating-point format. * * In 1991, Ken Turkowski implemented the conversions to and from * IEEE double-precision format, added more precision to the extended * conversions, and accommodated conversions involving +/- infinity, * NaN's, and denormalized numbers. */ #ifndef HUGE_VAL # define HUGE_VAL HUGE #endif /*HUGE_VAL*/ /**************************************************************** * The following two routines make up for deficiencies in many * compilers to convert properly between unsigned integers and * floating-point. Some compilers which have this bug are the * THINK_C compiler for the Macintosh and the C compiler for the * Silicon Graphics MIPS-based Iris. ****************************************************************/ #ifdef applec /* The Apple C compiler works */ # define FloatToUnsigned(f) ((wxUint32)(f)) # define UnsignedToFloat(u) ((wxFloat64)(u)) #else /*applec*/ # define FloatToUnsigned(f) ((wxUint32)(((wxInt32)((f) - 2147483648.0)) + 2147483647L) + 1) # define UnsignedToFloat(u) (((wxFloat64)((wxInt32)((u) - 2147483647L - 1))) + 2147483648.0) #endif /*applec*/ /**************************************************************** * Extended precision IEEE floating-point conversion routines. * Extended is an 80-bit number as defined by Motorola, * with a sign bit, 15 bits of exponent (offset 16383?), * and a 64-bit mantissa, with no hidden bit. ****************************************************************/ wxFloat64 ConvertFromIeeeExtended(const wxInt8 *bytes) { wxFloat64 f; wxInt32 expon; wxUint32 hiMant, loMant; expon = ((bytes[0] & 0x7F) << 8) | (bytes[1] & 0xFF); hiMant = ((wxUint32)(bytes[2] & 0xFF) << 24) | ((wxUint32)(bytes[3] & 0xFF) << 16) | ((wxUint32)(bytes[4] & 0xFF) << 8) | ((wxUint32)(bytes[5] & 0xFF)); loMant = ((wxUint32)(bytes[6] & 0xFF) << 24) | ((wxUint32)(bytes[7] & 0xFF) << 16) | ((wxUint32)(bytes[8] & 0xFF) << 8) | ((wxUint32)(bytes[9] & 0xFF)); if (expon == 0 && hiMant == 0 && loMant == 0) { f = 0; } else { if (expon == 0x7FFF) { /* Infinity or NaN */ f = HUGE_VAL; } else { expon -= 16383; f = ldexp(UnsignedToFloat(hiMant), expon-=31); f += ldexp(UnsignedToFloat(loMant), expon-=32); } } if (bytes[0] & 0x80) return -f; else return f; } /****************************************************************/ void ConvertToIeeeExtended(wxFloat64 num, wxInt8 *bytes) { wxInt32 sign; wxInt32 expon; wxFloat64 fMant, fsMant; wxUint32 hiMant, loMant; if (num < 0) { sign = 0x8000; num *= -1; } else { sign = 0; } if (num == 0) { expon = 0; hiMant = 0; loMant = 0; } else { fMant = frexp(num, &expon); if ((expon > 16384) || !(fMant < 1)) { /* Infinity or NaN */ expon = sign|0x7FFF; hiMant = 0; loMant = 0; /* infinity */ } else { /* Finite */ expon += 16382; if (expon < 0) { /* denormalized */ fMant = ldexp(fMant, expon); expon = 0; } expon |= sign; fMant = ldexp(fMant, 32); fsMant = floor(fMant); hiMant = FloatToUnsigned(fsMant); fMant = ldexp(fMant - fsMant, 32); fsMant = floor(fMant); loMant = FloatToUnsigned(fsMant); } } bytes[0] = expon >> 8; bytes[1] = expon; bytes[2] = hiMant >> 24; bytes[3] = hiMant >> 16; bytes[4] = hiMant >> 8; bytes[5] = hiMant; bytes[6] = loMant >> 24; bytes[7] = loMant >> 16; bytes[8] = loMant >> 8; bytes[9] = loMant; } #endif /* wxUSE_APPLE_IEEE */