// Copyright 2018 Ulf Adams // // The contents of this file may be used under the terms of the Apache License, // Version 2.0. // // (See accompanying file LICENSE-Apache or copy at // http://www.apache.org/licenses/LICENSE-2.0) // // Alternatively, the contents of this file may be used under the terms of // the Boost Software License, Version 1.0. // (See accompanying file LICENSE-Boost or copy at // https://www.boost.org/LICENSE_1_0.txt) // // Unless required by applicable law or agreed to in writing, this software // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. #ifndef RYU_F2S_INTRINSICS_H #define RYU_F2S_INTRINSICS_H // Defines RYU_32_BIT_PLATFORM if applicable. #if defined(RYU_FLOAT_FULL_TABLE) #else #if defined(RYU_OPTIMIZE_SIZE) #else #endif #define FLOAT_POW5_INV_BITCOUNT (DOUBLE_POW5_INV_BITCOUNT - 64) #define FLOAT_POW5_BITCOUNT (DOUBLE_POW5_BITCOUNT - 64) #endif static inline uint32_t pow5factor_32(uint32_t value) { uint32_t count = 0; for (;;) { assert(value != 0); const uint32_t q = value / 5; const uint32_t r = value % 5; if (r != 0) { break; } value = q; ++count; } return count; } // Returns true if value is divisible by 5^p. static inline bool multipleOfPowerOf5_32(const uint32_t value, const uint32_t p) { return pow5factor_32(value) >= p; } // Returns true if value is divisible by 2^p. static inline bool multipleOfPowerOf2_32(const uint32_t value, const uint32_t p) { // __builtin_ctz doesn't appear to be faster here. return (value & ((1u << p) - 1)) == 0; } // It seems to be slightly faster to avoid uint128_t here, although the // generated code for uint128_t looks slightly nicer. static inline uint32_t mulShift32(const uint32_t m, const uint64_t factor, const int32_t shift) { assert(shift > 32); // The casts here help MSVC to avoid calls to the __allmul library // function. const uint32_t factorLo = (uint32_t)(factor); const uint32_t factorHi = (uint32_t)(factor >> 32); const uint64_t bits0 = (uint64_t)m * factorLo; const uint64_t bits1 = (uint64_t)m * factorHi; #if defined(RYU_32_BIT_PLATFORM) // On 32-bit platforms we can avoid a 64-bit shift-right since we only // need the upper 32 bits of the result and the shift value is > 32. const uint32_t bits0Hi = (uint32_t)(bits0 >> 32); uint32_t bits1Lo = (uint32_t)(bits1); uint32_t bits1Hi = (uint32_t)(bits1 >> 32); bits1Lo += bits0Hi; bits1Hi += (bits1Lo < bits0Hi); if (shift >= 64) { // s2f can call this with a shift value >= 64, which we have to handle. // This could now be slower than the !defined(RYU_32_BIT_PLATFORM) case. return (uint32_t)(bits1Hi >> (shift - 64)); } else { const int32_t s = shift - 32; return (bits1Hi << (32 - s)) | (bits1Lo >> s); } #else // RYU_32_BIT_PLATFORM const uint64_t sum = (bits0 >> 32) + bits1; const uint64_t shiftedSum = sum >> (shift - 32); assert(shiftedSum <= UINT32_MAX); return (uint32_t) shiftedSum; #endif // RYU_32_BIT_PLATFORM } static inline uint32_t mulPow5InvDivPow2(const uint32_t m, const uint32_t q, const int32_t j) { #if defined(RYU_FLOAT_FULL_TABLE) return mulShift32(m, FLOAT_POW5_INV_SPLIT[q], j); #elif defined(RYU_OPTIMIZE_SIZE) // The inverse multipliers are defined as [2^x / 5^y] + 1; the upper 64 bits from the double lookup // table are the correct bits for [2^x / 5^y], so we have to add 1 here. Note that we rely on the // fact that the added 1 that's already stored in the table never overflows into the upper 64 bits. uint64_t pow5[2]; double_computeInvPow5(q, pow5); return mulShift32(m, pow5[1] + 1, j); #else return mulShift32(m, DOUBLE_POW5_INV_SPLIT[q][1] + 1, j); #endif } static inline uint32_t mulPow5divPow2(const uint32_t m, const uint32_t i, const int32_t j) { #if defined(RYU_FLOAT_FULL_TABLE) return mulShift32(m, FLOAT_POW5_SPLIT[i], j); #elif defined(RYU_OPTIMIZE_SIZE) uint64_t pow5[2]; double_computePow5(i, pow5); return mulShift32(m, pow5[1], j); #else return mulShift32(m, DOUBLE_POW5_SPLIT[i][1], j); #endif } #endif // RYU_F2S_INTRINSICS_H