// Copyright 2018 Ulf Adams // // The contents of this file may be used under the terms of the Apache License, // Version 2.0. // // (See accompanying file LICENSE-Apache or copy at // http://www.apache.org/licenses/LICENSE-2.0) // // Alternatively, the contents of this file may be used under the terms of // the Boost Software License, Version 1.0. // (See accompanying file LICENSE-Boost or copy at // https://www.boost.org/LICENSE_1_0.txt) // // Unless required by applicable law or agreed to in writing, this software // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. // Runtime compiler options: // -DRYU_DEBUG Generate verbose debugging output to stdout. #ifdef RYU_DEBUG #endif #define FLOAT_MANTISSA_BITS 23 #define FLOAT_EXPONENT_BITS 8 #define FLOAT_BIAS 127 // A floating decimal representing m * 10^e. typedef struct floating_decimal_32 { uint32_t mantissa; // Decimal exponent's range is -45 to 38 // inclusive, and can fit in a short if needed. int32_t exponent; bool sign; } floating_decimal_32; static inline floating_decimal_32 f2d(const uint32_t ieeeMantissa, const uint32_t ieeeExponent, const bool ieeeSign) { int32_t e2; uint32_t m2; if (ieeeExponent == 0) { // We subtract 2 so that the bounds computation has 2 additional bits. e2 = 1 - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2; m2 = ieeeMantissa; } else { e2 = (int32_t) ieeeExponent - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2; m2 = (1u << FLOAT_MANTISSA_BITS) | ieeeMantissa; } const bool even = (m2 & 1) == 0; const bool acceptBounds = even; #ifdef RYU_DEBUG printf("-> %u * 2^%d\n", m2, e2 + 2); #endif // Step 2: Determine the interval of valid decimal representations. const uint32_t mv = 4 * m2; const uint32_t mp = 4 * m2 + 2; // Implicit bool -> int conversion. True is 1, false is 0. const uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1; const uint32_t mm = 4 * m2 - 1 - mmShift; // Step 3: Convert to a decimal power base using 64-bit arithmetic. uint32_t vr, vp, vm; int32_t e10; bool vmIsTrailingZeros = false; bool vrIsTrailingZeros = false; uint8_t lastRemovedDigit = 0; if (e2 >= 0) { const uint32_t q = log10Pow2(e2); e10 = (int32_t) q; const int32_t k = FLOAT_POW5_INV_BITCOUNT + pow5bits((int32_t) q) - 1; const int32_t i = -e2 + (int32_t) q + k; vr = mulPow5InvDivPow2(mv, q, i); vp = mulPow5InvDivPow2(mp, q, i); vm = mulPow5InvDivPow2(mm, q, i); #ifdef RYU_DEBUG printf("%u * 2^%d / 10^%u\n", mv, e2, q); printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm); #endif if (q != 0 && (vp - 1) / 10 <= vm / 10) { // We need to know one removed digit even if we are not going to loop below. We could use // q = X - 1 above, except that would require 33 bits for the result, and we've found that // 32-bit arithmetic is faster even on 64-bit machines. const int32_t l = FLOAT_POW5_INV_BITCOUNT + pow5bits((int32_t) (q - 1)) - 1; lastRemovedDigit = (uint8_t) (mulPow5InvDivPow2(mv, q - 1, -e2 + (int32_t) q - 1 + l) % 10); } if (q <= 9) { // The largest power of 5 that fits in 24 bits is 5^10, but q <= 9 seems to be safe as well. // Only one of mp, mv, and mm can be a multiple of 5, if any. if (mv % 5 == 0) { vrIsTrailingZeros = multipleOfPowerOf5_32(mv, q); } else if (acceptBounds) { vmIsTrailingZeros = multipleOfPowerOf5_32(mm, q); } else { vp -= multipleOfPowerOf5_32(mp, q); } } } else { const uint32_t q = log10Pow5(-e2); e10 = (int32_t) q + e2; const int32_t i = -e2 - (int32_t) q; const int32_t k = pow5bits(i) - FLOAT_POW5_BITCOUNT; int32_t j = (int32_t) q - k; vr = mulPow5divPow2(mv, (uint32_t) i, j); vp = mulPow5divPow2(mp, (uint32_t) i, j); vm = mulPow5divPow2(mm, (uint32_t) i, j); #ifdef RYU_DEBUG printf("%u * 5^%d / 10^%u\n", mv, -e2, q); printf("%u %d %d %d\n", q, i, k, j); printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm); #endif if (q != 0 && (vp - 1) / 10 <= vm / 10) { j = (int32_t) q - 1 - (pow5bits(i + 1) - FLOAT_POW5_BITCOUNT); lastRemovedDigit = (uint8_t) (mulPow5divPow2(mv, (uint32_t) (i + 1), j) % 10); } if (q <= 1) { // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits. // mv = 4 * m2, so it always has at least two trailing 0 bits. vrIsTrailingZeros = true; if (acceptBounds) { // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1. vmIsTrailingZeros = mmShift == 1; } else { // mp = mv + 2, so it always has at least one trailing 0 bit. --vp; } } else if (q < 31) { // TODO(ulfjack): Use a tighter bound here. vrIsTrailingZeros = multipleOfPowerOf2_32(mv, q - 1); #ifdef RYU_DEBUG printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); #endif } } #ifdef RYU_DEBUG printf("e10=%d\n", e10); printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm); printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false"); printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); #endif // Step 4: Find the shortest decimal representation in the interval of valid representations. int32_t removed = 0; uint32_t output; if (vmIsTrailingZeros || vrIsTrailingZeros) { // General case, which happens rarely (~4.0%). while (vp / 10 > vm / 10) { #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=23106 // The compiler does not realize that vm % 10 can be computed from vm / 10 // as vm - (vm / 10) * 10. vmIsTrailingZeros &= vm - (vm / 10) * 10 == 0; #else vmIsTrailingZeros &= vm % 10 == 0; #endif vrIsTrailingZeros &= lastRemovedDigit == 0; lastRemovedDigit = (uint8_t) (vr % 10); vr /= 10; vp /= 10; vm /= 10; ++removed; } #ifdef RYU_DEBUG printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm); printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false"); #endif if (vmIsTrailingZeros) { while (vm % 10 == 0) { vrIsTrailingZeros &= lastRemovedDigit == 0; lastRemovedDigit = (uint8_t) (vr % 10); vr /= 10; vp /= 10; vm /= 10; ++removed; } } #ifdef RYU_DEBUG printf("%u %d\n", vr, lastRemovedDigit); printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); #endif if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) { // Round even if the exact number is .....50..0. lastRemovedDigit = 4; } // We need to take vr + 1 if vr is outside bounds or we need to round up. output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5); } else { // Specialized for the common case (~96.0%). Percentages below are relative to this. // Loop iterations below (approximately): // 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01% while (vp / 10 > vm / 10) { lastRemovedDigit = (uint8_t) (vr % 10); vr /= 10; vp /= 10; vm /= 10; ++removed; } #ifdef RYU_DEBUG printf("%u %d\n", vr, lastRemovedDigit); printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); #endif // We need to take vr + 1 if vr is outside bounds or we need to round up. output = vr + (vr == vm || lastRemovedDigit >= 5); } const int32_t exp = e10 + removed; #ifdef RYU_DEBUG printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm); printf("O=%u\n", output); printf("EXP=%d\n", exp); #endif floating_decimal_32 fd; fd.exponent = exp; fd.mantissa = output; fd.sign = ieeeSign; return fd; } static inline int to_chars(const floating_decimal_32 v, char* const result) { // Step 5: Print the decimal representation. int index = 0; if (v.sign) { result[index++] = '-'; } uint32_t output = v.mantissa; const uint32_t olength = decimalLength9(output); #ifdef RYU_DEBUG printf("DIGITS=%u\n", v.mantissa); printf("OLEN=%u\n", olength); printf("EXP=%u\n", v.exponent + olength); #endif // Print the decimal digits. // The following code is equivalent to: // for (uint32_t i = 0; i < olength - 1; ++i) { // const uint32_t c = output % 10; output /= 10; // result[index + olength - i] = (char) ('0' + c); // } // result[index] = '0' + output % 10; uint32_t i = 0; while (output >= 10000) { #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217 const uint32_t c = output - 10000 * (output / 10000); #else const uint32_t c = output % 10000; #endif output /= 10000; const uint32_t c0 = (c % 100) << 1; const uint32_t c1 = (c / 100) << 1; memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2); memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2); i += 4; } if (output >= 100) { const uint32_t c = (output % 100) << 1; output /= 100; memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2); i += 2; } if (output >= 10) { const uint32_t c = output << 1; // We can't use memcpy here: the decimal dot goes between these two digits. result[index + olength - i] = DIGIT_TABLE[c + 1]; result[index] = DIGIT_TABLE[c]; } else { result[index] = (char) ('0' + output); } // Print decimal point if needed. if (olength > 1) { result[index + 1] = '.'; index += olength + 1; } else { ++index; } // Print the exponent. result[index++] = 'e'; int32_t exp = v.exponent + (int32_t) olength - 1; if (exp < 0) { result[index++] = '-'; exp = -exp; } else { result[index++] = '+'; } memcpy(result + index, DIGIT_TABLE + 2 * exp, 2); index += 2; return index; } floating_decimal_32 floating_to_fd32(float f) { // Step 1: Decode the floating-point number, and unify normalized and subnormal cases. const uint32_t bits = float_to_bits(f); #ifdef RYU_DEBUG printf("IN="); for (int32_t bit = 31; bit >= 0; --bit) { printf("%u", (bits >> bit) & 1); } printf("\n"); #endif // Decode bits into sign, mantissa, and exponent. const bool ieeeSign = ((bits >> (FLOAT_MANTISSA_BITS + FLOAT_EXPONENT_BITS)) & 1) != 0; const uint32_t ieeeMantissa = bits & ((1u << FLOAT_MANTISSA_BITS) - 1); const uint32_t ieeeExponent = (bits >> FLOAT_MANTISSA_BITS) & ((1u << FLOAT_EXPONENT_BITS) - 1); // Case distinction; exit early for the easy cases. if (ieeeExponent == ((1u << FLOAT_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) { __builtin_abort(); } const floating_decimal_32 v = f2d(ieeeMantissa, ieeeExponent, ieeeSign); return v; }