/* $NetBSD$ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /*- * Copyright (c) 1997, 1998, 2005, 2006 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation * Facility, NASA Ames Research Center. * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum. * This code is derived from software contributed to The NetBSD Foundation * by Rui Paulo. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1988, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)tcp_usrreq.c 8.5 (Berkeley) 6/21/95 */ #include __KERNEL_RCSID(0, "$NetBSD$"); #include "opt_inet.h" #include "opt_ipsec.h" #include "opt_tcp_debug.h" #include "opt_mbuftrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #ifndef INET #include #endif #include #include #include #include #endif #include #include #include #include #include #include #include #include #include #include #include "opt_tcp_space.h" #ifdef KAME_IPSEC #include #endif /*KAME_IPSEC*/ /* * TCP protocol interface to socket abstraction. */ /* * Process a TCP user request for TCP tb. If this is a send request * then m is the mbuf chain of send data. If this is a timer expiration * (called from the software clock routine), then timertype tells which timer. */ /*ARGSUSED*/ int tcp_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam, struct mbuf *control, struct lwp *l) { struct inpcb *inp; #ifdef INET6 struct in6pcb *in6p; #endif struct tcpcb *tp = NULL; int s; int error = 0; #ifdef TCP_DEBUG int ostate = 0; #endif int family; /* family of the socket */ family = so->so_proto->pr_domain->dom_family; if (req == PRU_CONTROL) { switch (family) { #ifdef INET case PF_INET: return (in_control(so, (long)m, (void *)nam, (struct ifnet *)control, l)); #endif #ifdef INET6 case PF_INET6: return (in6_control(so, (long)m, (void *)nam, (struct ifnet *)control, l)); #endif default: return EAFNOSUPPORT; } } s = splsoftnet(); if (req == PRU_PURGEIF) { mutex_enter(softnet_lock); switch (family) { #ifdef INET case PF_INET: in_pcbpurgeif0(&tcbtable, (struct ifnet *)control); in_purgeif((struct ifnet *)control); in_pcbpurgeif(&tcbtable, (struct ifnet *)control); break; #endif #ifdef INET6 case PF_INET6: in6_pcbpurgeif0(&tcbtable, (struct ifnet *)control); in6_purgeif((struct ifnet *)control); in6_pcbpurgeif(&tcbtable, (struct ifnet *)control); break; #endif default: mutex_exit(softnet_lock); splx(s); return (EAFNOSUPPORT); } mutex_exit(softnet_lock); splx(s); return (0); } if (req == PRU_ATTACH) sosetlock(so); switch (family) { #ifdef INET case PF_INET: inp = sotoinpcb(so); #ifdef INET6 in6p = NULL; #endif break; #endif #ifdef INET6 case PF_INET6: inp = NULL; in6p = sotoin6pcb(so); break; #endif default: splx(s); return EAFNOSUPPORT; } #ifdef DIAGNOSTIC #ifdef INET6 if (inp && in6p) panic("tcp_usrreq: both inp and in6p set to non-NULL"); #endif if (req != PRU_SEND && req != PRU_SENDOOB && control) panic("tcp_usrreq: unexpected control mbuf"); #endif /* * When a TCP is attached to a socket, then there will be * a (struct inpcb) pointed at by the socket, and this * structure will point at a subsidary (struct tcpcb). */ if ((inp == 0 #ifdef INET6 && in6p == 0 #endif ) && (req != PRU_ATTACH && req != PRU_SENSE)) { error = EINVAL; goto release; } #ifdef INET if (inp) { tp = intotcpcb(inp); /* WHAT IF TP IS 0? */ #ifdef KPROF tcp_acounts[tp->t_state][req]++; #endif #ifdef TCP_DEBUG ostate = tp->t_state; #endif } #endif #ifdef INET6 if (in6p) { tp = in6totcpcb(in6p); /* WHAT IF TP IS 0? */ #ifdef KPROF tcp_acounts[tp->t_state][req]++; #endif #ifdef TCP_DEBUG ostate = tp->t_state; #endif } #endif switch (req) { /* * TCP attaches to socket via PRU_ATTACH, reserving space, * and an internet control block. */ case PRU_ATTACH: #ifndef INET6 if (inp != 0) #else if (inp != 0 || in6p != 0) #endif { error = EISCONN; break; } error = tcp_attach(so); if (error) break; if ((so->so_options & SO_LINGER) && so->so_linger == 0) so->so_linger = TCP_LINGERTIME; tp = sototcpcb(so); break; /* * PRU_DETACH detaches the TCP protocol from the socket. */ case PRU_DETACH: tp = tcp_disconnect(tp); break; /* * Give the socket an address. */ case PRU_BIND: switch (family) { #ifdef INET case PF_INET: error = in_pcbbind(inp, nam, l); break; #endif #ifdef INET6 case PF_INET6: error = in6_pcbbind(in6p, nam, l); if (!error) { /* mapped addr case */ if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)) tp->t_family = AF_INET; else tp->t_family = AF_INET6; } break; #endif } break; /* * Prepare to accept connections. */ case PRU_LISTEN: #ifdef INET if (inp && inp->inp_lport == 0) { error = in_pcbbind(inp, NULL, l); if (error) break; } #endif #ifdef INET6 if (in6p && in6p->in6p_lport == 0) { error = in6_pcbbind(in6p, NULL, l); if (error) break; } #endif tp->t_state = TCPS_LISTEN; break; /* * Initiate connection to peer. * Create a template for use in transmissions on this connection. * Enter SYN_SENT state, and mark socket as connecting. * Start keep-alive timer, and seed output sequence space. * Send initial segment on connection. */ case PRU_CONNECT: #ifdef INET if (inp) { if (inp->inp_lport == 0) { error = in_pcbbind(inp, NULL, l); if (error) break; } error = in_pcbconnect(inp, nam, l); } #endif #ifdef INET6 if (in6p) { if (in6p->in6p_lport == 0) { error = in6_pcbbind(in6p, NULL, l); if (error) break; } error = in6_pcbconnect(in6p, nam, l); if (!error) { /* mapped addr case */ if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr)) tp->t_family = AF_INET; else tp->t_family = AF_INET6; } } #endif if (error) break; tp->t_template = tcp_template(tp); if (tp->t_template == 0) { #ifdef INET if (inp) in_pcbdisconnect(inp); #endif #ifdef INET6 if (in6p) in6_pcbdisconnect(in6p); #endif error = ENOBUFS; break; } /* * Compute window scaling to request. * XXX: This should be moved to tcp_output(). */ while (tp->request_r_scale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << tp->request_r_scale) < sb_max) tp->request_r_scale++; soisconnecting(so); TCP_STATINC(TCP_STAT_CONNATTEMPT); tp->t_state = TCPS_SYN_SENT; TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit); tp->iss = tcp_new_iss(tp, 0); tcp_sendseqinit(tp); error = tcp_output(tp); break; /* * Create a TCP connection between two sockets. */ case PRU_CONNECT2: error = EOPNOTSUPP; break; /* * Initiate disconnect from peer. * If connection never passed embryonic stage, just drop; * else if don't need to let data drain, then can just drop anyways, * else have to begin TCP shutdown process: mark socket disconnecting, * drain unread data, state switch to reflect user close, and * send segment (e.g. FIN) to peer. Socket will be really disconnected * when peer sends FIN and acks ours. * * SHOULD IMPLEMENT LATER PRU_CONNECT VIA REALLOC TCPCB. */ case PRU_DISCONNECT: tp = tcp_disconnect(tp); break; /* * Accept a connection. Essentially all the work is * done at higher levels; just return the address * of the peer, storing through addr. */ case PRU_ACCEPT: #ifdef INET if (inp) in_setpeeraddr(inp, nam); #endif #ifdef INET6 if (in6p) in6_setpeeraddr(in6p, nam); #endif break; /* * Mark the connection as being incapable of further output. */ case PRU_SHUTDOWN: socantsendmore(so); tp = tcp_usrclosed(tp); if (tp) error = tcp_output(tp); break; /* * After a receive, possibly send window update to peer. */ case PRU_RCVD: /* * soreceive() calls this function when a user receives * ancillary data on a listening socket. We don't call * tcp_output in such a case, since there is no header * template for a listening socket and hence the kernel * will panic. */ if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) != 0) (void) tcp_output(tp); break; /* * Do a send by putting data in output queue and updating urgent * marker if URG set. Possibly send more data. */ case PRU_SEND: if (control && control->m_len) { m_freem(control); m_freem(m); error = EINVAL; break; } sbappendstream(&so->so_snd, m); error = tcp_output(tp); break; /* * Abort the TCP. */ case PRU_ABORT: tp = tcp_drop(tp, ECONNABORTED); break; case PRU_SENSE: /* * stat: don't bother with a blocksize. */ splx(s); return (0); case PRU_RCVOOB: if (control && control->m_len) { m_freem(control); m_freem(m); error = EINVAL; break; } if ((so->so_oobmark == 0 && (so->so_state & SS_RCVATMARK) == 0) || so->so_options & SO_OOBINLINE || tp->t_oobflags & TCPOOB_HADDATA) { error = EINVAL; break; } if ((tp->t_oobflags & TCPOOB_HAVEDATA) == 0) { error = EWOULDBLOCK; break; } m->m_len = 1; *mtod(m, char *) = tp->t_iobc; if (((long)nam & MSG_PEEK) == 0) tp->t_oobflags ^= (TCPOOB_HAVEDATA | TCPOOB_HADDATA); break; case PRU_SENDOOB: if (sbspace(&so->so_snd) < -512) { m_freem(m); error = ENOBUFS; break; } /* * According to RFC961 (Assigned Protocols), * the urgent pointer points to the last octet * of urgent data. We continue, however, * to consider it to indicate the first octet * of data past the urgent section. * Otherwise, snd_up should be one lower. */ sbappendstream(&so->so_snd, m); tp->snd_up = tp->snd_una + so->so_snd.sb_cc; tp->t_force = 1; error = tcp_output(tp); tp->t_force = 0; break; case PRU_SOCKADDR: #ifdef INET if (inp) in_setsockaddr(inp, nam); #endif #ifdef INET6 if (in6p) in6_setsockaddr(in6p, nam); #endif break; case PRU_PEERADDR: #ifdef INET if (inp) in_setpeeraddr(inp, nam); #endif #ifdef INET6 if (in6p) in6_setpeeraddr(in6p, nam); #endif break; default: panic("tcp_usrreq"); } #ifdef TCP_DEBUG if (tp && (so->so_options & SO_DEBUG)) tcp_trace(TA_USER, ostate, tp, NULL, req); #endif release: splx(s); return (error); } static void change_keepalive(struct socket *so, struct tcpcb *tp) { tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl; TCP_TIMER_DISARM(tp, TCPT_KEEP); TCP_TIMER_DISARM(tp, TCPT_2MSL); if (tp->t_state == TCPS_SYN_RECEIVED || tp->t_state == TCPS_SYN_SENT) { TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit); } else if (so->so_options & SO_KEEPALIVE && tp->t_state <= TCPS_CLOSE_WAIT) { TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepintvl); } else { TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle); } if ((tp->t_state == TCPS_FIN_WAIT_2) && (tp->t_maxidle > 0)) TCP_TIMER_ARM(tp, TCPT_2MSL, tp->t_maxidle); } int tcp_ctloutput(int op, struct socket *so, struct sockopt *sopt) { int error = 0, s; struct inpcb *inp; #ifdef INET6 struct in6pcb *in6p; #endif struct tcpcb *tp; u_int ui; int family; /* family of the socket */ int level, optname, optval; level = sopt->sopt_level; optname = sopt->sopt_name; family = so->so_proto->pr_domain->dom_family; s = splsoftnet(); switch (family) { #ifdef INET case PF_INET: inp = sotoinpcb(so); #ifdef INET6 in6p = NULL; #endif break; #endif #ifdef INET6 case PF_INET6: inp = NULL; in6p = sotoin6pcb(so); break; #endif default: splx(s); panic("%s: af %d", __func__, family); } #ifndef INET6 if (inp == NULL) #else if (inp == NULL && in6p == NULL) #endif { splx(s); return (ECONNRESET); } if (level != IPPROTO_TCP) { switch (family) { #ifdef INET case PF_INET: error = ip_ctloutput(op, so, sopt); break; #endif #ifdef INET6 case PF_INET6: error = ip6_ctloutput(op, so, sopt); break; #endif } splx(s); return (error); } if (inp) tp = intotcpcb(inp); #ifdef INET6 else if (in6p) tp = in6totcpcb(in6p); #endif else tp = NULL; switch (op) { case PRCO_SETOPT: switch (optname) { #ifdef TCP_SIGNATURE case TCP_MD5SIG: error = sockopt_getint(sopt, &optval); if (error) break; if (optval > 0) tp->t_flags |= TF_SIGNATURE; else tp->t_flags &= ~TF_SIGNATURE; break; #endif /* TCP_SIGNATURE */ case TCP_NODELAY: error = sockopt_getint(sopt, &optval); if (error) break; if (optval) tp->t_flags |= TF_NODELAY; else tp->t_flags &= ~TF_NODELAY; break; case TCP_MAXSEG: error = sockopt_getint(sopt, &optval); if (error) break; if (optval > 0 && optval <= tp->t_peermss) tp->t_peermss = optval; /* limit on send size */ else error = EINVAL; break; #ifdef notyet case TCP_CONGCTL: /* XXX string overflow XXX */ error = tcp_congctl_select(tp, sopt->sopt_data); break; #endif case TCP_KEEPIDLE: error = sockopt_get(sopt, &ui, sizeof(ui)); if (error) break; if (ui > 0) { tp->t_keepidle = ui; change_keepalive(so, tp); } else error = EINVAL; break; case TCP_KEEPINTVL: error = sockopt_get(sopt, &ui, sizeof(ui)); if (error) break; if (ui > 0) { tp->t_keepintvl = ui; change_keepalive(so, tp); } else error = EINVAL; break; case TCP_KEEPCNT: error = sockopt_get(sopt, &ui, sizeof(ui)); if (error) break; if (ui > 0) { tp->t_keepcnt = ui; change_keepalive(so, tp); } else error = EINVAL; break; case TCP_KEEPINIT: error = sockopt_get(sopt, &ui, sizeof(ui)); if (error) break; if (ui > 0) { tp->t_keepinit = ui; change_keepalive(so, tp); } else error = EINVAL; break; default: error = ENOPROTOOPT; break; } break; case PRCO_GETOPT: switch (optname) { #ifdef TCP_SIGNATURE case TCP_MD5SIG: optval = (tp->t_flags & TF_SIGNATURE) ? 1 : 0; error = sockopt_set(sopt, &optval, sizeof(optval)); break; #endif case TCP_NODELAY: optval = tp->t_flags & TF_NODELAY; error = sockopt_set(sopt, &optval, sizeof(optval)); break; case TCP_MAXSEG: optval = tp->t_peermss; error = sockopt_set(sopt, &optval, sizeof(optval)); break; #ifdef notyet case TCP_CONGCTL: break; #endif default: error = ENOPROTOOPT; break; } break; } splx(s); return (error); } #ifndef TCP_SENDSPACE #define TCP_SENDSPACE 1024*32 #endif int tcp_sendspace = TCP_SENDSPACE; #ifndef TCP_RECVSPACE #define TCP_RECVSPACE 1024*32 #endif int tcp_recvspace = TCP_RECVSPACE; /* * Attach TCP protocol to socket, allocating * internet protocol control block, tcp control block, * bufer space, and entering LISTEN state if to accept connections. */ int tcp_attach(struct socket *so) { struct tcpcb *tp; struct inpcb *inp; #ifdef INET6 struct in6pcb *in6p; #endif int error; int family; /* family of the socket */ family = so->so_proto->pr_domain->dom_family; #ifdef MBUFTRACE so->so_mowner = &tcp_sock_mowner; so->so_rcv.sb_mowner = &tcp_sock_rx_mowner; so->so_snd.sb_mowner = &tcp_sock_tx_mowner; #endif if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { error = soreserve(so, tcp_sendspace, tcp_recvspace); if (error) return (error); } so->so_rcv.sb_flags |= SB_AUTOSIZE; so->so_snd.sb_flags |= SB_AUTOSIZE; switch (family) { #ifdef INET case PF_INET: error = in_pcballoc(so, &tcbtable); if (error) return (error); inp = sotoinpcb(so); #ifdef INET6 in6p = NULL; #endif break; #endif #ifdef INET6 case PF_INET6: error = in6_pcballoc(so, &tcbtable); if (error) return (error); inp = NULL; in6p = sotoin6pcb(so); break; #endif default: return EAFNOSUPPORT; } if (inp) tp = tcp_newtcpcb(family, (void *)inp); #ifdef INET6 else if (in6p) tp = tcp_newtcpcb(family, (void *)in6p); #endif else tp = NULL; if (tp == 0) { int nofd = so->so_state & SS_NOFDREF; /* XXX */ so->so_state &= ~SS_NOFDREF; /* don't free the socket yet */ #ifdef INET if (inp) in_pcbdetach(inp); #endif #ifdef INET6 if (in6p) in6_pcbdetach(in6p); #endif so->so_state |= nofd; return (ENOBUFS); } tp->t_state = TCPS_CLOSED; return (0); } /* * Initiate (or continue) disconnect. * If embryonic state, just send reset (once). * If in ``let data drain'' option and linger null, just drop. * Otherwise (hard), mark socket disconnecting and drop * current input data; switch states based on user close, and * send segment to peer (with FIN). */ struct tcpcb * tcp_disconnect(struct tcpcb *tp) { struct socket *so; if (tp->t_inpcb) so = tp->t_inpcb->inp_socket; #ifdef INET6 else if (tp->t_in6pcb) so = tp->t_in6pcb->in6p_socket; #endif else so = NULL; if (TCPS_HAVEESTABLISHED(tp->t_state) == 0) tp = tcp_close(tp); else if ((so->so_options & SO_LINGER) && so->so_linger == 0) tp = tcp_drop(tp, 0); else { soisdisconnecting(so); sbflush(&so->so_rcv); tp = tcp_usrclosed(tp); if (tp) (void) tcp_output(tp); } return (tp); } /* * User issued close, and wish to trail through shutdown states: * if never received SYN, just forget it. If got a SYN from peer, * but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN. * If already got a FIN from peer, then almost done; go to LAST_ACK * state. In all other cases, have already sent FIN to peer (e.g. * after PRU_SHUTDOWN), and just have to play tedious game waiting * for peer to send FIN or not respond to keep-alives, etc. * We can let the user exit from the close as soon as the FIN is acked. */ struct tcpcb * tcp_usrclosed(struct tcpcb *tp) { switch (tp->t_state) { case TCPS_CLOSED: case TCPS_LISTEN: case TCPS_SYN_SENT: tp->t_state = TCPS_CLOSED; tp = tcp_close(tp); break; case TCPS_SYN_RECEIVED: case TCPS_ESTABLISHED: tp->t_state = TCPS_FIN_WAIT_1; break; case TCPS_CLOSE_WAIT: tp->t_state = TCPS_LAST_ACK; break; } if (tp && tp->t_state >= TCPS_FIN_WAIT_2) { struct socket *so; if (tp->t_inpcb) so = tp->t_inpcb->inp_socket; #ifdef INET6 else if (tp->t_in6pcb) so = tp->t_in6pcb->in6p_socket; #endif else so = NULL; if (so) soisdisconnected(so); /* * If we are in FIN_WAIT_2, we arrived here because the * application did a shutdown of the send side. Like the * case of a transition from FIN_WAIT_1 to FIN_WAIT_2 after * a full close, we start a timer to make sure sockets are * not left in FIN_WAIT_2 forever. */ if ((tp->t_state == TCPS_FIN_WAIT_2) && (tp->t_maxidle > 0)) TCP_TIMER_ARM(tp, TCPT_2MSL, tp->t_maxidle); else if (tp->t_state == TCPS_TIME_WAIT && ((tp->t_inpcb && (tcp4_vtw_enable & 1) && vtw_add(AF_INET, tp)) || (tp->t_in6pcb && (tcp6_vtw_enable & 1) && vtw_add(AF_INET6, tp)))) { tp = 0; } } return (tp); } /* * sysctl helper routine for net.inet.ip.mssdflt. it can't be less * than 32. */ static int sysctl_net_inet_tcp_mssdflt(SYSCTLFN_ARGS) { int error, mssdflt; struct sysctlnode node; mssdflt = tcp_mssdflt; node = *rnode; node.sysctl_data = &mssdflt; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); if (mssdflt < 32) return (EINVAL); tcp_mssdflt = mssdflt; return (0); } /* * sysctl helper routine for setting port related values under * net.inet.ip and net.inet6.ip6. does basic range checking and does * additional checks for each type. this code has placed in * tcp_input.c since INET and INET6 both use the same tcp code. * * this helper is not static so that both inet and inet6 can use it. */ int sysctl_net_inet_ip_ports(SYSCTLFN_ARGS) { int error, tmp; int apmin, apmax; #ifndef IPNOPRIVPORTS int lpmin, lpmax; #endif /* IPNOPRIVPORTS */ struct sysctlnode node; if (namelen != 0) return (EINVAL); switch (name[-3]) { #ifdef INET case PF_INET: apmin = anonportmin; apmax = anonportmax; #ifndef IPNOPRIVPORTS lpmin = lowportmin; lpmax = lowportmax; #endif /* IPNOPRIVPORTS */ break; #endif /* INET */ #ifdef INET6 case PF_INET6: apmin = ip6_anonportmin; apmax = ip6_anonportmax; #ifndef IPNOPRIVPORTS lpmin = ip6_lowportmin; lpmax = ip6_lowportmax; #endif /* IPNOPRIVPORTS */ break; #endif /* INET6 */ default: return (EINVAL); } /* * insert temporary copy into node, perform lookup on * temporary, then restore pointer */ node = *rnode; tmp = *(int*)rnode->sysctl_data; node.sysctl_data = &tmp; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); /* * simple port range check */ if (tmp < 0 || tmp > 65535) return (EINVAL); /* * per-node range checks */ switch (rnode->sysctl_num) { case IPCTL_ANONPORTMIN: case IPV6CTL_ANONPORTMIN: if (tmp >= apmax) return (EINVAL); #ifndef IPNOPRIVPORTS if (tmp < IPPORT_RESERVED) return (EINVAL); #endif /* IPNOPRIVPORTS */ break; case IPCTL_ANONPORTMAX: case IPV6CTL_ANONPORTMAX: if (apmin >= tmp) return (EINVAL); #ifndef IPNOPRIVPORTS if (tmp < IPPORT_RESERVED) return (EINVAL); #endif /* IPNOPRIVPORTS */ break; #ifndef IPNOPRIVPORTS case IPCTL_LOWPORTMIN: case IPV6CTL_LOWPORTMIN: if (tmp >= lpmax || tmp > IPPORT_RESERVEDMAX || tmp < IPPORT_RESERVEDMIN) return (EINVAL); break; case IPCTL_LOWPORTMAX: case IPV6CTL_LOWPORTMAX: if (lpmin >= tmp || tmp > IPPORT_RESERVEDMAX || tmp < IPPORT_RESERVEDMIN) return (EINVAL); break; #endif /* IPNOPRIVPORTS */ default: return (EINVAL); } *(int*)rnode->sysctl_data = tmp; return (0); } static inline int copyout_uid(struct socket *sockp, void *oldp, size_t *oldlenp) { if (oldp) { size_t sz; uid_t uid; int error; if (sockp->so_cred == NULL) return EPERM; uid = kauth_cred_geteuid(sockp->so_cred); sz = MIN(sizeof(uid), *oldlenp); if ((error = copyout(&uid, oldp, sz)) != 0) return error; } *oldlenp = sizeof(uid_t); return 0; } static inline int inet4_ident_core(struct in_addr raddr, u_int rport, struct in_addr laddr, u_int lport, void *oldp, size_t *oldlenp, struct lwp *l, int dodrop) { struct inpcb *inp; struct socket *sockp; inp = in_pcblookup_connect(&tcbtable, raddr, rport, laddr, lport, 0); if (inp == NULL || (sockp = inp->inp_socket) == NULL) return ESRCH; if (dodrop) { struct tcpcb *tp; int error; if (inp == NULL || (tp = intotcpcb(inp)) == NULL || (inp->inp_socket->so_options & SO_ACCEPTCONN) != 0) return ESRCH; error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, KAUTH_REQ_NETWORK_SOCKET_DROP, inp->inp_socket, tp, NULL); if (error) return (error); (void)tcp_drop(tp, ECONNABORTED); return 0; } else return copyout_uid(sockp, oldp, oldlenp); } #ifdef INET6 static inline int inet6_ident_core(struct in6_addr *raddr, u_int rport, struct in6_addr *laddr, u_int lport, void *oldp, size_t *oldlenp, struct lwp *l, int dodrop) { struct in6pcb *in6p; struct socket *sockp; in6p = in6_pcblookup_connect(&tcbtable, raddr, rport, laddr, lport, 0, 0); if (in6p == NULL || (sockp = in6p->in6p_socket) == NULL) return ESRCH; if (dodrop) { struct tcpcb *tp; int error; if (in6p == NULL || (tp = in6totcpcb(in6p)) == NULL || (in6p->in6p_socket->so_options & SO_ACCEPTCONN) != 0) return ESRCH; error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, KAUTH_REQ_NETWORK_SOCKET_DROP, in6p->in6p_socket, tp, NULL); if (error) return (error); (void)tcp_drop(tp, ECONNABORTED); return 0; } else return copyout_uid(sockp, oldp, oldlenp); } #endif /* * sysctl helper routine for the net.inet.tcp.drop and * net.inet6.tcp6.drop nodes. */ #define sysctl_net_inet_tcp_drop sysctl_net_inet_tcp_ident /* * sysctl helper routine for the net.inet.tcp.ident and * net.inet6.tcp6.ident nodes. contains backwards compat code for the * old way of looking up the ident information for ipv4 which involves * stuffing the port/addr pairs into the mib lookup. */ static int sysctl_net_inet_tcp_ident(SYSCTLFN_ARGS) { #ifdef INET struct sockaddr_in *si4[2]; #endif /* INET */ #ifdef INET6 struct sockaddr_in6 *si6[2]; #endif /* INET6 */ struct sockaddr_storage sa[2]; int error, pf, dodrop; dodrop = name[-1] == TCPCTL_DROP; if (dodrop) { if (oldp != NULL || *oldlenp != 0) return EINVAL; if (newp == NULL) return EPERM; if (newlen < sizeof(sa)) return ENOMEM; } if (namelen != 4 && namelen != 0) return EINVAL; if (name[-2] != IPPROTO_TCP) return EINVAL; pf = name[-3]; /* old style lookup, ipv4 only */ if (namelen == 4) { #ifdef INET struct in_addr laddr, raddr; u_int lport, rport; if (pf != PF_INET) return EPROTONOSUPPORT; raddr.s_addr = (uint32_t)name[0]; rport = (u_int)name[1]; laddr.s_addr = (uint32_t)name[2]; lport = (u_int)name[3]; mutex_enter(softnet_lock); error = inet4_ident_core(raddr, rport, laddr, lport, oldp, oldlenp, l, dodrop); mutex_exit(softnet_lock); return error; #else /* INET */ return EINVAL; #endif /* INET */ } if (newp == NULL || newlen != sizeof(sa)) return EINVAL; error = copyin(newp, &sa, newlen); if (error) return error; /* * requested families must match */ if (pf != sa[0].ss_family || sa[0].ss_family != sa[1].ss_family) return EINVAL; switch (pf) { #ifdef INET6 case PF_INET6: si6[0] = (struct sockaddr_in6*)&sa[0]; si6[1] = (struct sockaddr_in6*)&sa[1]; if (si6[0]->sin6_len != sizeof(*si6[0]) || si6[1]->sin6_len != sizeof(*si6[1])) return EINVAL; if (!IN6_IS_ADDR_V4MAPPED(&si6[0]->sin6_addr) && !IN6_IS_ADDR_V4MAPPED(&si6[1]->sin6_addr)) { error = sa6_embedscope(si6[0], ip6_use_defzone); if (error) return error; error = sa6_embedscope(si6[1], ip6_use_defzone); if (error) return error; mutex_enter(softnet_lock); error = inet6_ident_core(&si6[0]->sin6_addr, si6[0]->sin6_port, &si6[1]->sin6_addr, si6[1]->sin6_port, oldp, oldlenp, l, dodrop); mutex_exit(softnet_lock); return error; } if (IN6_IS_ADDR_V4MAPPED(&si6[0]->sin6_addr) != IN6_IS_ADDR_V4MAPPED(&si6[1]->sin6_addr)) return EINVAL; in6_sin6_2_sin_in_sock((struct sockaddr *)&sa[0]); in6_sin6_2_sin_in_sock((struct sockaddr *)&sa[1]); /*FALLTHROUGH*/ #endif /* INET6 */ #ifdef INET case PF_INET: si4[0] = (struct sockaddr_in*)&sa[0]; si4[1] = (struct sockaddr_in*)&sa[1]; if (si4[0]->sin_len != sizeof(*si4[0]) || si4[0]->sin_len != sizeof(*si4[1])) return EINVAL; mutex_enter(softnet_lock); error = inet4_ident_core(si4[0]->sin_addr, si4[0]->sin_port, si4[1]->sin_addr, si4[1]->sin_port, oldp, oldlenp, l, dodrop); mutex_exit(softnet_lock); return error; #endif /* INET */ default: return EPROTONOSUPPORT; } } /* * sysctl helper for the inet and inet6 pcblists. handles tcp/udp and * inet/inet6, as well as raw pcbs for each. specifically not * declared static so that raw sockets and udp/udp6 can use it as * well. */ int sysctl_inpcblist(SYSCTLFN_ARGS) { #ifdef INET struct sockaddr_in *in; const struct inpcb *inp; #endif #ifdef INET6 struct sockaddr_in6 *in6; const struct in6pcb *in6p; #endif /* * sysctl_data is const, but CIRCLEQ_FOREACH can't use a const * struct inpcbtable pointer, so we have to discard const. :-/ */ struct inpcbtable *pcbtbl = __UNCONST(rnode->sysctl_data); const struct inpcb_hdr *inph; struct tcpcb *tp; struct kinfo_pcb pcb; char *dp; u_int op, arg; size_t len, needed, elem_size, out_size; int error, elem_count, pf, proto, pf2; if (namelen != 4) return (EINVAL); if (oldp != NULL) { len = *oldlenp; elem_size = name[2]; elem_count = name[3]; if (elem_size != sizeof(pcb)) return EINVAL; } else { len = 0; elem_count = INT_MAX; elem_size = sizeof(pcb); } error = 0; dp = oldp; op = name[0]; arg = name[1]; out_size = elem_size; needed = 0; if (namelen == 1 && name[0] == CTL_QUERY) return (sysctl_query(SYSCTLFN_CALL(rnode))); if (name - oname != 4) return (EINVAL); pf = oname[1]; proto = oname[2]; pf2 = (oldp != NULL) ? pf : 0; mutex_enter(softnet_lock); CIRCLEQ_FOREACH(inph, &pcbtbl->inpt_queue, inph_queue) { #ifdef INET inp = (const struct inpcb *)inph; #endif #ifdef INET6 in6p = (const struct in6pcb *)inph; #endif if (inph->inph_af != pf) continue; if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, KAUTH_REQ_NETWORK_SOCKET_CANSEE, inph->inph_socket, NULL, NULL) != 0) continue; memset(&pcb, 0, sizeof(pcb)); pcb.ki_family = pf; pcb.ki_type = proto; switch (pf2) { case 0: /* just probing for size */ break; #ifdef INET case PF_INET: pcb.ki_family = inp->inp_socket->so_proto-> pr_domain->dom_family; pcb.ki_type = inp->inp_socket->so_proto-> pr_type; pcb.ki_protocol = inp->inp_socket->so_proto-> pr_protocol; pcb.ki_pflags = inp->inp_flags; pcb.ki_sostate = inp->inp_socket->so_state; pcb.ki_prstate = inp->inp_state; if (proto == IPPROTO_TCP) { tp = intotcpcb(inp); pcb.ki_tstate = tp->t_state; pcb.ki_tflags = tp->t_flags; } pcb.ki_pcbaddr = PTRTOUINT64(inp); pcb.ki_ppcbaddr = PTRTOUINT64(inp->inp_ppcb); pcb.ki_sockaddr = PTRTOUINT64(inp->inp_socket); pcb.ki_rcvq = inp->inp_socket->so_rcv.sb_cc; pcb.ki_sndq = inp->inp_socket->so_snd.sb_cc; in = satosin(&pcb.ki_src); in->sin_len = sizeof(*in); in->sin_family = pf; in->sin_port = inp->inp_lport; in->sin_addr = inp->inp_laddr; if (pcb.ki_prstate >= INP_CONNECTED) { in = satosin(&pcb.ki_dst); in->sin_len = sizeof(*in); in->sin_family = pf; in->sin_port = inp->inp_fport; in->sin_addr = inp->inp_faddr; } break; #endif #ifdef INET6 case PF_INET6: pcb.ki_family = in6p->in6p_socket->so_proto-> pr_domain->dom_family; pcb.ki_type = in6p->in6p_socket->so_proto->pr_type; pcb.ki_protocol = in6p->in6p_socket->so_proto-> pr_protocol; pcb.ki_pflags = in6p->in6p_flags; pcb.ki_sostate = in6p->in6p_socket->so_state; pcb.ki_prstate = in6p->in6p_state; if (proto == IPPROTO_TCP) { tp = in6totcpcb(in6p); pcb.ki_tstate = tp->t_state; pcb.ki_tflags = tp->t_flags; } pcb.ki_pcbaddr = PTRTOUINT64(in6p); pcb.ki_ppcbaddr = PTRTOUINT64(in6p->in6p_ppcb); pcb.ki_sockaddr = PTRTOUINT64(in6p->in6p_socket); pcb.ki_rcvq = in6p->in6p_socket->so_rcv.sb_cc; pcb.ki_sndq = in6p->in6p_socket->so_snd.sb_cc; in6 = satosin6(&pcb.ki_src); in6->sin6_len = sizeof(*in6); in6->sin6_family = pf; in6->sin6_port = in6p->in6p_lport; in6->sin6_flowinfo = in6p->in6p_flowinfo; in6->sin6_addr = in6p->in6p_laddr; in6->sin6_scope_id = 0; /* XXX? */ if (pcb.ki_prstate >= IN6P_CONNECTED) { in6 = satosin6(&pcb.ki_dst); in6->sin6_len = sizeof(*in6); in6->sin6_family = pf; in6->sin6_port = in6p->in6p_fport; in6->sin6_flowinfo = in6p->in6p_flowinfo; in6->sin6_addr = in6p->in6p_faddr; in6->sin6_scope_id = 0; /* XXX? */ } break; #endif } if (len >= elem_size && elem_count > 0) { error = copyout(&pcb, dp, out_size); if (error) { mutex_exit(softnet_lock); return (error); } dp += elem_size; len -= elem_size; } needed += elem_size; if (elem_count > 0 && elem_count != INT_MAX) elem_count--; } *oldlenp = needed; if (oldp == NULL) *oldlenp += PCB_SLOP * sizeof(struct kinfo_pcb); mutex_exit(softnet_lock); return (error); } static int sysctl_tcp_congctl(SYSCTLFN_ARGS) { struct sysctlnode node; int error; char newname[TCPCC_MAXLEN]; strlcpy(newname, tcp_congctl_global_name, sizeof(newname) - 1); node = *rnode; node.sysctl_data = newname; node.sysctl_size = sizeof(newname); error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL || strncmp(newname, tcp_congctl_global_name, sizeof(newname)) == 0) return error; mutex_enter(softnet_lock); error = tcp_congctl_select(NULL, newname); mutex_exit(softnet_lock); return error; } static int sysctl_tcp_keep(SYSCTLFN_ARGS) { int error; u_int tmp; struct sysctlnode node; node = *rnode; tmp = *(u_int *)rnode->sysctl_data; node.sysctl_data = &tmp; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return error; mutex_enter(softnet_lock); *(u_int *)rnode->sysctl_data = tmp; tcp_tcpcb_template(); /* update the template */ mutex_exit(softnet_lock); return 0; } static int sysctl_net_inet_tcp_stats(SYSCTLFN_ARGS) { return (NETSTAT_SYSCTL(tcpstat_percpu, TCP_NSTATS)); } /* * this (second stage) setup routine is a replacement for tcp_sysctl() * (which is currently used for ipv4 and ipv6) */ static void sysctl_net_inet_tcp_setup2(struct sysctllog **clog, int pf, const char *pfname, const char *tcpname) { const struct sysctlnode *sack_node; const struct sysctlnode *abc_node; const struct sysctlnode *ecn_node; const struct sysctlnode *congctl_node; const struct sysctlnode *mslt_node; const struct sysctlnode *vtw_node; #ifdef TCP_DEBUG extern struct tcp_debug tcp_debug[TCP_NDEBUG]; extern int tcp_debx; #endif sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "net", NULL, NULL, 0, NULL, 0, CTL_NET, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, pfname, NULL, NULL, 0, NULL, 0, CTL_NET, pf, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, tcpname, SYSCTL_DESCR("TCP related settings"), NULL, 0, NULL, 0, CTL_NET, pf, IPPROTO_TCP, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "rfc1323", SYSCTL_DESCR("Enable RFC1323 TCP extensions"), NULL, 0, &tcp_do_rfc1323, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_RFC1323, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "sendspace", SYSCTL_DESCR("Default TCP send buffer size"), NULL, 0, &tcp_sendspace, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_SENDSPACE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "recvspace", SYSCTL_DESCR("Default TCP receive buffer size"), NULL, 0, &tcp_recvspace, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_RECVSPACE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "mssdflt", SYSCTL_DESCR("Default maximum segment size"), sysctl_net_inet_tcp_mssdflt, 0, &tcp_mssdflt, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_MSSDFLT, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "minmss", SYSCTL_DESCR("Lower limit for TCP maximum segment size"), NULL, 0, &tcp_minmss, 0, CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "msl", SYSCTL_DESCR("Maximum Segment Life"), NULL, 0, &tcp_msl, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_MSL, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "syn_cache_limit", SYSCTL_DESCR("Maximum number of entries in the TCP " "compressed state engine"), NULL, 0, &tcp_syn_cache_limit, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_SYN_CACHE_LIMIT, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "syn_bucket_limit", SYSCTL_DESCR("Maximum number of entries per hash " "bucket in the TCP compressed state " "engine"), NULL, 0, &tcp_syn_bucket_limit, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_SYN_BUCKET_LIMIT, CTL_EOL); #if 0 /* obsoleted */ sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "syn_cache_interval", SYSCTL_DESCR("TCP compressed state engine's timer interval"), NULL, 0, &tcp_syn_cache_interval, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_SYN_CACHE_INTER, CTL_EOL); #endif sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "init_win", SYSCTL_DESCR("Initial TCP congestion window"), NULL, 0, &tcp_init_win, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_INIT_WIN, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "mss_ifmtu", SYSCTL_DESCR("Use interface MTU for calculating MSS"), NULL, 0, &tcp_mss_ifmtu, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_MSS_IFMTU, CTL_EOL); sysctl_createv(clog, 0, NULL, &sack_node, CTLFLAG_PERMANENT, CTLTYPE_NODE, "sack", SYSCTL_DESCR("RFC2018 Selective ACKnowledgement tunables"), NULL, 0, NULL, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_SACK, CTL_EOL); /* Congctl subtree */ sysctl_createv(clog, 0, NULL, &congctl_node, CTLFLAG_PERMANENT, CTLTYPE_NODE, "congctl", SYSCTL_DESCR("TCP Congestion Control"), NULL, 0, NULL, 0, CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &congctl_node, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRING, "available", SYSCTL_DESCR("Available Congestion Control Mechanisms"), NULL, 0, &tcp_congctl_avail, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &congctl_node, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_STRING, "selected", SYSCTL_DESCR("Selected Congestion Control Mechanism"), sysctl_tcp_congctl, 0, NULL, TCPCC_MAXLEN, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "win_scale", SYSCTL_DESCR("Use RFC1323 window scale options"), NULL, 0, &tcp_do_win_scale, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_WSCALE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "timestamps", SYSCTL_DESCR("Use RFC1323 time stamp options"), NULL, 0, &tcp_do_timestamps, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_TSTAMP, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "compat_42", SYSCTL_DESCR("Enable workarounds for 4.2BSD TCP bugs"), NULL, 0, &tcp_compat_42, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_COMPAT_42, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "cwm", SYSCTL_DESCR("Hughes/Touch/Heidemann Congestion Window " "Monitoring"), NULL, 0, &tcp_cwm, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_CWM, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "cwm_burstsize", SYSCTL_DESCR("Congestion Window Monitoring allowed " "burst count in packets"), NULL, 0, &tcp_cwm_burstsize, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_CWM_BURSTSIZE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "ack_on_push", SYSCTL_DESCR("Immediately return ACK when PSH is " "received"), NULL, 0, &tcp_ack_on_push, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_ACK_ON_PUSH, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "keepidle", SYSCTL_DESCR("Allowed connection idle ticks before a " "keepalive probe is sent"), sysctl_tcp_keep, 0, &tcp_keepidle, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_KEEPIDLE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "keepintvl", SYSCTL_DESCR("Ticks before next keepalive probe is sent"), sysctl_tcp_keep, 0, &tcp_keepintvl, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_KEEPINTVL, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "keepcnt", SYSCTL_DESCR("Number of keepalive probes to send"), sysctl_tcp_keep, 0, &tcp_keepcnt, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_KEEPCNT, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "slowhz", SYSCTL_DESCR("Keepalive ticks per second"), NULL, PR_SLOWHZ, NULL, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_SLOWHZ, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "log_refused", SYSCTL_DESCR("Log refused TCP connections"), NULL, 0, &tcp_log_refused, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_LOG_REFUSED, CTL_EOL); #if 0 /* obsoleted */ sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "rstratelimit", NULL, NULL, 0, &tcp_rst_ratelim, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_RSTRATELIMIT, CTL_EOL); #endif sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "rstppslimit", SYSCTL_DESCR("Maximum number of RST packets to send " "per second"), NULL, 0, &tcp_rst_ppslim, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_RSTPPSLIMIT, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "delack_ticks", SYSCTL_DESCR("Number of ticks to delay sending an ACK"), NULL, 0, &tcp_delack_ticks, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_DELACK_TICKS, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "init_win_local", SYSCTL_DESCR("Initial TCP window size (in segments)"), NULL, 0, &tcp_init_win_local, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_INIT_WIN_LOCAL, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_STRUCT, "ident", SYSCTL_DESCR("RFC1413 Identification Protocol lookups"), sysctl_net_inet_tcp_ident, 0, NULL, sizeof(uid_t), CTL_NET, pf, IPPROTO_TCP, TCPCTL_IDENT, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "do_loopback_cksum", SYSCTL_DESCR("Perform TCP checksum on loopback"), NULL, 0, &tcp_do_loopback_cksum, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_LOOPBACKCKSUM, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "pcblist", SYSCTL_DESCR("TCP protocol control block list"), sysctl_inpcblist, 0, &tcbtable, 0, CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "keepinit", SYSCTL_DESCR("Ticks before initial tcp connection times out"), sysctl_tcp_keep, 0, &tcp_keepinit, 0, CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL); /* TCP socket buffers auto-sizing nodes */ sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "recvbuf_auto", SYSCTL_DESCR("Enable automatic receive " "buffer sizing (experimental)"), NULL, 0, &tcp_do_autorcvbuf, 0, CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "recvbuf_inc", SYSCTL_DESCR("Incrementor step size of " "automatic receive buffer"), NULL, 0, &tcp_autorcvbuf_inc, 0, CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "recvbuf_max", SYSCTL_DESCR("Max size of automatic receive buffer"), NULL, 0, &tcp_autorcvbuf_max, 0, CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "sendbuf_auto", SYSCTL_DESCR("Enable automatic send " "buffer sizing (experimental)"), NULL, 0, &tcp_do_autosndbuf, 0, CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "sendbuf_inc", SYSCTL_DESCR("Incrementor step size of " "automatic send buffer"), NULL, 0, &tcp_autosndbuf_inc, 0, CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "sendbuf_max", SYSCTL_DESCR("Max size of automatic send buffer"), NULL, 0, &tcp_autosndbuf_max, 0, CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL); /* ECN subtree */ sysctl_createv(clog, 0, NULL, &ecn_node, CTLFLAG_PERMANENT, CTLTYPE_NODE, "ecn", SYSCTL_DESCR("RFC3168 Explicit Congestion Notification"), NULL, 0, NULL, 0, CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &ecn_node, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "enable", SYSCTL_DESCR("Enable TCP Explicit Congestion " "Notification"), NULL, 0, &tcp_do_ecn, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &ecn_node, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "maxretries", SYSCTL_DESCR("Number of times to retry ECN setup " "before disabling ECN on the connection"), NULL, 0, &tcp_ecn_maxretries, 0, CTL_CREATE, CTL_EOL); /* SACK gets it's own little subtree. */ sysctl_createv(clog, 0, NULL, &sack_node, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "enable", SYSCTL_DESCR("Enable RFC2018 Selective ACKnowledgement"), NULL, 0, &tcp_do_sack, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_SACK, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, &sack_node, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "maxholes", SYSCTL_DESCR("Maximum number of TCP SACK holes allowed per connection"), NULL, 0, &tcp_sack_tp_maxholes, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_SACK, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, &sack_node, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "globalmaxholes", SYSCTL_DESCR("Global maximum number of TCP SACK holes"), NULL, 0, &tcp_sack_globalmaxholes, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_SACK, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, &sack_node, CTLFLAG_PERMANENT, CTLTYPE_INT, "globalholes", SYSCTL_DESCR("Global number of TCP SACK holes"), NULL, 0, &tcp_sack_globalholes, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_SACK, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "stats", SYSCTL_DESCR("TCP statistics"), sysctl_net_inet_tcp_stats, 0, NULL, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_STATS, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "local_by_rtt", SYSCTL_DESCR("Use RTT estimator to decide which hosts " "are local"), NULL, 0, &tcp_rttlocal, 0, CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL); #ifdef TCP_DEBUG sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "debug", SYSCTL_DESCR("TCP sockets debug information"), NULL, 0, &tcp_debug, sizeof(tcp_debug), CTL_NET, pf, IPPROTO_TCP, TCPCTL_DEBUG, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_INT, "debx", SYSCTL_DESCR("Number of TCP debug sockets messages"), NULL, 0, &tcp_debx, sizeof(tcp_debx), CTL_NET, pf, IPPROTO_TCP, TCPCTL_DEBX, CTL_EOL); #endif sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_STRUCT, "drop", SYSCTL_DESCR("TCP drop connection"), sysctl_net_inet_tcp_drop, 0, NULL, 0, CTL_NET, pf, IPPROTO_TCP, TCPCTL_DROP, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "iss_hash", SYSCTL_DESCR("Enable RFC 1948 ISS by cryptographic " "hash computation"), NULL, 0, &tcp_do_rfc1948, sizeof(tcp_do_rfc1948), CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL); /* ABC subtree */ sysctl_createv(clog, 0, NULL, &abc_node, CTLFLAG_PERMANENT, CTLTYPE_NODE, "abc", SYSCTL_DESCR("RFC3465 Appropriate Byte Counting (ABC)"), NULL, 0, NULL, 0, CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &abc_node, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "enable", SYSCTL_DESCR("Enable RFC3465 Appropriate Byte Counting"), NULL, 0, &tcp_do_abc, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &abc_node, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "aggressive", SYSCTL_DESCR("1: L=2*SMSS 0: L=1*SMSS"), NULL, 0, &tcp_abc_aggressive, 0, CTL_CREATE, CTL_EOL); /* MSL tuning subtree */ sysctl_createv(clog, 0, NULL, &mslt_node, CTLFLAG_PERMANENT, CTLTYPE_NODE, "mslt", SYSCTL_DESCR("MSL Tuning for TIME_WAIT truncation"), NULL, 0, NULL, 0, CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &mslt_node, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "enable", SYSCTL_DESCR("Enable TIME_WAIT truncation"), NULL, 0, &tcp_msl_enable, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &mslt_node, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "loopback", SYSCTL_DESCR("MSL value to use for loopback connections"), NULL, 0, &tcp_msl_loop, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &mslt_node, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "local", SYSCTL_DESCR("MSL value to use for local connections"), NULL, 0, &tcp_msl_local, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &mslt_node, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "remote", SYSCTL_DESCR("MSL value to use for remote connections"), NULL, 0, &tcp_msl_remote, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &mslt_node, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "remote_threshold", SYSCTL_DESCR("RTT estimate value to promote local to remote"), NULL, 0, &tcp_msl_remote_threshold, 0, CTL_CREATE, CTL_EOL); /* vestigial TIME_WAIT tuning subtree */ sysctl_createv(clog, 0, NULL, &vtw_node, CTLFLAG_PERMANENT, CTLTYPE_NODE, "vtw", SYSCTL_DESCR("Tuning for Vestigial TIME_WAIT"), NULL, 0, NULL, 0, CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &vtw_node, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "enable", SYSCTL_DESCR("Enable Vestigial TIME_WAIT"), sysctl_tcp_vtw_enable, 0, (pf == AF_INET) ? &tcp4_vtw_enable : &tcp6_vtw_enable, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &vtw_node, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT, "entries", SYSCTL_DESCR("Maximum number of vestigial TIME_WAIT entries"), NULL, 0, &tcp_vtw_entries, 0, CTL_CREATE, CTL_EOL); } void tcp_usrreq_init(void) { #ifdef INET sysctl_net_inet_tcp_setup2(NULL, PF_INET, "inet", "tcp"); #endif #ifdef INET6 sysctl_net_inet_tcp_setup2(NULL, PF_INET6, "inet6", "tcp6"); #endif }