dnl x86-64 mpn_divrem_1 -- mpn by limb division. dnl Copyright 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc. dnl This file is part of the GNU MP Library. dnl The GNU MP Library is free software; you can redistribute it and/or modify dnl it under the terms of the GNU Lesser General Public License as published dnl by the Free Software Foundation; either version 3 of the License, or (at dnl your option) any later version. dnl The GNU MP Library is distributed in the hope that it will be useful, but dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public dnl License for more details. dnl You should have received a copy of the GNU Lesser General Public License dnl along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. include(`../config.m4') C norm unorm frac C K8 13 13 12 C P4 44.2 44.2 42.3 C P6 core2 25 24.5 19.3 C P6 corei7 21.5 20.7 18 C P6 atom 42 52 37 C TODO C * Compute the inverse without relying on the div instruction. C Newton's method and mulq, or perhaps the faster fdiv. C * Tune prologue. C * Optimize for Core 2. C The code for unnormalized divisors works also for normalized divisors, but C for some reason it runs really slowly (on K8) for that case. Use special C code until we can address this. The Intel Atom is also affected, but C understandably (shld slowness). define(`SPECIAL_CODE_FOR_NORMALIZED_DIVISOR',1) C mp_limb_t C mpn_divrem_1 (mp_ptr qp, mp_size_t fn, C mp_srcptr np, mp_size_t nn, mp_limb_t d) C mp_limb_t C mpn_preinv_divrem_1 (mp_ptr qp, mp_size_t fn, C mp_srcptr np, mp_size_t nn, mp_limb_t d, C mp_limb_t dinv, int cnt) C INPUT PARAMETERS define(`qp', `%rdi') define(`fn_param', `%rsi') define(`up_param', `%rdx') define(`un_param', `%rcx') define(`d', `%r8') define(`dinv', `%r9') C only for mpn_preinv_divrem_1 C shift passed on stack C only for mpn_preinv_divrem_1 define(`cnt', `%rcx') define(`up', `%rsi') define(`fn', `%r12') define(`un', `%rbx') C rax rbx rcx rdx rsi rdi rbp r8 r9 r10 r11 r12 r13 r14 r15 C cnt qp d dinv ASM_START() TEXT ALIGN(16) PROLOGUE(mpn_preinv_divrem_1) xor %eax, %eax push %r13 push %r12 push %rbp push %rbx mov fn_param, fn mov un_param, un add fn_param, un_param mov up_param, up lea -8(qp,un_param,8), qp test d, d js L(nent) mov 40(%rsp), R8(cnt) shl R8(cnt), d jmp L(uent) EPILOGUE() ALIGN(16) PROLOGUE(mpn_divrem_1) xor %eax, %eax push %r13 push %r12 push %rbp push %rbx mov fn_param, fn mov un_param, un add fn_param, un_param mov up_param, up je L(ret) lea -8(qp,un_param,8), qp xor R32(%rbp), R32(%rbp) ifdef(`SPECIAL_CODE_FOR_NORMALIZED_DIVISOR',` test d, d jns L(unnormalized) L(normalized): test un, un je L(8) C un == 0 mov -8(up,un,8), %rbp dec un mov %rbp, %rax sub d, %rbp cmovb %rax, %rbp sbb %eax, %eax inc %eax mov %rax, (qp) lea -8(qp), qp L(8): mov d, %rdx mov $-1, %rax not %rdx div d C FREE rax rdx rcx r9 r10 r11 mov %rax, dinv mov %rbp, %rax jmp L(nent) ALIGN(16) L(nloop): C cycK8 cycP6 cycP4 mov (up,un,8), %r10 C lea 1(%rax), %rbp C mul dinv C 0,13 0,19 0,45 add %r10, %rax C 4 8 12 adc %rbp, %rdx C 5 9 13 mov %rax, %rbp C 5 9 13 mov %rdx, %r13 C 6 11 23 imul d, %rdx C 6 11 23 sub %rdx, %r10 C 10 16 33 mov d, %rax C add %r10, %rax C 11 17 34 cmp %rbp, %r10 C 11 17 34 cmovb %r10, %rax C 12 18 35 adc $-1, %r13 C cmp d, %rax C jae L(nfx) C L(nok): mov %r13, (qp) C sub $8, qp C L(nent):dec un C jns L(nloop) C xor %ecx, %ecx jmp L(87) L(nfx): sub d, %rax inc %r13 jmp L(nok) ') L(unnormalized): test un, un je L(44) mov -8(up,un,8), %rax cmp d, %rax jae L(44) mov %rbp, (qp) mov %rax, %rbp lea -8(qp), qp je L(ret) dec un L(44): bsr d, %rcx not %ecx sal %cl, d sal %cl, %rbp mov d, %rdx mov $-1, %rax not %rdx div d C FREE rax rdx r9 r10 r11 test un, un mov %rax, dinv mov %rbp, %rax je L(87) L(uent): mov -8(up,un,8), %rbp shr %cl, %rax shld %cl, %rbp, %rax sub $2, un js L(ulast) ALIGN(16) L(uloop): nop mov (up,un,8), %r10 lea 1(%rax), %r11 shld %cl, %r10, %rbp mul dinv add %rbp, %rax adc %r11, %rdx mov %rax, %r11 mov %rdx, %r13 imul d, %rdx sub %rdx, %rbp mov d, %rax add %rbp, %rax cmp %r11, %rbp cmovb %rbp, %rax adc $-1, %r13 cmp d, %rax jae L(ufx) L(uok): mov %r13, (qp) sub $8, qp dec un mov %r10, %rbp jns L(uloop) L(ulast): lea 1(%rax), %r11 sal %cl, %rbp mul dinv add %rbp, %rax adc %r11, %rdx mov %rax, %r11 mov %rdx, %r13 imul d, %rdx sub %rdx, %rbp mov d, %rax add %rbp, %rax cmp %r11, %rbp cmovb %rbp, %rax adc $-1, %r13 cmp d, %rax jae L(93) L(69): mov %r13, (qp) sub $8, qp jmp L(87) L(ufx): sub d, %rax inc %r13 jmp L(uok) L(93): sub d, %rax inc %r13 jmp L(69) L(87): mov d, %rbp neg %rbp jmp L(87b) ALIGN(16) L(floop): C cycK8 cycP6 cycP4 lea 1(%rax), %r11 C mul dinv C 0,12 add %r11, %rdx C 5 mov %rax, %r11 C 4 mov %rdx, %r13 C 6 imul %rbp, %rdx C 6 mov d, %rax C add %rdx, %rax C 10 cmp %r11, %rdx C 10 cmovb %rdx, %rax C 11 adc $-1, %r13 C mov %r13, (qp) C sub $8, qp C L(87b): dec fn C jns L(floop) C shr %cl, %rax L(ret): pop %rbx pop %rbp pop %r12 pop %r13 ret EPILOGUE()