/* * Copyright (c) 2000-2008 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */ /*- * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 */ /* * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce * support for mandatory and extensible security protections. This notice * is included in support of clause 2.2 (b) of the Apple Public License, * Version 2.0. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for thread_policy_set( ) */ #include #include #include #include /* for absolutetime_to_microtime() */ #include /* for TRAFFIC_MGT_SO_* */ #include /* for struct socket */ #include #include #include int donice(struct proc *curp, struct proc *chgp, int n); int dosetrlimit(struct proc *p, u_int which, struct rlimit *limp); int uthread_get_background_state(uthread_t); static void do_background_socket(struct proc *p, thread_t thread, int priority); static int do_background_thread(struct proc *curp, thread_t thread, int priority); static int do_background_proc(struct proc *curp, struct proc *targetp, int priority); static int get_background_proc(struct proc *curp, struct proc *targetp, int *priority); void proc_apply_task_networkbg_internal(proc_t, thread_t); void proc_restore_task_networkbg_internal(proc_t, thread_t); int proc_pid_rusage(int pid, int flavor, user_addr_t buf, int32_t *retval); void gather_rusage_info_v2(proc_t p, struct rusage_info_v2 *ru, int flavor); int fill_task_rusage_v2(task_t task, struct rusage_info_v2 *ri); static void rusage_info_v2_to_v0(struct rusage_info_v0 *ri_v0, struct rusage_info_v2 *ri_v2); static void rusage_info_v2_to_v1(struct rusage_info_v1 *ri_v1, struct rusage_info_v2 *ri_v2); int proc_get_rusage(proc_t p, int flavor, user_addr_t buffer, __unused int is_zombie); rlim_t maxdmap = MAXDSIZ; /* XXX */ rlim_t maxsmap = MAXSSIZ - PAGE_SIZE; /* XXX */ /* * Limits on the number of open files per process, and the number * of child processes per process. * * Note: would be in kern/subr_param.c in FreeBSD. */ __private_extern__ int maxfilesperproc = OPEN_MAX; /* per-proc open files limit */ SYSCTL_INT(_kern, KERN_MAXPROCPERUID, maxprocperuid, CTLFLAG_RW | CTLFLAG_LOCKED, &maxprocperuid, 0, "Maximum processes allowed per userid" ); SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW | CTLFLAG_LOCKED, &maxfilesperproc, 0, "Maximum files allowed open per process" ); /* Args and fn for proc_iteration callback used in setpriority */ struct puser_nice_args { proc_t curp; int prio; id_t who; int * foundp; int * errorp; }; static int puser_donice_callback(proc_t p, void * arg); /* Args and fn for proc_iteration callback used in setpriority */ struct ppgrp_nice_args { proc_t curp; int prio; int * foundp; int * errorp; }; static int ppgrp_donice_callback(proc_t p, void * arg); /* * Resource controls and accounting. */ int getpriority(struct proc *curp, struct getpriority_args *uap, int32_t *retval) { struct proc *p; int low = PRIO_MAX + 1; kauth_cred_t my_cred; int refheld = 0; int error = 0; /* would also test (uap->who < 0), but id_t is unsigned */ if (uap->who > 0x7fffffff) return (EINVAL); switch (uap->which) { case PRIO_PROCESS: if (uap->who == 0) { p = curp; low = p->p_nice; } else { p = proc_find(uap->who); if (p == 0) break; low = p->p_nice; proc_rele(p); } break; case PRIO_PGRP: { struct pgrp *pg = PGRP_NULL; if (uap->who == 0) { /* returns the pgrp to ref */ pg = proc_pgrp(curp); } else if ((pg = pgfind(uap->who)) == PGRP_NULL) { break; } /* No need for iteration as it is a simple scan */ pgrp_lock(pg); for (p = pg->pg_members.lh_first; p != 0; p = p->p_pglist.le_next) { if (p->p_nice < low) low = p->p_nice; } pgrp_unlock(pg); pg_rele(pg); break; } case PRIO_USER: if (uap->who == 0) uap->who = kauth_cred_getuid(kauth_cred_get()); proc_list_lock(); for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) { my_cred = kauth_cred_proc_ref(p); if (kauth_cred_getuid(my_cred) == uap->who && p->p_nice < low) low = p->p_nice; kauth_cred_unref(&my_cred); } proc_list_unlock(); break; case PRIO_DARWIN_THREAD: /* we currently only support the current thread */ if (uap->who != 0) return (EINVAL); low = proc_get_task_policy(current_task(), current_thread(), TASK_POLICY_INTERNAL, TASK_POLICY_DARWIN_BG); break; case PRIO_DARWIN_PROCESS: if (uap->who == 0) { p = curp; } else { p = proc_find(uap->who); if (p == PROC_NULL) break; refheld = 1; } error = get_background_proc(curp, p, &low); if (refheld) proc_rele(p); if (error) return (error); break; default: return (EINVAL); } if (low == PRIO_MAX + 1) return (ESRCH); *retval = low; return (0); } /* call back function used for proc iteration in PRIO_USER */ static int puser_donice_callback(proc_t p, void * arg) { int error, n; struct puser_nice_args * pun = (struct puser_nice_args *)arg; kauth_cred_t my_cred; my_cred = kauth_cred_proc_ref(p); if (kauth_cred_getuid(my_cred) == pun->who) { error = donice(pun->curp, p, pun->prio); if (pun->errorp != NULL) *pun->errorp = error; if (pun->foundp != NULL) { n = *pun->foundp; *pun->foundp = n+1; } } kauth_cred_unref(&my_cred); return(PROC_RETURNED); } /* call back function used for proc iteration in PRIO_PGRP */ static int ppgrp_donice_callback(proc_t p, void * arg) { int error; struct ppgrp_nice_args * pun = (struct ppgrp_nice_args *)arg; int n; error = donice(pun->curp, p, pun->prio); if (pun->errorp != NULL) *pun->errorp = error; if (pun->foundp!= NULL) { n = *pun->foundp; *pun->foundp = n+1; } return(PROC_RETURNED); } /* * Returns: 0 Success * EINVAL * ESRCH * donice:EPERM * donice:EACCES */ /* ARGSUSED */ int setpriority(struct proc *curp, struct setpriority_args *uap, __unused int32_t *retval) { struct proc *p; int found = 0, error = 0; int refheld = 0; AUDIT_ARG(cmd, uap->which); AUDIT_ARG(owner, uap->who, 0); AUDIT_ARG(value32, uap->prio); /* would also test (uap->who < 0), but id_t is unsigned */ if (uap->who > 0x7fffffff) return (EINVAL); switch (uap->which) { case PRIO_PROCESS: if (uap->who == 0) p = curp; else { p = proc_find(uap->who); if (p == 0) break; refheld = 1; } error = donice(curp, p, uap->prio); found++; if (refheld != 0) proc_rele(p); break; case PRIO_PGRP: { struct pgrp *pg = PGRP_NULL; struct ppgrp_nice_args ppgrp; if (uap->who == 0) { pg = proc_pgrp(curp); } else if ((pg = pgfind(uap->who)) == PGRP_NULL) break; ppgrp.curp = curp; ppgrp.prio = uap->prio; ppgrp.foundp = &found; ppgrp.errorp = &error; /* PGRP_DROPREF drops the reference on process group */ pgrp_iterate(pg, PGRP_DROPREF, ppgrp_donice_callback, (void *)&ppgrp, NULL, NULL); break; } case PRIO_USER: { struct puser_nice_args punice; if (uap->who == 0) uap->who = kauth_cred_getuid(kauth_cred_get()); punice.curp = curp; punice.prio = uap->prio; punice.who = uap->who; punice.foundp = &found; error = 0; punice.errorp = &error; proc_iterate(PROC_ALLPROCLIST, puser_donice_callback, (void *)&punice, NULL, NULL); break; } case PRIO_DARWIN_THREAD: { /* we currently only support the current thread */ if (uap->who != 0) return (EINVAL); error = do_background_thread(curp, current_thread(), uap->prio); found++; break; } case PRIO_DARWIN_PROCESS: { if (uap->who == 0) p = curp; else { p = proc_find(uap->who); if (p == 0) break; refheld = 1; } error = do_background_proc(curp, p, uap->prio); found++; if (refheld != 0) proc_rele(p); break; } default: return (EINVAL); } if (found == 0) return (ESRCH); return (error); } /* * Returns: 0 Success * EPERM * EACCES * mac_check_proc_sched:??? */ int donice(struct proc *curp, struct proc *chgp, int n) { int error = 0; kauth_cred_t ucred; kauth_cred_t my_cred; ucred = kauth_cred_proc_ref(curp); my_cred = kauth_cred_proc_ref(chgp); if (suser(ucred, NULL) && kauth_cred_getruid(ucred) && kauth_cred_getuid(ucred) != kauth_cred_getuid(my_cred) && kauth_cred_getruid(ucred) != kauth_cred_getuid(my_cred)) { error = EPERM; goto out; } if (n > PRIO_MAX) n = PRIO_MAX; if (n < PRIO_MIN) n = PRIO_MIN; if (n < chgp->p_nice && suser(ucred, &curp->p_acflag)) { error = EACCES; goto out; } #if CONFIG_MACF error = mac_proc_check_sched(curp, chgp); if (error) goto out; #endif proc_lock(chgp); chgp->p_nice = n; proc_unlock(chgp); (void)resetpriority(chgp); out: kauth_cred_unref(&ucred); kauth_cred_unref(&my_cred); return (error); } static int get_background_proc(struct proc *curp, struct proc *targetp, int *priority) { int external = 0; int error = 0; kauth_cred_t ucred, target_cred; ucred = kauth_cred_get(); target_cred = kauth_cred_proc_ref(targetp); if (!kauth_cred_issuser(ucred) && kauth_cred_getruid(ucred) && kauth_cred_getuid(ucred) != kauth_cred_getuid(target_cred) && kauth_cred_getruid(ucred) != kauth_cred_getuid(target_cred)) { error = EPERM; goto out; } external = (curp == targetp) ? TASK_POLICY_INTERNAL : TASK_POLICY_EXTERNAL; *priority = proc_get_task_policy(current_task(), THREAD_NULL, external, TASK_POLICY_DARWIN_BG); out: kauth_cred_unref(&target_cred); return (error); } static int do_background_proc(struct proc *curp, struct proc *targetp, int priority) { #if !CONFIG_MACF #pragma unused(curp) #endif int error = 0; kauth_cred_t ucred; kauth_cred_t target_cred; int external; int flavor; int enable; ucred = kauth_cred_get(); target_cred = kauth_cred_proc_ref(targetp); if (!kauth_cred_issuser(ucred) && kauth_cred_getruid(ucred) && kauth_cred_getuid(ucred) != kauth_cred_getuid(target_cred) && kauth_cred_getruid(ucred) != kauth_cred_getuid(target_cred)) { error = EPERM; goto out; } #if CONFIG_MACF error = mac_proc_check_sched(curp, targetp); if (error) goto out; #endif external = (curp == targetp) ? TASK_POLICY_INTERNAL : TASK_POLICY_EXTERNAL; switch (priority) { case PRIO_DARWIN_NONUI: flavor = TASK_POLICY_GPU_DENY; enable = TASK_POLICY_ENABLE; break; case PRIO_DARWIN_BG: flavor = TASK_POLICY_DARWIN_BG; enable = TASK_POLICY_ENABLE; break; default: /* * DARWIN_BG and GPU_DENY disable are overloaded, * so we need to turn them both off at the same time * * TODO: It would be nice to fail if priority != 0 */ flavor = TASK_POLICY_DARWIN_BG_AND_GPU; enable = TASK_POLICY_DISABLE; break; } proc_set_task_policy(proc_task(targetp), THREAD_NULL, external, flavor, enable); out: kauth_cred_unref(&target_cred); return (error); } static void do_background_socket(struct proc *p, thread_t thread, int priority) { #if SOCKETS struct filedesc *fdp; struct fileproc *fp; int i; if (priority == PRIO_DARWIN_BG) { /* * For PRIO_DARWIN_PROCESS (thread is NULL), simply mark * the sockets with the background flag. There's nothing * to do here for the PRIO_DARWIN_THREAD case. */ if (thread == THREAD_NULL) { proc_fdlock(p); fdp = p->p_fd; for (i = 0; i < fdp->fd_nfiles; i++) { struct socket *sockp; fp = fdp->fd_ofiles[i]; if (fp == NULL || (fdp->fd_ofileflags[i] & UF_RESERVED) != 0 || FILEGLOB_DTYPE(fp->f_fglob) != DTYPE_SOCKET) { continue; } sockp = (struct socket *)fp->f_fglob->fg_data; socket_set_traffic_mgt_flags(sockp, TRAFFIC_MGT_SO_BACKGROUND); sockp->so_background_thread = NULL; } proc_fdunlock(p); } } else { /* disable networking IO throttle. * NOTE - It is a known limitation of the current design that we * could potentially clear TRAFFIC_MGT_SO_BACKGROUND bit for * sockets created by other threads within this process. */ proc_fdlock(p); fdp = p->p_fd; for ( i = 0; i < fdp->fd_nfiles; i++ ) { struct socket *sockp; fp = fdp->fd_ofiles[ i ]; if ( fp == NULL || (fdp->fd_ofileflags[ i ] & UF_RESERVED) != 0 || FILEGLOB_DTYPE(fp->f_fglob) != DTYPE_SOCKET ) { continue; } sockp = (struct socket *)fp->f_fglob->fg_data; /* skip if only clearing this thread's sockets */ if ((thread) && (sockp->so_background_thread != thread)) { continue; } socket_clear_traffic_mgt_flags(sockp, TRAFFIC_MGT_SO_BACKGROUND); sockp->so_background_thread = NULL; } proc_fdunlock(p); } #else #pragma unused(p, thread, priority) #endif } /* * do_background_thread * Returns: 0 Success * EPERM Tried to background while in vfork * XXX - todo - does this need a MACF hook? */ static int do_background_thread(struct proc *curp, thread_t thread, int priority) { struct uthread *ut; int enable, external; ut = get_bsdthread_info(thread); /* Backgrounding is unsupported for threads in vfork */ if ((ut->uu_flag & UT_VFORK) != 0) return(EPERM); /* TODO: Fail if someone passes something besides 0 or PRIO_DARWIN_BG */ enable = (priority == PRIO_DARWIN_BG) ? TASK_POLICY_ENABLE : TASK_POLICY_DISABLE; external = (current_thread() == thread) ? TASK_POLICY_INTERNAL : TASK_POLICY_EXTERNAL; proc_set_task_policy_thread(curp->task, thread_tid(thread), external, TASK_POLICY_DARWIN_BG, enable); return(0); } /* * Returns: 0 Success * copyin:EFAULT * dosetrlimit: */ /* ARGSUSED */ int setrlimit(struct proc *p, struct setrlimit_args *uap, __unused int32_t *retval) { struct rlimit alim; int error; if ((error = copyin(uap->rlp, (caddr_t)&alim, sizeof (struct rlimit)))) return (error); return (dosetrlimit(p, uap->which, &alim)); } /* * Returns: 0 Success * EINVAL * ENOMEM Cannot copy limit structure * suser:EPERM * * Notes: EINVAL is returned both for invalid arguments, and in the * case that the current usage (e.g. RLIMIT_STACK) is already * in excess of the requested limit. */ int dosetrlimit(struct proc *p, u_int which, struct rlimit *limp) { struct rlimit *alimp; int error; kern_return_t kr; int posix = (which & _RLIMIT_POSIX_FLAG) ? 1 : 0; /* Mask out POSIX flag, saved above */ which &= ~_RLIMIT_POSIX_FLAG; if (which >= RLIM_NLIMITS) return (EINVAL); alimp = &p->p_rlimit[which]; if (limp->rlim_cur > limp->rlim_max) return EINVAL; if (limp->rlim_cur > alimp->rlim_max || limp->rlim_max > alimp->rlim_max) if ((error = suser(kauth_cred_get(), &p->p_acflag))) { return (error); } proc_limitblock(p); if ((error = proc_limitreplace(p)) != 0) { proc_limitunblock(p); return(error); } alimp = &p->p_rlimit[which]; switch (which) { case RLIMIT_CPU: if (limp->rlim_cur == RLIM_INFINITY) { task_vtimer_clear(p->task, TASK_VTIMER_RLIM); timerclear(&p->p_rlim_cpu); } else { task_absolutetime_info_data_t tinfo; mach_msg_type_number_t count; struct timeval ttv, tv; clock_sec_t tv_sec; clock_usec_t tv_usec; count = TASK_ABSOLUTETIME_INFO_COUNT; task_info(p->task, TASK_ABSOLUTETIME_INFO, (task_info_t)&tinfo, &count); absolutetime_to_microtime(tinfo.total_user + tinfo.total_system, &tv_sec, &tv_usec); ttv.tv_sec = tv_sec; ttv.tv_usec = tv_usec; tv.tv_sec = (limp->rlim_cur > __INT_MAX__ ? __INT_MAX__ : limp->rlim_cur); tv.tv_usec = 0; timersub(&tv, &ttv, &p->p_rlim_cpu); timerclear(&tv); if (timercmp(&p->p_rlim_cpu, &tv, >)) task_vtimer_set(p->task, TASK_VTIMER_RLIM); else { task_vtimer_clear(p->task, TASK_VTIMER_RLIM); timerclear(&p->p_rlim_cpu); psignal(p, SIGXCPU); } } break; case RLIMIT_DATA: if (limp->rlim_cur > maxdmap) limp->rlim_cur = maxdmap; if (limp->rlim_max > maxdmap) limp->rlim_max = maxdmap; break; case RLIMIT_STACK: /* Disallow illegal stack size instead of clipping */ if (limp->rlim_cur > maxsmap || limp->rlim_max > maxsmap) { if (posix) { error = EINVAL; goto out; } else { /* * 4797860 - workaround poorly written installers by * doing previous implementation (< 10.5) when caller * is non-POSIX conforming. */ if (limp->rlim_cur > maxsmap) limp->rlim_cur = maxsmap; if (limp->rlim_max > maxsmap) limp->rlim_max = maxsmap; } } /* * Stack is allocated to the max at exec time with only * "rlim_cur" bytes accessible. If stack limit is going * up make more accessible, if going down make inaccessible. */ if (limp->rlim_cur > alimp->rlim_cur) { user_addr_t addr; user_size_t size; /* grow stack */ size = round_page_64(limp->rlim_cur); size -= round_page_64(alimp->rlim_cur); addr = p->user_stack - round_page_64(limp->rlim_cur); kr = mach_vm_protect(current_map(), addr, size, FALSE, VM_PROT_DEFAULT); if (kr != KERN_SUCCESS) { error = EINVAL; goto out; } } else if (limp->rlim_cur < alimp->rlim_cur) { user_addr_t addr; user_size_t size; user_addr_t cur_sp; /* shrink stack */ /* * First check if new stack limit would agree * with current stack usage. * Get the current thread's stack pointer... */ cur_sp = thread_adjuserstack(current_thread(), 0); if (cur_sp <= p->user_stack && cur_sp > (p->user_stack - round_page_64(alimp->rlim_cur))) { /* stack pointer is in main stack */ if (cur_sp <= (p->user_stack - round_page_64(limp->rlim_cur))) { /* * New limit would cause * current usage to be invalid: * reject new limit. */ error = EINVAL; goto out; } } else { /* not on the main stack: reject */ error = EINVAL; goto out; } size = round_page_64(alimp->rlim_cur); size -= round_page_64(limp->rlim_cur); addr = p->user_stack - round_page_64(alimp->rlim_cur); kr = mach_vm_protect(current_map(), addr, size, FALSE, VM_PROT_NONE); if (kr != KERN_SUCCESS) { error = EINVAL; goto out; } } else { /* no change ... */ } break; case RLIMIT_NOFILE: /* * Only root can set the maxfiles limits, as it is * systemwide resource. If we are expecting POSIX behavior, * instead of clamping the value, return EINVAL. We do this * because historically, people have been able to attempt to * set RLIM_INFINITY to get "whatever the maximum is". */ if ( kauth_cred_issuser(kauth_cred_get()) ) { if (limp->rlim_cur != alimp->rlim_cur && limp->rlim_cur > (rlim_t)maxfiles) { if (posix) { error = EINVAL; goto out; } limp->rlim_cur = maxfiles; } if (limp->rlim_max != alimp->rlim_max && limp->rlim_max > (rlim_t)maxfiles) limp->rlim_max = maxfiles; } else { if (limp->rlim_cur != alimp->rlim_cur && limp->rlim_cur > (rlim_t)maxfilesperproc) { if (posix) { error = EINVAL; goto out; } limp->rlim_cur = maxfilesperproc; } if (limp->rlim_max != alimp->rlim_max && limp->rlim_max > (rlim_t)maxfilesperproc) limp->rlim_max = maxfilesperproc; } break; case RLIMIT_NPROC: /* * Only root can set to the maxproc limits, as it is * systemwide resource; all others are limited to * maxprocperuid (presumably less than maxproc). */ if ( kauth_cred_issuser(kauth_cred_get()) ) { if (limp->rlim_cur > (rlim_t)maxproc) limp->rlim_cur = maxproc; if (limp->rlim_max > (rlim_t)maxproc) limp->rlim_max = maxproc; } else { if (limp->rlim_cur > (rlim_t)maxprocperuid) limp->rlim_cur = maxprocperuid; if (limp->rlim_max > (rlim_t)maxprocperuid) limp->rlim_max = maxprocperuid; } break; case RLIMIT_MEMLOCK: /* * Tell the Mach VM layer about the new limit value. */ vm_map_set_user_wire_limit(current_map(), limp->rlim_cur); break; } /* switch... */ proc_lock(p); *alimp = *limp; proc_unlock(p); error = 0; out: proc_limitunblock(p); return (error); } /* ARGSUSED */ int getrlimit(struct proc *p, struct getrlimit_args *uap, __unused int32_t *retval) { struct rlimit lim; /* * Take out flag now in case we need to use it to trigger variant * behaviour later. */ uap->which &= ~_RLIMIT_POSIX_FLAG; if (uap->which >= RLIM_NLIMITS) return (EINVAL); proc_limitget(p, uap->which, &lim); return (copyout((caddr_t)&lim, uap->rlp, sizeof (struct rlimit))); } /* * Transform the running time and tick information in proc p into user, * system, and interrupt time usage. */ /* No lock on proc is held for this.. */ void calcru(struct proc *p, struct timeval *up, struct timeval *sp, struct timeval *ip) { task_t task; timerclear(up); timerclear(sp); if (ip != NULL) timerclear(ip); task = p->task; if (task) { mach_task_basic_info_data_t tinfo; task_thread_times_info_data_t ttimesinfo; task_events_info_data_t teventsinfo; mach_msg_type_number_t task_info_count, task_ttimes_count; mach_msg_type_number_t task_events_count; struct timeval ut,st; task_info_count = MACH_TASK_BASIC_INFO_COUNT; task_info(task, MACH_TASK_BASIC_INFO, (task_info_t)&tinfo, &task_info_count); ut.tv_sec = tinfo.user_time.seconds; ut.tv_usec = tinfo.user_time.microseconds; st.tv_sec = tinfo.system_time.seconds; st.tv_usec = tinfo.system_time.microseconds; timeradd(&ut, up, up); timeradd(&st, sp, sp); task_ttimes_count = TASK_THREAD_TIMES_INFO_COUNT; task_info(task, TASK_THREAD_TIMES_INFO, (task_info_t)&ttimesinfo, &task_ttimes_count); ut.tv_sec = ttimesinfo.user_time.seconds; ut.tv_usec = ttimesinfo.user_time.microseconds; st.tv_sec = ttimesinfo.system_time.seconds; st.tv_usec = ttimesinfo.system_time.microseconds; timeradd(&ut, up, up); timeradd(&st, sp, sp); task_events_count = TASK_EVENTS_INFO_COUNT; task_info(task, TASK_EVENTS_INFO, (task_info_t)&teventsinfo, &task_events_count); /* * No need to lock "p": this does not need to be * completely consistent, right ? */ p->p_stats->p_ru.ru_minflt = (teventsinfo.faults - teventsinfo.pageins); p->p_stats->p_ru.ru_majflt = teventsinfo.pageins; p->p_stats->p_ru.ru_nivcsw = (teventsinfo.csw - p->p_stats->p_ru.ru_nvcsw); if (p->p_stats->p_ru.ru_nivcsw < 0) p->p_stats->p_ru.ru_nivcsw = 0; p->p_stats->p_ru.ru_maxrss = tinfo.resident_size_max; } } __private_extern__ void munge_user64_rusage(struct rusage *a_rusage_p, struct user64_rusage *a_user_rusage_p); __private_extern__ void munge_user32_rusage(struct rusage *a_rusage_p, struct user32_rusage *a_user_rusage_p); /* ARGSUSED */ int getrusage(struct proc *p, struct getrusage_args *uap, __unused int32_t *retval) { struct rusage *rup, rubuf; struct user64_rusage rubuf64; struct user32_rusage rubuf32; size_t retsize = sizeof(rubuf); /* default: 32 bits */ caddr_t retbuf = (caddr_t)&rubuf; /* default: 32 bits */ struct timeval utime; struct timeval stime; switch (uap->who) { case RUSAGE_SELF: calcru(p, &utime, &stime, NULL); proc_lock(p); rup = &p->p_stats->p_ru; rup->ru_utime = utime; rup->ru_stime = stime; rubuf = *rup; proc_unlock(p); break; case RUSAGE_CHILDREN: proc_lock(p); rup = &p->p_stats->p_cru; rubuf = *rup; proc_unlock(p); break; default: return (EINVAL); } if (IS_64BIT_PROCESS(p)) { retsize = sizeof(rubuf64); retbuf = (caddr_t)&rubuf64; munge_user64_rusage(&rubuf, &rubuf64); } else { retsize = sizeof(rubuf32); retbuf = (caddr_t)&rubuf32; munge_user32_rusage(&rubuf, &rubuf32); } return (copyout(retbuf, uap->rusage, retsize)); } void ruadd(struct rusage *ru, struct rusage *ru2) { long *ip, *ip2; long i; timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime); timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime); if (ru->ru_maxrss < ru2->ru_maxrss) ru->ru_maxrss = ru2->ru_maxrss; ip = &ru->ru_first; ip2 = &ru2->ru_first; for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) *ip++ += *ip2++; } /* * Add the rusage stats of child in parent. * * It adds rusage statistics of child process and statistics of all its * children to its parent. * * Note: proc lock of parent should be held while calling this function. */ void update_rusage_info_child(struct rusage_info_child *ri, struct rusage_info_v2 *ri2) { ri->ri_child_user_time += (ri2->ri_user_time + ri2->ri_child_user_time); ri->ri_child_system_time += (ri2->ri_system_time + ri2->ri_child_system_time); ri->ri_child_pkg_idle_wkups += (ri2->ri_pkg_idle_wkups + ri2->ri_child_pkg_idle_wkups); ri->ri_child_interrupt_wkups += (ri2->ri_interrupt_wkups + ri2->ri_child_interrupt_wkups); ri->ri_child_pageins += (ri2->ri_pageins + ri2->ri_child_pageins); ri->ri_child_elapsed_abstime += ((ri2->ri_proc_exit_abstime - ri2->ri_proc_start_abstime) + ri2->ri_child_elapsed_abstime); } void proc_limitget(proc_t p, int which, struct rlimit * limp) { proc_list_lock(); limp->rlim_cur = p->p_rlimit[which].rlim_cur; limp->rlim_max = p->p_rlimit[which].rlim_max; proc_list_unlock(); } void proc_limitdrop(proc_t p, int exiting) { struct plimit * freelim = NULL; struct plimit * freeoldlim = NULL; proc_list_lock(); if (--p->p_limit->pl_refcnt == 0) { freelim = p->p_limit; p->p_limit = NULL; } if ((exiting != 0) && (p->p_olimit != NULL) && (--p->p_olimit->pl_refcnt == 0)) { freeoldlim = p->p_olimit; p->p_olimit = NULL; } proc_list_unlock(); if (freelim != NULL) FREE_ZONE(freelim, sizeof *p->p_limit, M_PLIMIT); if (freeoldlim != NULL) FREE_ZONE(freeoldlim, sizeof *p->p_olimit, M_PLIMIT); } void proc_limitfork(proc_t parent, proc_t child) { proc_list_lock(); child->p_limit = parent->p_limit; child->p_limit->pl_refcnt++; child->p_olimit = NULL; proc_list_unlock(); } void proc_limitblock(proc_t p) { proc_lock(p); while (p->p_lflag & P_LLIMCHANGE) { p->p_lflag |= P_LLIMWAIT; msleep(&p->p_olimit, &p->p_mlock, 0, "proc_limitblock", NULL); } p->p_lflag |= P_LLIMCHANGE; proc_unlock(p); } void proc_limitunblock(proc_t p) { proc_lock(p); p->p_lflag &= ~P_LLIMCHANGE; if (p->p_lflag & P_LLIMWAIT) { p->p_lflag &= ~P_LLIMWAIT; wakeup(&p->p_olimit); } proc_unlock(p); } /* This is called behind serialization provided by proc_limitblock/unlbock */ int proc_limitreplace(proc_t p) { struct plimit *copy; proc_list_lock(); if (p->p_limit->pl_refcnt == 1) { proc_list_unlock(); return(0); } proc_list_unlock(); MALLOC_ZONE(copy, struct plimit *, sizeof(struct plimit), M_PLIMIT, M_WAITOK); if (copy == NULL) { return(ENOMEM); } proc_list_lock(); bcopy(p->p_limit->pl_rlimit, copy->pl_rlimit, sizeof(struct rlimit) * RLIM_NLIMITS); copy->pl_refcnt = 1; /* hang on to reference to old till process exits */ p->p_olimit = p->p_limit; p->p_limit = copy; proc_list_unlock(); return(0); } /* * iopolicysys * * Description: System call MUX for use in manipulating I/O policy attributes of the current process or thread * * Parameters: cmd Policy command * arg Pointer to policy arguments * * Returns: 0 Success * EINVAL Invalid command or invalid policy arguments * */ static int iopolicysys_disk(struct proc *p, int cmd, int scope, int policy, struct _iopol_param_t *iop_param); static int iopolicysys_vfs(struct proc *p, int cmd, int scope, int policy, struct _iopol_param_t *iop_param); int iopolicysys(struct proc *p, struct iopolicysys_args *uap, __unused int32_t *retval) { int error = 0; struct _iopol_param_t iop_param; if ((error = copyin(uap->arg, &iop_param, sizeof(iop_param))) != 0) goto out; switch (iop_param.iop_iotype) { case IOPOL_TYPE_DISK: error = iopolicysys_disk(p, uap->cmd, iop_param.iop_scope, iop_param.iop_policy, &iop_param); if (error) goto out; break; case IOPOL_TYPE_VFS_HFS_CASE_SENSITIVITY: error = iopolicysys_vfs(p, uap->cmd, iop_param.iop_scope, iop_param.iop_policy, &iop_param); if (error) goto out; break; default: error = EINVAL; goto out; } /* Individual iotype handlers are expected to update iop_param, if requested with a GET command */ if (uap->cmd == IOPOL_CMD_GET) { error = copyout((caddr_t)&iop_param, uap->arg, sizeof(iop_param)); if (error) goto out; } out: return (error); } static int iopolicysys_disk(struct proc *p __unused, int cmd, int scope, int policy, struct _iopol_param_t *iop_param) { int error = 0; thread_t thread; int policy_flavor; /* Validate scope */ switch (scope) { case IOPOL_SCOPE_PROCESS: thread = THREAD_NULL; policy_flavor = TASK_POLICY_IOPOL; break; case IOPOL_SCOPE_THREAD: thread = current_thread(); policy_flavor = TASK_POLICY_IOPOL; break; case IOPOL_SCOPE_DARWIN_BG: thread = THREAD_NULL; policy_flavor = TASK_POLICY_DARWIN_BG_IOPOL; break; default: error = EINVAL; goto out; } /* Validate policy */ if (cmd == IOPOL_CMD_SET) { switch (policy) { case IOPOL_DEFAULT: if (scope == IOPOL_SCOPE_DARWIN_BG) { /* the current default BG throttle level is UTILITY */ policy = IOPOL_UTILITY; } else { policy = IOPOL_IMPORTANT; } break; case IOPOL_UTILITY: /* fall-through */ case IOPOL_THROTTLE: /* These levels are OK */ break; case IOPOL_IMPORTANT: /* fall-through */ case IOPOL_STANDARD: /* fall-through */ case IOPOL_PASSIVE: if (scope == IOPOL_SCOPE_DARWIN_BG) { /* These levels are invalid for BG */ error = EINVAL; goto out; } else { /* OK for other scopes */ } break; default: error = EINVAL; goto out; } } /* Perform command */ switch(cmd) { case IOPOL_CMD_SET: proc_set_task_policy(current_task(), thread, TASK_POLICY_INTERNAL, policy_flavor, policy); break; case IOPOL_CMD_GET: policy = proc_get_task_policy(current_task(), thread, TASK_POLICY_INTERNAL, policy_flavor); iop_param->iop_policy = policy; break; default: error = EINVAL; /* unknown command */ break; } out: return (error); } static int iopolicysys_vfs(struct proc *p, int cmd, int scope, int policy, struct _iopol_param_t *iop_param) { int error = 0; /* Validate scope */ switch (scope) { case IOPOL_SCOPE_PROCESS: /* Only process OK */ break; default: error = EINVAL; goto out; } /* Validate policy */ if (cmd == IOPOL_CMD_SET) { switch (policy) { case IOPOL_VFS_HFS_CASE_SENSITIVITY_DEFAULT: /* fall-through */ case IOPOL_VFS_HFS_CASE_SENSITIVITY_FORCE_CASE_SENSITIVE: /* These policies are OK */ break; default: error = EINVAL; goto out; } } /* Perform command */ switch(cmd) { case IOPOL_CMD_SET: if (0 == kauth_cred_issuser(kauth_cred_get())) { error = EPERM; goto out; } switch (policy) { case IOPOL_VFS_HFS_CASE_SENSITIVITY_DEFAULT: OSBitAndAtomic16(~((uint32_t)P_VFS_IOPOLICY_FORCE_HFS_CASE_SENSITIVITY), &p->p_vfs_iopolicy); break; case IOPOL_VFS_HFS_CASE_SENSITIVITY_FORCE_CASE_SENSITIVE: OSBitOrAtomic16((uint32_t)P_VFS_IOPOLICY_FORCE_HFS_CASE_SENSITIVITY, &p->p_vfs_iopolicy); break; default: error = EINVAL; goto out; } break; case IOPOL_CMD_GET: iop_param->iop_policy = (p->p_vfs_iopolicy & P_VFS_IOPOLICY_FORCE_HFS_CASE_SENSITIVITY) ? IOPOL_VFS_HFS_CASE_SENSITIVITY_FORCE_CASE_SENSITIVE : IOPOL_VFS_HFS_CASE_SENSITIVITY_DEFAULT; break; default: error = EINVAL; /* unknown command */ break; } out: return (error); } /* BSD call back function for task_policy */ void proc_apply_task_networkbg(void * bsd_info, thread_t thread, int bg); void proc_apply_task_networkbg(void * bsd_info, thread_t thread, int bg) { proc_t p = PROC_NULL; proc_t curp = (proc_t)bsd_info; pid_t pid; int prio = (bg ? PRIO_DARWIN_BG : 0); pid = curp->p_pid; p = proc_find(pid); if (p != PROC_NULL) { do_background_socket(p, thread, prio); proc_rele(p); } } void gather_rusage_info_v2(proc_t p, struct rusage_info_v2 *ru, int flavor) { struct rusage_info_child *ri_child; assert(p->p_stats != NULL); switch(flavor) { case RUSAGE_INFO_V2: ru->ri_diskio_bytesread = p->p_stats->ri_diskiobytes.ri_bytesread; ru->ri_diskio_byteswritten = p->p_stats->ri_diskiobytes.ri_byteswritten; /* fall through */ case RUSAGE_INFO_V1: /* * p->p_stats->ri_child statistics are protected under proc lock. */ proc_lock(p); ri_child = &(p->p_stats->ri_child); ru->ri_child_user_time = ri_child->ri_child_user_time; ru->ri_child_system_time = ri_child->ri_child_system_time; ru->ri_child_pkg_idle_wkups = ri_child->ri_child_pkg_idle_wkups; ru->ri_child_interrupt_wkups = ri_child->ri_child_interrupt_wkups; ru->ri_child_pageins = ri_child->ri_child_pageins; ru->ri_child_elapsed_abstime = ri_child->ri_child_elapsed_abstime; proc_unlock(p); /* fall through */ case RUSAGE_INFO_V0: proc_getexecutableuuid(p, (unsigned char *)&ru->ri_uuid, sizeof (ru->ri_uuid)); fill_task_rusage_v2(p->task, ru); ru->ri_proc_start_abstime = p->p_stats->ps_start; } } /* * Temporary function to copy value from rusage_info_v2 to rusage_info_v0. */ static void rusage_info_v2_to_v0(struct rusage_info_v0 *ri_v0, struct rusage_info_v2 *ri_v2) { memcpy(&ri_v0->ri_uuid[0], &ri_v2->ri_uuid[0], sizeof(ri_v0->ri_uuid)); ri_v0->ri_user_time = ri_v2->ri_user_time; ri_v0->ri_system_time = ri_v2->ri_system_time; ri_v0->ri_pkg_idle_wkups = ri_v2->ri_pkg_idle_wkups; ri_v0->ri_interrupt_wkups = ri_v2->ri_interrupt_wkups; ri_v0->ri_pageins = ri_v2->ri_pageins; ri_v0->ri_wired_size = ri_v2->ri_wired_size; ri_v0->ri_resident_size = ri_v2->ri_resident_size; ri_v0->ri_phys_footprint = ri_v2->ri_phys_footprint; ri_v0->ri_proc_start_abstime = ri_v2->ri_proc_start_abstime; ri_v0->ri_proc_exit_abstime = ri_v2->ri_proc_exit_abstime; } static void rusage_info_v2_to_v1(struct rusage_info_v1 *ri_v1, struct rusage_info_v2 *ri_v2) { memcpy(&ri_v1->ri_uuid[0], &ri_v2->ri_uuid[0], sizeof(ri_v1->ri_uuid)); ri_v1->ri_user_time = ri_v2->ri_user_time; ri_v1->ri_system_time = ri_v2->ri_system_time; ri_v1->ri_pkg_idle_wkups = ri_v2->ri_pkg_idle_wkups; ri_v1->ri_interrupt_wkups = ri_v2->ri_interrupt_wkups; ri_v1->ri_pageins = ri_v2->ri_pageins; ri_v1->ri_wired_size = ri_v2->ri_wired_size; ri_v1->ri_resident_size = ri_v2->ri_resident_size; ri_v1->ri_phys_footprint = ri_v2->ri_phys_footprint; ri_v1->ri_proc_start_abstime = ri_v2->ri_proc_start_abstime; ri_v1->ri_proc_exit_abstime = ri_v2->ri_proc_exit_abstime; ri_v1->ri_child_user_time = ri_v2->ri_child_user_time; ri_v1->ri_child_system_time = ri_v2->ri_child_system_time; ri_v1->ri_child_pkg_idle_wkups = ri_v2->ri_child_pkg_idle_wkups; ri_v1->ri_child_interrupt_wkups = ri_v2->ri_child_interrupt_wkups; ri_v1->ri_child_pageins = ri_v2->ri_child_pageins; ri_v1->ri_child_elapsed_abstime = ri_v2->ri_child_elapsed_abstime; } int proc_get_rusage(proc_t p, int flavor, user_addr_t buffer, __unused int is_zombie) { struct rusage_info_v0 ri_v0; struct rusage_info_v1 ri_v1; struct rusage_info_v2 ri_v2; int error = 0; switch (flavor) { case RUSAGE_INFO_V0: /* * If task is still alive, collect info from the live task itself. * Otherwise, look to the cached info in the zombie proc. */ if (p->p_ru == NULL) { gather_rusage_info_v2(p, &ri_v2, flavor); ri_v2.ri_proc_exit_abstime = 0; rusage_info_v2_to_v0(&ri_v0, &ri_v2); } else { rusage_info_v2_to_v0(&ri_v0, &p->p_ru->ri); } error = copyout(&ri_v0, buffer, sizeof (ri_v0)); break; case RUSAGE_INFO_V1: /* * If task is still alive, collect info from the live task itself. * Otherwise, look to the cached info in the zombie proc. */ if (p->p_ru == NULL) { gather_rusage_info_v2(p, &ri_v2, flavor); ri_v2.ri_proc_exit_abstime = 0; rusage_info_v2_to_v1(&ri_v1, &ri_v2); } else { rusage_info_v2_to_v1(&ri_v1, &p->p_ru->ri); } error = copyout(&ri_v1, buffer, sizeof (ri_v1)); break; case RUSAGE_INFO_V2: /* * If task is still alive, collect info from the live task itself. * Otherwise, look to the cached info in the zombie proc. */ if (p->p_ru == NULL) { gather_rusage_info_v2(p, &ri_v2, flavor); ri_v2.ri_proc_exit_abstime = 0; } else { ri_v2 = p->p_ru->ri; } error = copyout(&ri_v2, buffer, sizeof (ri_v2)); break; default: error = EINVAL; break; } return (error); } static int mach_to_bsd_rv(int mach_rv) { int bsd_rv = 0; switch (mach_rv) { case KERN_SUCCESS: bsd_rv = 0; break; case KERN_INVALID_ARGUMENT: bsd_rv = EINVAL; break; default: panic("unknown error %#x", mach_rv); } return bsd_rv; } /* * Resource limit controls * * uap->flavor available flavors: * * RLIMIT_WAKEUPS_MONITOR */ int proc_rlimit_control(__unused struct proc *p, struct proc_rlimit_control_args *uap, int32_t *retval) { proc_t targetp; int error = 0; struct proc_rlimit_control_wakeupmon wakeupmon_args; uint32_t cpumon_flags; kauth_cred_t my_cred, target_cred; *retval = 0; if ((targetp = proc_find(uap->pid)) == PROC_NULL) { *retval = -1; return (ESRCH); } my_cred = kauth_cred_get(); target_cred = kauth_cred_proc_ref(targetp); if (!kauth_cred_issuser(my_cred) && kauth_cred_getruid(my_cred) && kauth_cred_getuid(my_cred) != kauth_cred_getuid(target_cred) && kauth_cred_getruid(my_cred) != kauth_cred_getuid(target_cred)) { proc_rele(targetp); kauth_cred_unref(&target_cred); *retval = -1; error = EACCES; return (error); } switch (uap->flavor) { case RLIMIT_WAKEUPS_MONITOR: if ((error = copyin(uap->arg, &wakeupmon_args, sizeof (wakeupmon_args))) != 0) { break; } if ((error = mach_to_bsd_rv(task_wakeups_monitor_ctl(targetp->task, &wakeupmon_args.wm_flags, &wakeupmon_args.wm_rate))) != 0) { break; } error = copyout(&wakeupmon_args, uap->arg, sizeof (wakeupmon_args)); break; case RLIMIT_CPU_USAGE_MONITOR: cpumon_flags = uap->arg; // XXX temporarily stashing flags in argp (12592127) error = mach_to_bsd_rv(task_cpu_usage_monitor_ctl(targetp->task, &cpumon_flags)); break; default: error = EINVAL; break; } proc_rele(targetp); kauth_cred_unref(&target_cred); if (error != 0) { *retval = -1; } /* * Return value from this function becomes errno to userland caller. * *retval is what the system call invocation returns. */ return (error); }