/* * Copyright (C) 1999-2002 Harri Porten (porten@kde.org) * Copyright (C) 2001 Peter Kelly (pmk@post.com) * Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2012 Apple Inc. All rights reserved. * Copyright (C) 2007 Cameron Zwarich (cwzwarich@uwaterloo.ca) * Copyright (C) 2007 Maks Orlovich * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #include "config.h" #include "JSGlobalObjectFunctions.h" #include "CallFrame.h" #include "Interpreter.h" #include "JSFunction.h" #include "JSGlobalObject.h" #include "JSString.h" #include "JSStringBuilder.h" #include "Lexer.h" #include "LiteralParser.h" #include "Nodes.h" #include "Operations.h" #include "Parser.h" #include #include #include #include #include #include #include #include #include using namespace WTF; using namespace Unicode; namespace JSC { static JSValue encode(ExecState* exec, const char* doNotEscape) { CString cstr = exec->argument(0).toString(exec)->value(exec).utf8(String::StrictConversion); if (!cstr.data()) return throwError(exec, createURIError(exec, ASCIILiteral("String contained an illegal UTF-16 sequence."))); JSStringBuilder builder; const char* p = cstr.data(); for (size_t k = 0; k < cstr.length(); k++, p++) { char c = *p; if (c && strchr(doNotEscape, c)) builder.append(c); else { char tmp[4]; snprintf(tmp, sizeof(tmp), "%%%02X", static_cast(c)); builder.append(tmp); } } return builder.build(exec); } template ALWAYS_INLINE static JSValue decode(ExecState* exec, const CharType* characters, int length, const char* doNotUnescape, bool strict) { JSStringBuilder builder; int k = 0; UChar u = 0; while (k < length) { const CharType* p = characters + k; CharType c = *p; if (c == '%') { int charLen = 0; if (k <= length - 3 && isASCIIHexDigit(p[1]) && isASCIIHexDigit(p[2])) { const char b0 = Lexer::convertHex(p[1], p[2]); const int sequenceLen = UTF8SequenceLength(b0); if (sequenceLen && k <= length - sequenceLen * 3) { charLen = sequenceLen * 3; char sequence[5]; sequence[0] = b0; for (int i = 1; i < sequenceLen; ++i) { const CharType* q = p + i * 3; if (q[0] == '%' && isASCIIHexDigit(q[1]) && isASCIIHexDigit(q[2])) sequence[i] = Lexer::convertHex(q[1], q[2]); else { charLen = 0; break; } } if (charLen != 0) { sequence[sequenceLen] = 0; const int character = decodeUTF8Sequence(sequence); if (character < 0 || character >= 0x110000) charLen = 0; else if (character >= 0x10000) { // Convert to surrogate pair. builder.append(static_cast(0xD800 | ((character - 0x10000) >> 10))); u = static_cast(0xDC00 | ((character - 0x10000) & 0x3FF)); } else u = static_cast(character); } } } if (charLen == 0) { if (strict) return throwError(exec, createURIError(exec, ASCIILiteral("URI error"))); // The only case where we don't use "strict" mode is the "unescape" function. // For that, it's good to support the wonky "%u" syntax for compatibility with WinIE. if (k <= length - 6 && p[1] == 'u' && isASCIIHexDigit(p[2]) && isASCIIHexDigit(p[3]) && isASCIIHexDigit(p[4]) && isASCIIHexDigit(p[5])) { charLen = 6; u = Lexer::convertUnicode(p[2], p[3], p[4], p[5]); } } if (charLen && (u == 0 || u >= 128 || !strchr(doNotUnescape, u))) { if (u < 256) builder.append(static_cast(u)); else builder.append(u); k += charLen; continue; } } k++; builder.append(c); } return builder.build(exec); } static JSValue decode(ExecState* exec, const char* doNotUnescape, bool strict) { JSStringBuilder builder; String str = exec->argument(0).toString(exec)->value(exec); if (str.is8Bit()) return decode(exec, str.characters8(), str.length(), doNotUnescape, strict); return decode(exec, str.characters16(), str.length(), doNotUnescape, strict); } bool isStrWhiteSpace(UChar c) { switch (c) { // ECMA-262-5th 7.2 & 7.3 case 0x0009: case 0x000A: case 0x000B: case 0x000C: case 0x000D: case 0x0020: case 0x00A0: case 0x2028: case 0x2029: case 0xFEFF: return true; default: return c > 0xff && isSeparatorSpace(c); } } static int parseDigit(unsigned short c, int radix) { int digit = -1; if (c >= '0' && c <= '9') digit = c - '0'; else if (c >= 'A' && c <= 'Z') digit = c - 'A' + 10; else if (c >= 'a' && c <= 'z') digit = c - 'a' + 10; if (digit >= radix) return -1; return digit; } double parseIntOverflow(const LChar* s, int length, int radix) { double number = 0.0; double radixMultiplier = 1.0; for (const LChar* p = s + length - 1; p >= s; p--) { if (radixMultiplier == std::numeric_limits::infinity()) { if (*p != '0') { number = std::numeric_limits::infinity(); break; } } else { int digit = parseDigit(*p, radix); number += digit * radixMultiplier; } radixMultiplier *= radix; } return number; } double parseIntOverflow(const UChar* s, int length, int radix) { double number = 0.0; double radixMultiplier = 1.0; for (const UChar* p = s + length - 1; p >= s; p--) { if (radixMultiplier == std::numeric_limits::infinity()) { if (*p != '0') { number = std::numeric_limits::infinity(); break; } } else { int digit = parseDigit(*p, radix); number += digit * radixMultiplier; } radixMultiplier *= radix; } return number; } // ES5.1 15.1.2.2 template ALWAYS_INLINE static double parseInt(const String& s, const CharType* data, int radix) { // 1. Let inputString be ToString(string). // 2. Let S be a newly created substring of inputString consisting of the first character that is not a // StrWhiteSpaceChar and all characters following that character. (In other words, remove leading white // space.) If inputString does not contain any such characters, let S be the empty string. int length = s.length(); int p = 0; while (p < length && isStrWhiteSpace(data[p])) ++p; // 3. Let sign be 1. // 4. If S is not empty and the first character of S is a minus sign -, let sign be -1. // 5. If S is not empty and the first character of S is a plus sign + or a minus sign -, then remove the first character from S. double sign = 1; if (p < length) { if (data[p] == '+') ++p; else if (data[p] == '-') { sign = -1; ++p; } } // 6. Let R = ToInt32(radix). // 7. Let stripPrefix be true. // 8. If R != 0,then // b. If R != 16, let stripPrefix be false. // 9. Else, R == 0 // a. LetR = 10. // 10. If stripPrefix is true, then // a. If the length of S is at least 2 and the first two characters of S are either ―0x or ―0X, // then remove the first two characters from S and let R = 16. // 11. If S contains any character that is not a radix-R digit, then let Z be the substring of S // consisting of all characters before the first such character; otherwise, let Z be S. if ((radix == 0 || radix == 16) && length - p >= 2 && data[p] == '0' && (data[p + 1] == 'x' || data[p + 1] == 'X')) { radix = 16; p += 2; } else if (radix == 0) radix = 10; // 8.a If R < 2 or R > 36, then return NaN. if (radix < 2 || radix > 36) return QNaN; // 13. Let mathInt be the mathematical integer value that is represented by Z in radix-R notation, using the letters // A-Z and a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more than 20 significant // digits, every significant digit after the 20th may be replaced by a 0 digit, at the option of the implementation; // and if R is not 2, 4, 8, 10, 16, or 32, then mathInt may be an implementation-dependent approximation to the // mathematical integer value that is represented by Z in radix-R notation.) // 14. Let number be the Number value for mathInt. int firstDigitPosition = p; bool sawDigit = false; double number = 0; while (p < length) { int digit = parseDigit(data[p], radix); if (digit == -1) break; sawDigit = true; number *= radix; number += digit; ++p; } // 12. If Z is empty, return NaN. if (!sawDigit) return QNaN; // Alternate code path for certain large numbers. if (number >= mantissaOverflowLowerBound) { if (radix == 10) { size_t parsedLength; number = parseDouble(s.characters() + firstDigitPosition, p - firstDigitPosition, parsedLength); } else if (radix == 2 || radix == 4 || radix == 8 || radix == 16 || radix == 32) number = parseIntOverflow(s.substringSharingImpl(firstDigitPosition, p - firstDigitPosition).utf8().data(), p - firstDigitPosition, radix); } // 15. Return sign x number. return sign * number; } static double parseInt(const String& s, int radix) { if (s.is8Bit()) return parseInt(s, s.characters8(), radix); return parseInt(s, s.characters16(), radix); } static const int SizeOfInfinity = 8; template static bool isInfinity(const CharType* data, const CharType* end) { return (end - data) >= SizeOfInfinity && data[0] == 'I' && data[1] == 'n' && data[2] == 'f' && data[3] == 'i' && data[4] == 'n' && data[5] == 'i' && data[6] == 't' && data[7] == 'y'; } // See ecma-262 9.3.1 template static double jsHexIntegerLiteral(const CharType*& data, const CharType* end) { // Hex number. data += 2; const CharType* firstDigitPosition = data; double number = 0; while (true) { number = number * 16 + toASCIIHexValue(*data); ++data; if (data == end) break; if (!isASCIIHexDigit(*data)) break; } if (number >= mantissaOverflowLowerBound) number = parseIntOverflow(firstDigitPosition, data - firstDigitPosition, 16); return number; } // See ecma-262 9.3.1 template static double jsStrDecimalLiteral(const CharType*& data, const CharType* end) { RELEASE_ASSERT(data < end); size_t parsedLength; double number = parseDouble(data, end - data, parsedLength); if (parsedLength) { data += parsedLength; return number; } // Check for [+-]?Infinity switch (*data) { case 'I': if (isInfinity(data, end)) { data += SizeOfInfinity; return std::numeric_limits::infinity(); } break; case '+': if (isInfinity(data + 1, end)) { data += SizeOfInfinity + 1; return std::numeric_limits::infinity(); } break; case '-': if (isInfinity(data + 1, end)) { data += SizeOfInfinity + 1; return -std::numeric_limits::infinity(); } break; } // Not a number. return QNaN; } template static double toDouble(const CharType* characters, unsigned size) { const CharType* endCharacters = characters + size; // Skip leading white space. for (; characters < endCharacters; ++characters) { if (!isStrWhiteSpace(*characters)) break; } // Empty string. if (characters == endCharacters) return 0.0; double number; if (characters[0] == '0' && characters + 2 < endCharacters && (characters[1] | 0x20) == 'x' && isASCIIHexDigit(characters[2])) number = jsHexIntegerLiteral(characters, endCharacters); else number = jsStrDecimalLiteral(characters, endCharacters); // Allow trailing white space. for (; characters < endCharacters; ++characters) { if (!isStrWhiteSpace(*characters)) break; } if (characters != endCharacters) return QNaN; return number; } // See ecma-262 9.3.1 double jsToNumber(const String& s) { unsigned size = s.length(); if (size == 1) { UChar c = s[0]; if (isASCIIDigit(c)) return c - '0'; if (isStrWhiteSpace(c)) return 0; return QNaN; } if (s.is8Bit()) return toDouble(s.characters8(), size); return toDouble(s.characters16(), size); } static double parseFloat(const String& s) { unsigned size = s.length(); if (size == 1) { UChar c = s[0]; if (isASCIIDigit(c)) return c - '0'; return QNaN; } if (s.is8Bit()) { const LChar* data = s.characters8(); const LChar* end = data + size; // Skip leading white space. for (; data < end; ++data) { if (!isStrWhiteSpace(*data)) break; } // Empty string. if (data == end) return QNaN; return jsStrDecimalLiteral(data, end); } const UChar* data = s.characters16(); const UChar* end = data + size; // Skip leading white space. for (; data < end; ++data) { if (!isStrWhiteSpace(*data)) break; } // Empty string. if (data == end) return QNaN; return jsStrDecimalLiteral(data, end); } EncodedJSValue JSC_HOST_CALL globalFuncEval(ExecState* exec) { JSValue x = exec->argument(0); if (!x.isString()) return JSValue::encode(x); String s = x.toString(exec)->value(exec); if (s.is8Bit()) { LiteralParser preparser(exec, s.characters8(), s.length(), NonStrictJSON); if (JSValue parsedObject = preparser.tryLiteralParse()) return JSValue::encode(parsedObject); } else { LiteralParser preparser(exec, s.characters16(), s.length(), NonStrictJSON); if (JSValue parsedObject = preparser.tryLiteralParse()) return JSValue::encode(parsedObject); } JSGlobalObject* calleeGlobalObject = exec->callee()->globalObject(); EvalExecutable* eval = EvalExecutable::create(exec, exec->vm().codeCache(), makeSource(s), false); JSObject* error = eval->compile(exec, calleeGlobalObject); if (error) return throwVMError(exec, error); return JSValue::encode(exec->interpreter()->execute(eval, exec, calleeGlobalObject->globalThis(), calleeGlobalObject)); } EncodedJSValue JSC_HOST_CALL globalFuncParseInt(ExecState* exec) { JSValue value = exec->argument(0); JSValue radixValue = exec->argument(1); // Optimized handling for numbers: // If the argument is 0 or a number in range 10^-6 <= n < INT_MAX+1, then parseInt // results in a truncation to integer. In the case of -0, this is converted to 0. // // This is also a truncation for values in the range INT_MAX+1 <= n < 10^21, // however these values cannot be trivially truncated to int since 10^21 exceeds // even the int64_t range. Negative numbers are a little trickier, the case for // values in the range -10^21 < n <= -1 are similar to those for integer, but // values in the range -1 < n <= -10^-6 need to truncate to -0, not 0. static const double tenToTheMinus6 = 0.000001; static const double intMaxPlusOne = 2147483648.0; if (value.isNumber()) { double n = value.asNumber(); if (((n < intMaxPlusOne && n >= tenToTheMinus6) || !n) && radixValue.isUndefinedOrNull()) return JSValue::encode(jsNumber(static_cast(n))); } // If ToString throws, we shouldn't call ToInt32. String s = value.toString(exec)->value(exec); if (exec->hadException()) return JSValue::encode(jsUndefined()); return JSValue::encode(jsNumber(parseInt(s, radixValue.toInt32(exec)))); } EncodedJSValue JSC_HOST_CALL globalFuncParseFloat(ExecState* exec) { return JSValue::encode(jsNumber(parseFloat(exec->argument(0).toString(exec)->value(exec)))); } EncodedJSValue JSC_HOST_CALL globalFuncIsNaN(ExecState* exec) { return JSValue::encode(jsBoolean(std::isnan(exec->argument(0).toNumber(exec)))); } EncodedJSValue JSC_HOST_CALL globalFuncIsFinite(ExecState* exec) { double n = exec->argument(0).toNumber(exec); return JSValue::encode(jsBoolean(std::isfinite(n))); } EncodedJSValue JSC_HOST_CALL globalFuncDecodeURI(ExecState* exec) { static const char do_not_unescape_when_decoding_URI[] = "#$&+,/:;=?@"; return JSValue::encode(decode(exec, do_not_unescape_when_decoding_URI, true)); } EncodedJSValue JSC_HOST_CALL globalFuncDecodeURIComponent(ExecState* exec) { return JSValue::encode(decode(exec, "", true)); } EncodedJSValue JSC_HOST_CALL globalFuncEncodeURI(ExecState* exec) { static const char do_not_escape_when_encoding_URI[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789" "!#$&'()*+,-./:;=?@_~"; return JSValue::encode(encode(exec, do_not_escape_when_encoding_URI)); } EncodedJSValue JSC_HOST_CALL globalFuncEncodeURIComponent(ExecState* exec) { static const char do_not_escape_when_encoding_URI_component[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789" "!'()*-._~"; return JSValue::encode(encode(exec, do_not_escape_when_encoding_URI_component)); } EncodedJSValue JSC_HOST_CALL globalFuncEscape(ExecState* exec) { static const char do_not_escape[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789" "*+-./@_"; JSStringBuilder builder; String str = exec->argument(0).toString(exec)->value(exec); if (str.is8Bit()) { const LChar* c = str.characters8(); for (unsigned k = 0; k < str.length(); k++, c++) { int u = c[0]; if (u && strchr(do_not_escape, static_cast(u))) builder.append(c, 1); else { char tmp[4]; snprintf(tmp, sizeof(tmp), "%%%02X", u); builder.append(tmp); } } return JSValue::encode(builder.build(exec)); } const UChar* c = str.characters16(); for (unsigned k = 0; k < str.length(); k++, c++) { int u = c[0]; if (u > 255) { char tmp[7]; snprintf(tmp, sizeof(tmp), "%%u%04X", u); builder.append(tmp); } else if (u != 0 && strchr(do_not_escape, static_cast(u))) builder.append(c, 1); else { char tmp[4]; snprintf(tmp, sizeof(tmp), "%%%02X", u); builder.append(tmp); } } return JSValue::encode(builder.build(exec)); } EncodedJSValue JSC_HOST_CALL globalFuncUnescape(ExecState* exec) { StringBuilder builder; String str = exec->argument(0).toString(exec)->value(exec); int k = 0; int len = str.length(); if (str.is8Bit()) { const LChar* characters = str.characters8(); LChar convertedLChar; while (k < len) { const LChar* c = characters + k; if (c[0] == '%' && k <= len - 6 && c[1] == 'u') { if (isASCIIHexDigit(c[2]) && isASCIIHexDigit(c[3]) && isASCIIHexDigit(c[4]) && isASCIIHexDigit(c[5])) { builder.append(Lexer::convertUnicode(c[2], c[3], c[4], c[5])); k += 6; continue; } } else if (c[0] == '%' && k <= len - 3 && isASCIIHexDigit(c[1]) && isASCIIHexDigit(c[2])) { convertedLChar = LChar(Lexer::convertHex(c[1], c[2])); c = &convertedLChar; k += 2; } builder.append(*c); k++; } } else { const UChar* characters = str.characters16(); while (k < len) { const UChar* c = characters + k; UChar convertedUChar; if (c[0] == '%' && k <= len - 6 && c[1] == 'u') { if (isASCIIHexDigit(c[2]) && isASCIIHexDigit(c[3]) && isASCIIHexDigit(c[4]) && isASCIIHexDigit(c[5])) { convertedUChar = Lexer::convertUnicode(c[2], c[3], c[4], c[5]); c = &convertedUChar; k += 5; } } else if (c[0] == '%' && k <= len - 3 && isASCIIHexDigit(c[1]) && isASCIIHexDigit(c[2])) { convertedUChar = UChar(Lexer::convertHex(c[1], c[2])); c = &convertedUChar; k += 2; } k++; builder.append(*c); } } return JSValue::encode(jsString(exec, builder.toString())); } EncodedJSValue JSC_HOST_CALL globalFuncThrowTypeError(ExecState* exec) { return throwVMTypeError(exec); } EncodedJSValue JSC_HOST_CALL globalFuncProtoGetter(ExecState* exec) { if (!exec->thisValue().isObject()) return JSValue::encode(exec->thisValue().synthesizePrototype(exec)); JSObject* thisObject = asObject(exec->thisValue()); if (!thisObject->allowsAccessFrom(exec->trueCallerFrame())) return JSValue::encode(jsUndefined()); return JSValue::encode(thisObject->prototype()); } EncodedJSValue JSC_HOST_CALL globalFuncProtoSetter(ExecState* exec) { JSValue value = exec->argument(0); // Setting __proto__ of a primitive should have no effect. if (!exec->thisValue().isObject()) return JSValue::encode(jsUndefined()); JSObject* thisObject = asObject(exec->thisValue()); if (!thisObject->allowsAccessFrom(exec->trueCallerFrame())) return JSValue::encode(jsUndefined()); // Setting __proto__ to a non-object, non-null value is silently ignored to match Mozilla. if (!value.isObject() && !value.isNull()) return JSValue::encode(jsUndefined()); if (!thisObject->isExtensible()) return throwVMError(exec, createTypeError(exec, StrictModeReadonlyPropertyWriteError)); if (!thisObject->setPrototypeWithCycleCheck(exec->vm(), value)) throwError(exec, createError(exec, "cyclic __proto__ value")); return JSValue::encode(jsUndefined()); } } // namespace JSC