# Copyright (C) 2012 Apple Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF # THE POSSIBILITY OF SUCH DAMAGE. require "config" require "ast" require "opt" # The CLoop llint backend is initially based on the ARMv7 backend, and # then further enhanced with a few instructions from the x86 backend to # support building for X64 targets. Hence, the shape of the generated # code and the usage convention of registers will look a lot like the # ARMv7 backend's. def cloopMapType(type) case type when :int; ".i" when :uint; ".u" when :int32; ".i32" when :uint32; ".u32" when :int64; ".i64" when :uint64; ".u64" when :int8; ".i8" when :uint8; ".u8" when :int8Ptr; ".i8p" when :voidPtr; ".vp" when :nativeFunc; ".nativeFunc" when :double; ".d" when :castToDouble; ".castToDouble" when :castToInt64; ".castToInt64" when :opcode; ".opcode" else; raise "Unsupported type" end end class SpecialRegister < NoChildren def clDump @name end def clValue(type=:int) @name + cloopMapType(type) end end C_LOOP_SCRATCH_FPR = SpecialRegister.new("d6") class RegisterID def clDump case name when "t0" "t0" when "t1" "t1" when "t2" "t2" when "t3" "t3" when "t4" "rPC" when "t6" "rBasePC" when "csr1" "tagTypeNumber" when "csr2" "tagMask" when "cfr" "cfr" when "lr" "rRetVPC" when "sp" "sp" else raise "Bad register #{name} for C_LOOP at #{codeOriginString}" end end def clValue(type=:int) clDump + cloopMapType(type) end end class FPRegisterID def clDump case name when "ft0", "fr" "d0" when "ft1" "d1" when "ft2" "d2" when "ft3" "d3" when "ft4" "d4" when "ft5" "d5" else raise "Bad register #{name} for C_LOOP at #{codeOriginString}" end end def clValue(type=:int) clDump + cloopMapType(type) end end class Immediate def clDump "#{value}" end def clValue(type=:int) # There is a case of a very large unsigned number (0x8000000000000000) # which we wish to encode. Unfortunately, the C/C++ compiler # complains if we express that number as a positive decimal integer. # Hence, for positive values, we just convert the number into hex form # to keep the compiler happy. # # However, for negative values, the to_s(16) hex conversion method does # not strip the "-" sign resulting in a meaningless "0x-..." valueStr. # To workaround this, we simply don't encode negative numbers as hex. valueStr = (value < 0) ? "#{value}" : "0x#{value.to_s(16)}" case type when :int8; "int8_t(#{valueStr})" when :int32; "int32_t(#{valueStr})" when :int64; "int64_t(#{valueStr})" when :int; "intptr_t(#{valueStr})" when :uint8; "uint8_t(#{valueStr})" when :uint32; "uint32_t(#{valueStr})" when :uint64; "uint64_t(#{valueStr})" when :uint; "uintptr_t(#{valueStr})" else raise "Not implemented immediate of type: #{type}" end end end class Address def clDump "[#{base.clDump}, #{offset.value}]" end def clValue(type=:int) case type when :int8; int8MemRef when :int32; int32MemRef when :int64; int64MemRef when :int; intMemRef when :uint8; uint8MemRef when :uint32; uint32MemRef when :uint64; uint64MemRef when :uint; uintMemRef when :opcode; opcodeMemRef when :nativeFunc; nativeFuncMemRef else raise "Unexpected Address type: #{type}" end end def pointerExpr if base.is_a? RegisterID and base.name == "sp" offsetValue = "#{offset.value}" "(ASSERT(#{offsetValue} == offsetof(JITStackFrame, vm)), &sp->vm)" elsif offset.value == 0 "#{base.clValue(:int8Ptr)}" elsif offset.value > 0 "#{base.clValue(:int8Ptr)} + #{offset.value}" else "#{base.clValue(:int8Ptr)} - #{-offset.value}" end end def int8MemRef "*CAST(#{pointerExpr})" end def int16MemRef "*CAST(#{pointerExpr})" end def int32MemRef "*CAST(#{pointerExpr})" end def int64MemRef "*CAST(#{pointerExpr})" end def intMemRef "*CAST(#{pointerExpr})" end def uint8MemRef "*CAST(#{pointerExpr})" end def uint16MemRef "*CAST(#{pointerExpr})" end def uint32MemRef "*CAST(#{pointerExpr})" end def uint64MemRef "*CAST(#{pointerExpr})" end def uintMemRef "*CAST(#{pointerExpr})" end def nativeFuncMemRef "*CAST(#{pointerExpr})" end def opcodeMemRef "*CAST(#{pointerExpr})" end def dblMemRef "*CAST(#{pointerExpr})" end end class BaseIndex def clDump "[#{base.clDump}, #{offset.clDump}, #{index.clDump} << #{scaleShift}]" end def clValue(type=:int) case type when :int8; int8MemRef when :int32; int32MemRef when :int64; int64MemRef when :int; intMemRef when :uint8; uint8MemRef when :uint32; uint32MemRef when :uint64; uint64MemRef when :uint; uintMemRef when :opcode; opcodeMemRef else raise "Unexpected BaseIndex type: #{type}" end end def pointerExpr if base.is_a? RegisterID and base.name == "sp" offsetValue = "(#{index.clValue} << #{scaleShift}) + #{offset.clValue})" "(ASSERT(#{offsetValue} == offsetof(JITStackFrame, vm)), &sp->vm)" else "#{base.clValue(:int8Ptr)} + (#{index.clValue} << #{scaleShift}) + #{offset.clValue}" end end def int8MemRef "*CAST(#{pointerExpr})" end def int16MemRef "*CAST(#{pointerExpr})" end def int32MemRef "*CAST(#{pointerExpr})" end def int64MemRef "*CAST(#{pointerExpr})" end def intMemRef "*CAST(#{pointerExpr})" end def uint8MemRef "*CAST(#{pointerExpr})" end def uint16MemRef "*CAST(#{pointerExpr})" end def uint32MemRef "*CAST(#{pointerExpr})" end def uint64MemRef "*CAST(#{pointerExpr})" end def uintMemRef "*CAST(#{pointerExpr})" end def opcodeMemRef "*CAST(#{pointerExpr})" end def dblMemRef "*CAST(#{pointerExpr})" end end class AbsoluteAddress def clDump "#{codeOriginString}" end def clValue clDump end end # # Lea support. # class Address def cloopEmitLea(destination, type) if destination == base $asm.putc "#{destination.clValue(:int8Ptr)} += #{offset.clValue(type)};" else $asm.putc "#{destination.clValue(:int8Ptr)} = #{base.clValue(:int8Ptr)} + #{offset.clValue(type)};" end end end class BaseIndex def cloopEmitLea(destination, type) raise "Malformed BaseIndex, offset should be zero at #{codeOriginString}" unless offset.value == 0 $asm.putc "#{destination.clValue(:int8Ptr)} = #{base.clValue(:int8Ptr)} + (#{index.clValue} << #{scaleShift});" end end # # Actual lowering code follows. # class Sequence def getModifiedListC_LOOP myList = @list # Verify that we will only see instructions and labels. myList.each { | node | unless node.is_a? Instruction or node.is_a? Label or node.is_a? LocalLabel or node.is_a? Skip raise "Unexpected #{node.inspect} at #{node.codeOrigin}" end } return myList end end def clOperands(operands) operands.map{|v| v.clDump}.join(", ") end def cloopEmitOperation(operands, type, operator) raise unless type == :int || type == :uint || type == :int32 || type == :uint32 || \ type == :int64 || type == :uint64 || type == :double if operands.size == 3 $asm.putc "#{operands[2].clValue(type)} = #{operands[1].clValue(type)} #{operator} #{operands[0].clValue(type)};" if operands[2].is_a? RegisterID and (type == :int32 or type == :uint32) $asm.putc "#{operands[2].clDump}.clearHighWord();" # Just clear it. It does nothing on the 32-bit port. end else raise unless operands.size == 2 raise unless not operands[1].is_a? Immediate $asm.putc "#{operands[1].clValue(type)} = #{operands[1].clValue(type)} #{operator} #{operands[0].clValue(type)};" if operands[1].is_a? RegisterID and (type == :int32 or type == :uint32) $asm.putc "#{operands[1].clDump}.clearHighWord();" # Just clear it. It does nothing on the 32-bit port. end end end def cloopEmitShiftOperation(operands, type, operator) raise unless type == :int || type == :uint || type == :int32 || type == :uint32 || type == :int64 || type == :uint64 if operands.size == 3 $asm.putc "#{operands[2].clValue(type)} = #{operands[1].clValue(type)} #{operator} (#{operands[0].clValue(:int)} & 0x1f);" if operands[2].is_a? RegisterID and (type == :int32 or type == :uint32) $asm.putc "#{operands[2].clDump}.clearHighWord();" # Just clear it. It does nothing on the 32-bit port. end else raise unless operands.size == 2 raise unless not operands[1].is_a? Immediate $asm.putc "#{operands[1].clValue(type)} = #{operands[1].clValue(type)} #{operator} (#{operands[0].clValue(:int)} & 0x1f);" if operands[1].is_a? RegisterID and (type == :int32 or type == :uint32) $asm.putc "#{operands[1].clDump}.clearHighWord();" # Just clear it. It does nothing on the 32-bit port. end end end def cloopEmitUnaryOperation(operands, type, operator) raise unless type == :int || type == :uint || type == :int32 || type == :uint32 || type == :int64 || type == :uint64 raise unless operands.size == 1 raise unless not operands[0].is_a? Immediate $asm.putc "#{operands[0].clValue(type)} = #{operator}#{operands[0].clValue(type)};" if operands[0].is_a? RegisterID and (type == :int32 or type == :uint32) $asm.putc "#{operands[0].clDump}.clearHighWord();" # Just clear it. It does nothing on the 32-bit port. end end def cloopEmitCompareDoubleWithNaNCheckAndBranch(operands, condition) $asm.putc "if (std::isnan(#{operands[0].clValue(:double)}) || isnan(#{operands[1].clValue(:double)})" $asm.putc " || (#{operands[0].clValue(:double)} #{condition} #{operands[1].clValue(:double)}))" $asm.putc " goto #{operands[2].cLabel};" end def cloopEmitCompareAndSet(operands, type, comparator) # The result is a boolean. Hence, it doesn't need to be based on the type # of the arguments being compared. $asm.putc "#{operands[2].clValue} = (#{operands[0].clValue(type)} #{comparator} #{op2 = operands[1].clValue(type)});" end def cloopEmitCompareAndBranch(operands, type, comparator) $asm.putc "if (#{operands[0].clValue(type)} #{comparator} #{operands[1].clValue(type)})" $asm.putc " goto #{operands[2].cLabel};" end # conditionTest should contain a string that provides a comparator and a RHS # value e.g. "< 0". def cloopGenerateConditionExpression(operands, type, conditionTest) op1 = operands[0].clValue(type) # The operands must consist of 2 or 3 values. case operands.size when 2 # Just test op1 against the conditionTest. lhs = op1 when 3 # Mask op1 with op2 before testing against the conditionTest. lhs = "(#{op1} & #{operands[1].clValue(type)})" else raise "Expected 2 or 3 operands but got #{operands.size} at #{codeOriginString}" end "#{lhs} #{conditionTest}" end # conditionTest should contain a string that provides a comparator and a RHS # value e.g. "< 0". def cloopEmitTestAndBranchIf(operands, type, conditionTest, branchTarget) conditionExpr = cloopGenerateConditionExpression(operands, type, conditionTest) $asm.putc "if (#{conditionExpr})" $asm.putc " goto #{branchTarget};" end def cloopEmitTestSet(operands, type, conditionTest) # The result is a boolean condition. Hence, the result type is always an # int. The passed in type is only used for the values being tested in # the condition test. conditionExpr = cloopGenerateConditionExpression(operands, type, conditionTest) $asm.putc "#{operands[-1].clValue} = (#{conditionExpr});" end def cloopEmitOpAndBranch(operands, operator, type, conditionTest) case type when :int; tempType = "intptr_t" when :int32; tempType = "int32_t" when :int64; tempType = "int64_t" else raise "Unimplemented type" end op1 = operands[0].clValue(type) op2 = operands[1].clValue(type) $asm.putc "{" $asm.putc " #{tempType} temp = #{op2} #{operator} #{op1};" $asm.putc " #{op2} = temp;" $asm.putc " if (temp #{conditionTest})" $asm.putc " goto #{operands[2].cLabel};" $asm.putc "}" end def cloopAddOverflowTest(operands, type) case type when :int32 tempType = "int32_t" signBit = "SIGN_BIT32" else raise "Unimplemented type" end $asm.putc " #{tempType} a = #{operands[0].clValue(type)};" $asm.putc " #{tempType} b = #{operands[1].clValue(type)};" $asm.putc " // sign(b) sign(a) | Overflows if:" $asm.putc " // 0 0 | sign(b+a) = 1 (pos + pos != neg)" $asm.putc " // 0 1 | never" $asm.putc " // 1 0 | never" $asm.putc " // 1 1 | sign(b+a) = 0 (neg + neg != pos)" "((#{signBit}(b) == #{signBit}(a)) && (#{signBit}(b+a) != #{signBit}(a)))" end def cloopSubOverflowTest(operands, type) case type when :int32 tempType = "int32_t" signBit = "SIGN_BIT32" else raise "Unimplemented type" end $asm.putc " #{tempType} a = #{operands[0].clValue(type)};" $asm.putc " #{tempType} b = #{operands[1].clValue(type)};" $asm.putc " // sign(b) sign(a) | Overflows if:" $asm.putc " // 0 0 | never" $asm.putc " // 0 1 | sign(b-a) = 1 (pos - neg != pos)" $asm.putc " // 1 0 | sign(b-a) = 0 (neg - pos != pos)" $asm.putc " // 1 1 | never" "((#{signBit}(b) != #{signBit}(a)) && (#{signBit}(b-a) == #{signBit}(a)))" end def cloopMulOverflowTest(operands, type) case type when :int32 tempType = "uint32_t" else raise "Unimplemented type" end $asm.putc " #{tempType} a = #{operands[0].clValue(type)};" $asm.putc " #{tempType} b = #{operands[1].clValue(type)};" "((b | a) >> 15)" end def cloopEmitOpAndBranchIfOverflow(operands, operator, type) $asm.putc "{" # Emit the overflow test based on the operands and the type: case operator when "+"; overflowTest = cloopAddOverflowTest(operands, type) when "-"; overflowTest = cloopSubOverflowTest(operands, type) when "*"; overflowTest = cloopMulOverflowTest(operands, type) else raise "Unimplemented opeartor" end $asm.putc " bool didOverflow = #{overflowTest};" $asm.putc " #{operands[1].clValue(type)} = #{operands[1].clValue(type)} #{operator} #{operands[0].clValue(type)};" $asm.putc " if (didOverflow)" $asm.putc " goto #{operands[2].cLabel};" $asm.putc "}" end # operands: callTarget, currentFrame, currentPC def cloopEmitCallSlowPath(operands) $asm.putc "{" $asm.putc " ExecState* exec = CAST(#{operands[1].clValue(:voidPtr)});" $asm.putc " Instruction* pc = CAST(#{operands[2].clValue(:voidPtr)});" $asm.putc " SlowPathReturnType result = #{operands[0].cLabel}(exec, pc);" $asm.putc " LLInt::decodeResult(result, t0.instruction, t1.execState);" $asm.putc "}" end class Instruction def lowerC_LOOP $asm.codeOrigin codeOriginString if $enableCodeOriginComments $asm.annotation annotation if $enableInstrAnnotations && (opcode != "cloopDo") case opcode when "addi" cloopEmitOperation(operands, :int32, "+") when "addq" cloopEmitOperation(operands, :int64, "+") when "addp" cloopEmitOperation(operands, :int, "+") when "andi" cloopEmitOperation(operands, :int32, "&") when "andq" cloopEmitOperation(operands, :int64, "&") when "andp" cloopEmitOperation(operands, :int, "&") when "ori" cloopEmitOperation(operands, :int32, "|") when "orq" cloopEmitOperation(operands, :int64, "|") when "orp" cloopEmitOperation(operands, :int, "|") when "xori" cloopEmitOperation(operands, :int32, "^") when "xorq" cloopEmitOperation(operands, :int64, "^") when "xorp" cloopEmitOperation(operands, :int, "^") when "lshifti" cloopEmitShiftOperation(operands, :int32, "<<") when "lshiftq" cloopEmitShiftOperation(operands, :int64, "<<") when "lshiftp" cloopEmitShiftOperation(operands, :int, "<<") when "rshifti" cloopEmitShiftOperation(operands, :int32, ">>") when "rshiftq" cloopEmitShiftOperation(operands, :int64, ">>") when "rshiftp" cloopEmitShiftOperation(operands, :int, ">>") when "urshifti" cloopEmitShiftOperation(operands, :uint32, ">>") when "urshiftq" cloopEmitShiftOperation(operands, :uint64, ">>") when "urshiftp" cloopEmitShiftOperation(operands, :uint, ">>") when "muli" cloopEmitOperation(operands, :int32, "*") when "mulq" cloopEmitOperation(operands, :int64, "*") when "mulp" cloopEmitOperation(operands, :int, "*") when "subi" cloopEmitOperation(operands, :int32, "-") when "subq" cloopEmitOperation(operands, :int64, "-") when "subp" cloopEmitOperation(operands, :int, "-") when "negi" cloopEmitUnaryOperation(operands, :int32, "-") when "negq" cloopEmitUnaryOperation(operands, :int64, "-") when "negp" cloopEmitUnaryOperation(operands, :int, "-") when "noti" cloopEmitUnaryOperation(operands, :int32, "!") when "loadi" $asm.putc "#{operands[1].clValue(:uint)} = #{operands[0].uint32MemRef};" # There's no need to call clearHighWord() here because the above will # automatically take care of 0 extension. when "loadis" $asm.putc "#{operands[1].clValue(:int)} = #{operands[0].int32MemRef};" when "loadq" $asm.putc "#{operands[1].clValue(:int64)} = #{operands[0].int64MemRef};" when "loadp" $asm.putc "#{operands[1].clValue(:int)} = #{operands[0].intMemRef};" when "storei" $asm.putc "#{operands[1].int32MemRef} = #{operands[0].clValue(:int32)};" when "storeq" $asm.putc "#{operands[1].int64MemRef} = #{operands[0].clValue(:int64)};" when "storep" $asm.putc "#{operands[1].intMemRef} = #{operands[0].clValue(:int)};" when "loadb" $asm.putc "#{operands[1].clValue(:int)} = #{operands[0].uint8MemRef};" when "loadbs" $asm.putc "#{operands[1].clValue(:int)} = #{operands[0].int8MemRef};" when "storeb" $asm.putc "#{operands[1].uint8MemRef} = #{operands[0].clValue(:int8)};" when "loadh" $asm.putc "#{operands[1].clValue(:int)} = #{operands[0].uint16MemRef};" when "loadhs" $asm.putc "#{operands[1].clValue(:int)} = #{operands[0].int16MemRef};" when "storeh" $asm.putc "*#{operands[1].uint16MemRef} = #{operands[0].clValue(:int16)};" when "loadd" $asm.putc "#{operands[1].clValue(:double)} = #{operands[0].dblMemRef};" when "stored" $asm.putc "#{operands[1].dblMemRef} = #{operands[0].clValue(:double)};" when "addd" cloopEmitOperation(operands, :double, "+") when "divd" cloopEmitOperation(operands, :double, "/") when "subd" cloopEmitOperation(operands, :double, "-") when "muld" cloopEmitOperation(operands, :double, "*") # Convert an int value to its double equivalent, and store it in a double register. when "ci2d" $asm.putc "#{operands[1].clValue(:double)} = #{operands[0].clValue(:int32)};" when "bdeq" cloopEmitCompareAndBranch(operands, :double, "==") when "bdneq" cloopEmitCompareAndBranch(operands, :double, "!=") when "bdgt" cloopEmitCompareAndBranch(operands, :double, ">"); when "bdgteq" cloopEmitCompareAndBranch(operands, :double, ">="); when "bdlt" cloopEmitCompareAndBranch(operands, :double, "<"); when "bdlteq" cloopEmitCompareAndBranch(operands, :double, "<="); when "bdequn" cloopEmitCompareDoubleWithNaNCheckAndBranch(operands, "==") when "bdnequn" cloopEmitCompareDoubleWithNaNCheckAndBranch(operands, "!=") when "bdgtun" cloopEmitCompareDoubleWithNaNCheckAndBranch(operands, ">") when "bdgtequn" cloopEmitCompareDoubleWithNaNCheckAndBranch(operands, ">=") when "bdltun" cloopEmitCompareDoubleWithNaNCheckAndBranch(operands, "<") when "bdltequn" cloopEmitCompareDoubleWithNaNCheckAndBranch(operands, "<=") when "td2i" $asm.putc "#{operands[1].clValue(:int)} = #{operands[0].clValue(:double)};" $asm.putc "#{operands[1].clDump}.clearHighWord();" when "bcd2i" # operands: srcDbl dstInt slowPath $asm.putc "{" $asm.putc " double d = #{operands[0].clValue(:double)};" $asm.putc " const int32_t asInt32 = int32_t(d);" $asm.putc " if (asInt32 != d || (!asInt32 && std::signbit(d))) // true for -0.0" $asm.putc " goto #{operands[2].cLabel};" $asm.putc " #{operands[1].clValue} = asInt32;" $asm.putc " #{operands[1].clDump}.clearHighWord();" $asm.putc "}" when "move" $asm.putc "#{operands[1].clValue(:int)} = #{operands[0].clValue(:int)};" when "sxi2q" $asm.putc "#{operands[1].clValue(:int64)} = #{operands[0].clValue(:int32)};" when "zxi2q" $asm.putc "#{operands[1].clValue(:uint64)} = #{operands[0].clValue(:uint32)};" when "nop" $asm.putc "// nop" when "bbeq" cloopEmitCompareAndBranch(operands, :int8, "==") when "bieq" cloopEmitCompareAndBranch(operands, :int32, "==") when "bqeq" cloopEmitCompareAndBranch(operands, :int64, "==") when "bpeq" cloopEmitCompareAndBranch(operands, :int, "==") when "bbneq" cloopEmitCompareAndBranch(operands, :int8, "!=") when "bineq" cloopEmitCompareAndBranch(operands, :int32, "!=") when "bqneq" cloopEmitCompareAndBranch(operands, :int64, "!=") when "bpneq" cloopEmitCompareAndBranch(operands, :int, "!=") when "bba" cloopEmitCompareAndBranch(operands, :uint8, ">") when "bia" cloopEmitCompareAndBranch(operands, :uint32, ">") when "bqa" cloopEmitCompareAndBranch(operands, :uint64, ">") when "bpa" cloopEmitCompareAndBranch(operands, :uint, ">") when "bbaeq" cloopEmitCompareAndBranch(operands, :uint8, ">=") when "biaeq" cloopEmitCompareAndBranch(operands, :uint32, ">=") when "bqaeq" cloopEmitCompareAndBranch(operands, :uint64, ">=") when "bpaeq" cloopEmitCompareAndBranch(operands, :uint, ">=") when "bbb" cloopEmitCompareAndBranch(operands, :uint8, "<") when "bib" cloopEmitCompareAndBranch(operands, :uint32, "<") when "bqb" cloopEmitCompareAndBranch(operands, :uint64, "<") when "bpb" cloopEmitCompareAndBranch(operands, :uint, "<") when "bbbeq" cloopEmitCompareAndBranch(operands, :uint8, "<=") when "bibeq" cloopEmitCompareAndBranch(operands, :uint32, "<=") when "bqbeq" cloopEmitCompareAndBranch(operands, :uint64, "<=") when "bpbeq" cloopEmitCompareAndBranch(operands, :uint, "<=") when "bbgt" cloopEmitCompareAndBranch(operands, :int8, ">") when "bigt" cloopEmitCompareAndBranch(operands, :int32, ">") when "bqgt" cloopEmitCompareAndBranch(operands, :int64, ">") when "bpgt" cloopEmitCompareAndBranch(operands, :int, ">") when "bbgteq" cloopEmitCompareAndBranch(operands, :int8, ">=") when "bigteq" cloopEmitCompareAndBranch(operands, :int32, ">=") when "bqgteq" cloopEmitCompareAndBranch(operands, :int64, ">=") when "bpgteq" cloopEmitCompareAndBranch(operands, :int, ">=") when "bblt" cloopEmitCompareAndBranch(operands, :int8, "<") when "bilt" cloopEmitCompareAndBranch(operands, :int32, "<") when "bqlt" cloopEmitCompareAndBranch(operands, :int64, "<") when "bplt" cloopEmitCompareAndBranch(operands, :int, "<") when "bblteq" cloopEmitCompareAndBranch(operands, :int8, "<=") when "bilteq" cloopEmitCompareAndBranch(operands, :int32, "<=") when "bqlteq" cloopEmitCompareAndBranch(operands, :int64, "<=") when "bplteq" cloopEmitCompareAndBranch(operands, :int, "<=") when "btbz" cloopEmitTestAndBranchIf(operands, :int8, "== 0", operands[-1].cLabel) when "btiz" cloopEmitTestAndBranchIf(operands, :int32, "== 0", operands[-1].cLabel) when "btqz" cloopEmitTestAndBranchIf(operands, :int64, "== 0", operands[-1].cLabel) when "btpz" cloopEmitTestAndBranchIf(operands, :int, "== 0", operands[-1].cLabel) when "btbnz" cloopEmitTestAndBranchIf(operands, :int8, "!= 0", operands[-1].cLabel) when "btinz" cloopEmitTestAndBranchIf(operands, :int32, "!= 0", operands[-1].cLabel) when "btqnz" cloopEmitTestAndBranchIf(operands, :int64, "!= 0", operands[-1].cLabel) when "btpnz" cloopEmitTestAndBranchIf(operands, :int, "!= 0", operands[-1].cLabel) when "btbs" cloopEmitTestAndBranchIf(operands, :int8, "< 0", operands[-1].cLabel) when "btis" cloopEmitTestAndBranchIf(operands, :int32, "< 0", operands[-1].cLabel) when "btqs" cloopEmitTestAndBranchIf(operands, :int64, "< 0", operands[-1].cLabel) when "btps" cloopEmitTestAndBranchIf(operands, :int, "< 0", operands[-1].cLabel) # For jmp, we do not want to assume that we have COMPUTED_GOTO support. # Fortunately, the only times we should ever encounter indirect jmps is # when the jmp target is a CLoop opcode (by design). # # Hence, we check if the jmp target is a known label reference. If so, # we can emit a goto directly. If it is not a known target, then we set # the target in the opcode, and dispatch to it via whatever dispatch # mechanism is in used. when "jmp" if operands[0].is_a? LocalLabelReference or operands[0].is_a? LabelReference # Handles jumps local or global labels. $asm.putc "goto #{operands[0].cLabel};" else # Handles jumps to some computed target. # NOTE: must be an opcode handler or a llint glue helper. $asm.putc "opcode = #{operands[0].clValue(:opcode)};" $asm.putc "DISPATCH_OPCODE();" end when "call" $asm.putc "CRASH(); // generic call instruction not supported by design!" when "break" $asm.putc "CRASH(); // break instruction not implemented." when "ret" $asm.putc "goto doReturnHelper;" when "cbeq" cloopEmitCompareAndSet(operands, :uint8, "==") when "cieq" cloopEmitCompareAndSet(operands, :uint32, "==") when "cqeq" cloopEmitCompareAndSet(operands, :uint64, "==") when "cpeq" cloopEmitCompareAndSet(operands, :uint, "==") when "cbneq" cloopEmitCompareAndSet(operands, :uint8, "!=") when "cineq" cloopEmitCompareAndSet(operands, :uint32, "!=") when "cqneq" cloopEmitCompareAndSet(operands, :uint64, "!=") when "cpneq" cloopEmitCompareAndSet(operands, :uint, "!=") when "cba" cloopEmitCompareAndSet(operands, :uint8, ">") when "cia" cloopEmitCompareAndSet(operands, :uint32, ">") when "cqa" cloopEmitCompareAndSet(operands, :uint64, ">") when "cpa" cloopEmitCompareAndSet(operands, :uint, ">") when "cbaeq" cloopEmitCompareAndSet(operands, :uint8, ">=") when "ciaeq" cloopEmitCompareAndSet(operands, :uint32, ">=") when "cqaeq" cloopEmitCompareAndSet(operands, :uint64, ">=") when "cpaeq" cloopEmitCompareAndSet(operands, :uint, ">=") when "cbb" cloopEmitCompareAndSet(operands, :uint8, "<") when "cib" cloopEmitCompareAndSet(operands, :uint32, "<") when "cqb" cloopEmitCompareAndSet(operands, :uint64, "<") when "cpb" cloopEmitCompareAndSet(operands, :uint, "<") when "cbbeq" cloopEmitCompareAndSet(operands, :uint8, "<=") when "cibeq" cloopEmitCompareAndSet(operands, :uint32, "<=") when "cqbeq" cloopEmitCompareAndSet(operands, :uint64, "<=") when "cpbeq" cloopEmitCompareAndSet(operands, :uint, "<=") when "cbgt" cloopEmitCompareAndSet(operands, :int8, ">") when "cigt" cloopEmitCompareAndSet(operands, :int32, ">") when "cqgt" cloopEmitCompareAndSet(operands, :int64, ">") when "cpgt" cloopEmitCompareAndSet(operands, :int, ">") when "cbgteq" cloopEmitCompareAndSet(operands, :int8, ">=") when "cigteq" cloopEmitCompareAndSet(operands, :int32, ">=") when "cqgteq" cloopEmitCompareAndSet(operands, :int64, ">=") when "cpgteq" cloopEmitCompareAndSet(operands, :int, ">=") when "cblt" cloopEmitCompareAndSet(operands, :int8, "<") when "cilt" cloopEmitCompareAndSet(operands, :int32, "<") when "cqlt" cloopEmitCompareAndSet(operands, :int64, "<") when "cplt" cloopEmitCompareAndSet(operands, :int, "<") when "cblteq" cloopEmitCompareAndSet(operands, :int8, "<=") when "cilteq" cloopEmitCompareAndSet(operands, :int32, "<=") when "cqlteq" cloopEmitCompareAndSet(operands, :int64, "<=") when "cplteq" cloopEmitCompareAndSet(operands, :int, "<=") when "tbs" cloopEmitTestSet(operands, :int8, "< 0") when "tis" cloopEmitTestSet(operands, :int32, "< 0") when "tqs" cloopEmitTestSet(operands, :int64, "< 0") when "tps" cloopEmitTestSet(operands, :int, "< 0") when "tbz" cloopEmitTestSet(operands, :int8, "== 0") when "tiz" cloopEmitTestSet(operands, :int32, "== 0") when "tqz" cloopEmitTestSet(operands, :int64, "== 0") when "tpz" cloopEmitTestSet(operands, :int, "== 0") when "tbnz" cloopEmitTestSet(operands, :int8, "!= 0") when "tinz" cloopEmitTestSet(operands, :int32, "!= 0") when "tqnz" cloopEmitTestSet(operands, :int64, "!= 0") when "tpnz" cloopEmitTestSet(operands, :int, "!= 0") # 64-bit instruction: cdqi (based on X64) # Sign extends the lower 32 bits of t0, but put the sign extension into # the lower 32 bits of t1. Leave the upper 32 bits of t0 and t1 unchanged. when "cdqi" $asm.putc "{" $asm.putc " int64_t temp = t0.i32; // sign extend the low 32bit" $asm.putc " t0.i32 = temp; // low word" $asm.putc " t0.clearHighWord();" $asm.putc " t1.i32 = uint64_t(temp) >> 32; // high word" $asm.putc " t1.clearHighWord();" $asm.putc "}" # 64-bit instruction: idivi op1 (based on X64) # Divide a 64-bit integer numerator by the specified denominator. # The numerator is specified in t0 and t1 as follows: # 1. low 32 bits of the numerator is in the low 32 bits of t0. # 2. high 32 bits of the numerator is in the low 32 bits of t1. # # The resultant quotient is a signed 32-bit int, and is to be stored # in the lower 32 bits of t0. # The resultant remainder is a signed 32-bit int, and is to be stored # in the lower 32 bits of t1. when "idivi" # Divide t1,t0 (EDX,EAX) by the specified arg, and store the remainder in t1, # and quotient in t0: $asm.putc "{" $asm.putc " int64_t dividend = (int64_t(t1.u32) << 32) | t0.u32;" $asm.putc " int64_t divisor = #{operands[0].clValue(:int)};" $asm.putc " t1.i32 = dividend % divisor; // remainder" $asm.putc " t1.clearHighWord();" $asm.putc " t0.i32 = dividend / divisor; // quotient" $asm.putc " t0.clearHighWord();" $asm.putc "}" # 32-bit instruction: fii2d int32LoOp int32HiOp dblOp (based on ARMv7) # Decode 2 32-bit ints (low and high) into a 64-bit double. when "fii2d" $asm.putc "#{operands[2].clValue(:double)} = Ints2Double(#{operands[0].clValue(:uint32)}, #{operands[1].clValue(:uint32)});" # 32-bit instruction: f2dii dblOp int32LoOp int32HiOp (based on ARMv7) # Encode a 64-bit double into 2 32-bit ints (low and high). when "fd2ii" $asm.putc "Double2Ints(#{operands[0].clValue(:double)}, #{operands[1].clValue(:uint32)}, #{operands[2].clValue(:uint32)});" # 64-bit instruction: fq2d int64Op dblOp (based on X64) # Copy a bit-encoded double in a 64-bit int register to a double register. when "fq2d" $asm.putc "#{operands[1].clValue(:double)} = #{operands[0].clValue(:castToDouble)};" # 64-bit instruction: fd2q dblOp int64Op (based on X64 instruction set) # Copy a double as a bit-encoded double into a 64-bit int register. when "fd2q" $asm.putc "#{operands[1].clValue(:int64)} = #{operands[0].clValue(:castToInt64)};" when "leai" operands[0].cloopEmitLea(operands[1], :int32) when "leap" operands[0].cloopEmitLea(operands[1], :int) when "baddio" cloopEmitOpAndBranchIfOverflow(operands, "+", :int32) when "bsubio" cloopEmitOpAndBranchIfOverflow(operands, "-", :int32) when "bmulio" cloopEmitOpAndBranchIfOverflow(operands, "*", :int32) when "baddis" cloopEmitOpAndBranch(operands, "+", :int32, "< 0") when "baddiz" cloopEmitOpAndBranch(operands, "+", :int32, "== 0") when "baddinz" cloopEmitOpAndBranch(operands, "+", :int32, "!= 0") when "baddqs" cloopEmitOpAndBranch(operands, "+", :int64, "< 0") when "baddqz" cloopEmitOpAndBranch(operands, "+", :int64, "== 0") when "baddqnz" cloopEmitOpAndBranch(operands, "+", :int64, "!= 0") when "baddps" cloopEmitOpAndBranch(operands, "+", :int, "< 0") when "baddpz" cloopEmitOpAndBranch(operands, "+", :int, "== 0") when "baddpnz" cloopEmitOpAndBranch(operands, "+", :int, "!= 0") when "bsubis" cloopEmitOpAndBranch(operands, "-", :int32, "< 0") when "bsubiz" cloopEmitOpAndBranch(operands, "-", :int32, "== 0") when "bsubinz" cloopEmitOpAndBranch(operands, "-", :int32, "!= 0") when "borris" cloopEmitOpAndBranch(operands, "|", :int32, "< 0") when "borriz" cloopEmitOpAndBranch(operands, "|", :int32, "== 0") when "borrinz" cloopEmitOpAndBranch(operands, "|", :int32, "!= 0") # A convenience and compact call to crash because we don't want to use # the generic llint crash mechanism which relies on the availability # of the call instruction (which cannot be implemented in a generic # way, and can be abused if we made it just work for this special case). # Using a special cloopCrash instruction is cleaner. when "cloopCrash" $asm.putc "CRASH();" # We can't rely on the llint JS call mechanism which actually makes # use of the call instruction. Instead, we just implement JS calls # as an opcode dispatch. when "cloopCallJSFunction" $asm.putc "opcode = #{operands[0].clValue(:opcode)};" $asm.putc "DISPATCH_OPCODE();" # We can't do generic function calls with an arbitrary set of args, but # fortunately we don't have to here. All native function calls always # have a fixed prototype of 1 args: the passed ExecState. when "cloopCallNative" $asm.putc "nativeFunc = #{operands[0].clValue(:nativeFunc)};" $asm.putc "functionReturnValue = JSValue::decode(nativeFunc(t0.execState));" $asm.putc "#if USE(JSVALUE32_64)" $asm.putc " t1.i = functionReturnValue.tag();" $asm.putc " t0.i = functionReturnValue.payload();" $asm.putc "#else // USE_JSVALUE64)" $asm.putc " t0.encodedJSValue = JSValue::encode(functionReturnValue);" $asm.putc "#endif // USE_JSVALUE64)" # We can't do generic function calls with an arbitrary set of args, but # fortunately we don't have to here. All slow path function calls always # have a fixed prototype too. See cloopEmitCallSlowPath() for details. when "cloopCallSlowPath" cloopEmitCallSlowPath(operands) # For debugging only. This is used to insert instrumentation into the # generated LLIntAssembly.h during llint development only. Do not use # for production code. when "cloopDo" $asm.putc "#{annotation}" else lowerDefault end end end