/* * Copyright (C) 2010, 2012, 2013 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "ThunkGenerators.h" #include "CodeBlock.h" #include "Operations.h" #include "SpecializedThunkJIT.h" #include #include #include #if ENABLE(JIT) namespace JSC { static JSInterfaceJIT::Call generateSlowCaseFor(VM* vm, JSInterfaceJIT& jit) { jit.emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, JSInterfaceJIT::regT2); jit.emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, JSInterfaceJIT::regT2, JSInterfaceJIT::regT2); jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT2, JSStack::ScopeChain); // Also initialize ReturnPC and CodeBlock, like a JS function would. jit.preserveReturnAddressAfterCall(JSInterfaceJIT::regT3); jit.emitPutToCallFrameHeader(JSInterfaceJIT::regT3, JSStack::ReturnPC); jit.emitPutImmediateToCallFrameHeader(0, JSStack::CodeBlock); jit.storePtr(JSInterfaceJIT::callFrameRegister, &vm->topCallFrame); jit.restoreArgumentReference(); JSInterfaceJIT::Call callNotJSFunction = jit.call(); jit.emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, JSInterfaceJIT::callFrameRegister); jit.restoreReturnAddressBeforeReturn(JSInterfaceJIT::regT3); jit.ret(); return callNotJSFunction; } static MacroAssemblerCodeRef linkForGenerator(VM* vm, FunctionPtr lazyLink, FunctionPtr notJSFunction, const char* name) { JSInterfaceJIT jit; JSInterfaceJIT::JumpList slowCase; #if USE(JSVALUE64) slowCase.append(jit.emitJumpIfNotJSCell(JSInterfaceJIT::regT0)); slowCase.append(jit.emitJumpIfNotType(JSInterfaceJIT::regT0, JSInterfaceJIT::regT1, JSFunctionType)); #else // USE(JSVALUE64) slowCase.append(jit.branch32(JSInterfaceJIT::NotEqual, JSInterfaceJIT::regT1, JSInterfaceJIT::TrustedImm32(JSValue::CellTag))); slowCase.append(jit.emitJumpIfNotType(JSInterfaceJIT::regT0, JSInterfaceJIT::regT1, JSFunctionType)); #endif // USE(JSVALUE64) // Finish canonical initialization before JS function call. jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::regT0, JSFunction::offsetOfScopeChain()), JSInterfaceJIT::regT1); jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ScopeChain); // Also initialize ReturnPC for use by lazy linking and exceptions. jit.preserveReturnAddressAfterCall(JSInterfaceJIT::regT3); jit.emitPutToCallFrameHeader(JSInterfaceJIT::regT3, JSStack::ReturnPC); jit.storePtr(JSInterfaceJIT::callFrameRegister, &vm->topCallFrame); jit.restoreArgumentReference(); JSInterfaceJIT::Call callLazyLink = jit.call(); jit.restoreReturnAddressBeforeReturn(JSInterfaceJIT::regT3); jit.jump(JSInterfaceJIT::regT0); slowCase.link(&jit); JSInterfaceJIT::Call callNotJSFunction = generateSlowCaseFor(vm, jit); LinkBuffer patchBuffer(*vm, &jit, GLOBAL_THUNK_ID); patchBuffer.link(callLazyLink, lazyLink); patchBuffer.link(callNotJSFunction, notJSFunction); return FINALIZE_CODE(patchBuffer, ("link %s trampoline", name)); } MacroAssemblerCodeRef linkCallGenerator(VM* vm) { return linkForGenerator(vm, FunctionPtr(cti_vm_lazyLinkCall), FunctionPtr(cti_op_call_NotJSFunction), "call"); } MacroAssemblerCodeRef linkConstructGenerator(VM* vm) { return linkForGenerator(vm, FunctionPtr(cti_vm_lazyLinkConstruct), FunctionPtr(cti_op_construct_NotJSConstruct), "construct"); } MacroAssemblerCodeRef linkClosureCallGenerator(VM* vm) { return linkForGenerator(vm, FunctionPtr(cti_vm_lazyLinkClosureCall), FunctionPtr(cti_op_call_NotJSFunction), "closure call"); } static MacroAssemblerCodeRef virtualForGenerator(VM* vm, FunctionPtr compile, FunctionPtr notJSFunction, const char* name, CodeSpecializationKind kind) { JSInterfaceJIT jit; JSInterfaceJIT::JumpList slowCase; #if USE(JSVALUE64) slowCase.append(jit.emitJumpIfNotJSCell(JSInterfaceJIT::regT0)); #else // USE(JSVALUE64) slowCase.append(jit.branch32(JSInterfaceJIT::NotEqual, JSInterfaceJIT::regT1, JSInterfaceJIT::TrustedImm32(JSValue::CellTag))); #endif // USE(JSVALUE64) slowCase.append(jit.emitJumpIfNotType(JSInterfaceJIT::regT0, JSInterfaceJIT::regT1, JSFunctionType)); // Finish canonical initialization before JS function call. jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::regT0, JSFunction::offsetOfScopeChain()), JSInterfaceJIT::regT1); jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ScopeChain); jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::regT0, JSFunction::offsetOfExecutable()), JSInterfaceJIT::regT2); JSInterfaceJIT::Jump hasCodeBlock1 = jit.branch32(JSInterfaceJIT::GreaterThanOrEqual, JSInterfaceJIT::Address(JSInterfaceJIT::regT2, FunctionExecutable::offsetOfNumParametersFor(kind)), JSInterfaceJIT::TrustedImm32(0)); jit.preserveReturnAddressAfterCall(JSInterfaceJIT::regT3); jit.storePtr(JSInterfaceJIT::callFrameRegister, &vm->topCallFrame); jit.restoreArgumentReference(); JSInterfaceJIT::Call callCompile = jit.call(); jit.restoreReturnAddressBeforeReturn(JSInterfaceJIT::regT3); jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::regT0, JSFunction::offsetOfExecutable()), JSInterfaceJIT::regT2); hasCodeBlock1.link(&jit); jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::regT2, FunctionExecutable::offsetOfJITCodeWithArityCheckFor(kind)), JSInterfaceJIT::regT0); jit.jump(JSInterfaceJIT::regT0); slowCase.link(&jit); JSInterfaceJIT::Call callNotJSFunction = generateSlowCaseFor(vm, jit); LinkBuffer patchBuffer(*vm, &jit, GLOBAL_THUNK_ID); patchBuffer.link(callCompile, compile); patchBuffer.link(callNotJSFunction, notJSFunction); return FINALIZE_CODE(patchBuffer, ("virtual %s trampoline", name)); } MacroAssemblerCodeRef virtualCallGenerator(VM* vm) { return virtualForGenerator(vm, FunctionPtr(cti_op_call_jitCompile), FunctionPtr(cti_op_call_NotJSFunction), "call", CodeForCall); } MacroAssemblerCodeRef virtualConstructGenerator(VM* vm) { return virtualForGenerator(vm, FunctionPtr(cti_op_construct_jitCompile), FunctionPtr(cti_op_construct_NotJSConstruct), "construct", CodeForConstruct); } MacroAssemblerCodeRef stringLengthTrampolineGenerator(VM* vm) { JSInterfaceJIT jit; #if USE(JSVALUE64) // Check eax is a string JSInterfaceJIT::Jump failureCases1 = jit.emitJumpIfNotJSCell(JSInterfaceJIT::regT0); JSInterfaceJIT::Jump failureCases2 = jit.branchPtr( JSInterfaceJIT::NotEqual, JSInterfaceJIT::Address( JSInterfaceJIT::regT0, JSCell::structureOffset()), JSInterfaceJIT::TrustedImmPtr(vm->stringStructure.get())); // Checks out okay! - get the length from the Ustring. jit.load32( JSInterfaceJIT::Address(JSInterfaceJIT::regT0, JSString::offsetOfLength()), JSInterfaceJIT::regT0); JSInterfaceJIT::Jump failureCases3 = jit.branch32( JSInterfaceJIT::LessThan, JSInterfaceJIT::regT0, JSInterfaceJIT::TrustedImm32(0)); // regT0 contains a 64 bit value (is positive, is zero extended) so we don't need sign extend here. jit.emitFastArithIntToImmNoCheck(JSInterfaceJIT::regT0, JSInterfaceJIT::regT0); #else // USE(JSVALUE64) // regT0 holds payload, regT1 holds tag JSInterfaceJIT::Jump failureCases1 = jit.branch32( JSInterfaceJIT::NotEqual, JSInterfaceJIT::regT1, JSInterfaceJIT::TrustedImm32(JSValue::CellTag)); JSInterfaceJIT::Jump failureCases2 = jit.branchPtr( JSInterfaceJIT::NotEqual, JSInterfaceJIT::Address(JSInterfaceJIT::regT0, JSCell::structureOffset()), JSInterfaceJIT::TrustedImmPtr(vm->stringStructure.get())); // Checks out okay! - get the length from the Ustring. jit.load32( JSInterfaceJIT::Address(JSInterfaceJIT::regT0, JSString::offsetOfLength()), JSInterfaceJIT::regT2); JSInterfaceJIT::Jump failureCases3 = jit.branch32( JSInterfaceJIT::Above, JSInterfaceJIT::regT2, JSInterfaceJIT::TrustedImm32(INT_MAX)); jit.move(JSInterfaceJIT::regT2, JSInterfaceJIT::regT0); jit.move(JSInterfaceJIT::TrustedImm32(JSValue::Int32Tag), JSInterfaceJIT::regT1); #endif // USE(JSVALUE64) jit.ret(); JSInterfaceJIT::Call failureCases1Call = jit.makeTailRecursiveCall(failureCases1); JSInterfaceJIT::Call failureCases2Call = jit.makeTailRecursiveCall(failureCases2); JSInterfaceJIT::Call failureCases3Call = jit.makeTailRecursiveCall(failureCases3); LinkBuffer patchBuffer(*vm, &jit, GLOBAL_THUNK_ID); patchBuffer.link(failureCases1Call, FunctionPtr(cti_op_get_by_id_string_fail)); patchBuffer.link(failureCases2Call, FunctionPtr(cti_op_get_by_id_string_fail)); patchBuffer.link(failureCases3Call, FunctionPtr(cti_op_get_by_id_string_fail)); return FINALIZE_CODE(patchBuffer, ("string length trampoline")); } static MacroAssemblerCodeRef nativeForGenerator(VM* vm, CodeSpecializationKind kind) { int executableOffsetToFunction = NativeExecutable::offsetOfNativeFunctionFor(kind); JSInterfaceJIT jit; jit.emitPutImmediateToCallFrameHeader(0, JSStack::CodeBlock); jit.storePtr(JSInterfaceJIT::callFrameRegister, &vm->topCallFrame); #if CPU(X86) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. jit.emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, JSInterfaceJIT::regT0); jit.emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, JSInterfaceJIT::regT1, JSInterfaceJIT::regT0); jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ScopeChain); jit.peek(JSInterfaceJIT::regT1); jit.emitPutToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ReturnPC); // Calling convention: f(ecx, edx, ...); // Host function signature: f(ExecState*); jit.move(JSInterfaceJIT::callFrameRegister, X86Registers::ecx); jit.subPtr(JSInterfaceJIT::TrustedImm32(16 - sizeof(void*)), JSInterfaceJIT::stackPointerRegister); // Align stack after call. // call the function jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, JSInterfaceJIT::regT1); jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::regT1, JSFunction::offsetOfExecutable()), JSInterfaceJIT::regT1); jit.move(JSInterfaceJIT::regT0, JSInterfaceJIT::callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. jit.call(JSInterfaceJIT::Address(JSInterfaceJIT::regT1, executableOffsetToFunction)); jit.addPtr(JSInterfaceJIT::TrustedImm32(16 - sizeof(void*)), JSInterfaceJIT::stackPointerRegister); #elif CPU(X86_64) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. jit.emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, JSInterfaceJIT::regT0); jit.emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, JSInterfaceJIT::regT1, JSInterfaceJIT::regT0); jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ScopeChain); jit.peek(JSInterfaceJIT::regT1); jit.emitPutToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ReturnPC); #if !OS(WINDOWS) // Calling convention: f(edi, esi, edx, ecx, ...); // Host function signature: f(ExecState*); jit.move(JSInterfaceJIT::callFrameRegister, X86Registers::edi); jit.subPtr(JSInterfaceJIT::TrustedImm32(16 - sizeof(int64_t)), JSInterfaceJIT::stackPointerRegister); // Align stack after call. jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, X86Registers::esi); jit.loadPtr(JSInterfaceJIT::Address(X86Registers::esi, JSFunction::offsetOfExecutable()), X86Registers::r9); jit.move(JSInterfaceJIT::regT0, JSInterfaceJIT::callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. jit.call(JSInterfaceJIT::Address(X86Registers::r9, executableOffsetToFunction)); jit.addPtr(JSInterfaceJIT::TrustedImm32(16 - sizeof(int64_t)), JSInterfaceJIT::stackPointerRegister); #else // Calling convention: f(ecx, edx, r8, r9, ...); // Host function signature: f(ExecState*); jit.move(JSInterfaceJIT::callFrameRegister, X86Registers::ecx); // Leave space for the callee parameter home addresses and align the stack. jit.subPtr(JSInterfaceJIT::TrustedImm32(4 * sizeof(int64_t) + 16 - sizeof(int64_t)), JSInterfaceJIT::stackPointerRegister); jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, X86Registers::edx); jit.loadPtr(JSInterfaceJIT::Address(X86Registers::edx, JSFunction::offsetOfExecutable()), X86Registers::r9); jit.move(JSInterfaceJIT::regT0, JSInterfaceJIT::callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. jit.call(JSInterfaceJIT::Address(X86Registers::r9, executableOffsetToFunction)); jit.addPtr(JSInterfaceJIT::TrustedImm32(4 * sizeof(int64_t) + 16 - sizeof(int64_t)), JSInterfaceJIT::stackPointerRegister); #endif #elif CPU(ARM) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. jit.emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, JSInterfaceJIT::regT2); jit.emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, JSInterfaceJIT::regT1, JSInterfaceJIT::regT2); jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ScopeChain); jit.preserveReturnAddressAfterCall(JSInterfaceJIT::regT3); // Callee preserved jit.emitPutToCallFrameHeader(JSInterfaceJIT::regT3, JSStack::ReturnPC); // Calling convention: f(r0 == regT0, r1 == regT1, ...); // Host function signature: f(ExecState*); jit.move(JSInterfaceJIT::callFrameRegister, ARMRegisters::r0); jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, ARMRegisters::r1); jit.move(JSInterfaceJIT::regT2, JSInterfaceJIT::callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. jit.loadPtr(JSInterfaceJIT::Address(ARMRegisters::r1, JSFunction::offsetOfExecutable()), JSInterfaceJIT::regT2); jit.call(JSInterfaceJIT::Address(JSInterfaceJIT::regT2, executableOffsetToFunction)); jit.restoreReturnAddressBeforeReturn(JSInterfaceJIT::regT3); #elif CPU(SH4) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. jit.emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, JSInterfaceJIT::regT2); jit.emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, JSInterfaceJIT::regT1, JSInterfaceJIT::regT2); jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ScopeChain); jit.preserveReturnAddressAfterCall(JSInterfaceJIT::regT3); // Callee preserved jit.emitPutToCallFrameHeader(JSInterfaceJIT::regT3, JSStack::ReturnPC); // Calling convention: f(r0 == regT4, r1 == regT5, ...); // Host function signature: f(ExecState*); jit.move(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::regT4); jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, JSInterfaceJIT::regT5); jit.move(JSInterfaceJIT::regT2, JSInterfaceJIT::callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::regT5, JSFunction::offsetOfExecutable()), JSInterfaceJIT::regT2); jit.call(JSInterfaceJIT::Address(JSInterfaceJIT::regT2, executableOffsetToFunction), JSInterfaceJIT::regT0); jit.restoreReturnAddressBeforeReturn(JSInterfaceJIT::regT3); #elif CPU(MIPS) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. jit.emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, JSInterfaceJIT::regT0); jit.emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, JSInterfaceJIT::regT1, JSInterfaceJIT::regT0); jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ScopeChain); jit.preserveReturnAddressAfterCall(JSInterfaceJIT::regT3); // Callee preserved jit.emitPutToCallFrameHeader(JSInterfaceJIT::regT3, JSStack::ReturnPC); // Calling convention: f(a0, a1, a2, a3); // Host function signature: f(ExecState*); // Allocate stack space for 16 bytes (8-byte aligned) // 16 bytes (unused) for 4 arguments jit.subPtr(JSInterfaceJIT::TrustedImm32(16), JSInterfaceJIT::stackPointerRegister); // Setup arg0 jit.move(JSInterfaceJIT::callFrameRegister, MIPSRegisters::a0); // Call jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, MIPSRegisters::a2); jit.loadPtr(JSInterfaceJIT::Address(MIPSRegisters::a2, JSFunction::offsetOfExecutable()), JSInterfaceJIT::regT2); jit.move(JSInterfaceJIT::regT0, JSInterfaceJIT::callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. jit.call(JSInterfaceJIT::Address(JSInterfaceJIT::regT2, executableOffsetToFunction)); // Restore stack space jit.addPtr(JSInterfaceJIT::TrustedImm32(16), JSInterfaceJIT::stackPointerRegister); jit.restoreReturnAddressBeforeReturn(JSInterfaceJIT::regT3); #else #error "JIT not supported on this platform." UNUSED_PARAM(executableOffsetToFunction); breakpoint(); #endif // Check for an exception #if USE(JSVALUE64) jit.load64(&(vm->exception), JSInterfaceJIT::regT2); JSInterfaceJIT::Jump exceptionHandler = jit.branchTest64(JSInterfaceJIT::NonZero, JSInterfaceJIT::regT2); #else JSInterfaceJIT::Jump exceptionHandler = jit.branch32( JSInterfaceJIT::NotEqual, JSInterfaceJIT::AbsoluteAddress(reinterpret_cast(&vm->exception) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.tag)), JSInterfaceJIT::TrustedImm32(JSValue::EmptyValueTag)); #endif // Return. jit.ret(); // Handle an exception exceptionHandler.link(&jit); // Grab the return address. jit.preserveReturnAddressAfterCall(JSInterfaceJIT::regT1); jit.move(JSInterfaceJIT::TrustedImmPtr(&vm->exceptionLocation), JSInterfaceJIT::regT2); jit.storePtr(JSInterfaceJIT::regT1, JSInterfaceJIT::regT2); jit.poke(JSInterfaceJIT::callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof(void*)); jit.storePtr(JSInterfaceJIT::callFrameRegister, &vm->topCallFrame); // Set the return address. jit.move(JSInterfaceJIT::TrustedImmPtr(FunctionPtr(ctiVMThrowTrampoline).value()), JSInterfaceJIT::regT1); jit.restoreReturnAddressBeforeReturn(JSInterfaceJIT::regT1); jit.ret(); LinkBuffer patchBuffer(*vm, &jit, GLOBAL_THUNK_ID); return FINALIZE_CODE(patchBuffer, ("native %s trampoline", toCString(kind).data())); } MacroAssemblerCodeRef nativeCallGenerator(VM* vm) { return nativeForGenerator(vm, CodeForCall); } MacroAssemblerCodeRef nativeConstructGenerator(VM* vm) { return nativeForGenerator(vm, CodeForConstruct); } static void stringCharLoad(SpecializedThunkJIT& jit, VM* vm) { // load string jit.loadJSStringArgument(*vm, SpecializedThunkJIT::ThisArgument, SpecializedThunkJIT::regT0); // Load string length to regT2, and start the process of loading the data pointer into regT0 jit.load32(MacroAssembler::Address(SpecializedThunkJIT::regT0, ThunkHelpers::jsStringLengthOffset()), SpecializedThunkJIT::regT2); jit.loadPtr(MacroAssembler::Address(SpecializedThunkJIT::regT0, ThunkHelpers::jsStringValueOffset()), SpecializedThunkJIT::regT0); jit.appendFailure(jit.branchTest32(MacroAssembler::Zero, SpecializedThunkJIT::regT0)); // load index jit.loadInt32Argument(0, SpecializedThunkJIT::regT1); // regT1 contains the index // Do an unsigned compare to simultaneously filter negative indices as well as indices that are too large jit.appendFailure(jit.branch32(MacroAssembler::AboveOrEqual, SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT2)); // Load the character SpecializedThunkJIT::JumpList is16Bit; SpecializedThunkJIT::JumpList cont8Bit; // Load the string flags jit.loadPtr(MacroAssembler::Address(SpecializedThunkJIT::regT0, StringImpl::flagsOffset()), SpecializedThunkJIT::regT2); jit.loadPtr(MacroAssembler::Address(SpecializedThunkJIT::regT0, StringImpl::dataOffset()), SpecializedThunkJIT::regT0); is16Bit.append(jit.branchTest32(MacroAssembler::Zero, SpecializedThunkJIT::regT2, MacroAssembler::TrustedImm32(StringImpl::flagIs8Bit()))); jit.load8(MacroAssembler::BaseIndex(SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT1, MacroAssembler::TimesOne, 0), SpecializedThunkJIT::regT0); cont8Bit.append(jit.jump()); is16Bit.link(&jit); jit.load16(MacroAssembler::BaseIndex(SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT1, MacroAssembler::TimesTwo, 0), SpecializedThunkJIT::regT0); cont8Bit.link(&jit); } static void charToString(SpecializedThunkJIT& jit, VM* vm, MacroAssembler::RegisterID src, MacroAssembler::RegisterID dst, MacroAssembler::RegisterID scratch) { jit.appendFailure(jit.branch32(MacroAssembler::AboveOrEqual, src, MacroAssembler::TrustedImm32(0x100))); jit.move(MacroAssembler::TrustedImmPtr(vm->smallStrings.singleCharacterStrings()), scratch); jit.loadPtr(MacroAssembler::BaseIndex(scratch, src, MacroAssembler::ScalePtr, 0), dst); jit.appendFailure(jit.branchTestPtr(MacroAssembler::Zero, dst)); } MacroAssemblerCodeRef charCodeAtThunkGenerator(VM* vm) { SpecializedThunkJIT jit(1); stringCharLoad(jit, vm); jit.returnInt32(SpecializedThunkJIT::regT0); return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "charCodeAt"); } MacroAssemblerCodeRef charAtThunkGenerator(VM* vm) { SpecializedThunkJIT jit(1); stringCharLoad(jit, vm); charToString(jit, vm, SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT1); jit.returnJSCell(SpecializedThunkJIT::regT0); return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "charAt"); } MacroAssemblerCodeRef fromCharCodeThunkGenerator(VM* vm) { SpecializedThunkJIT jit(1); // load char code jit.loadInt32Argument(0, SpecializedThunkJIT::regT0); charToString(jit, vm, SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT1); jit.returnJSCell(SpecializedThunkJIT::regT0); return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "fromCharCode"); } MacroAssemblerCodeRef sqrtThunkGenerator(VM* vm) { SpecializedThunkJIT jit(1); if (!jit.supportsFloatingPointSqrt()) return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm)); jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0); jit.sqrtDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT0); jit.returnDouble(SpecializedThunkJIT::fpRegT0); return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "sqrt"); } #define UnaryDoubleOpWrapper(function) function##Wrapper enum MathThunkCallingConvention { }; typedef MathThunkCallingConvention(*MathThunk)(MathThunkCallingConvention); extern "C" { double jsRound(double) REFERENCED_FROM_ASM; double jsRound(double d) { double integer = ceil(d); return integer - (integer - d > 0.5); } } #if CPU(X86_64) && COMPILER(GCC) && (PLATFORM(MAC) || OS(LINUX)) #define defineUnaryDoubleOpWrapper(function) \ asm( \ ".text\n" \ ".globl " SYMBOL_STRING(function##Thunk) "\n" \ HIDE_SYMBOL(function##Thunk) "\n" \ SYMBOL_STRING(function##Thunk) ":" "\n" \ "call " GLOBAL_REFERENCE(function) "\n" \ "ret\n" \ );\ extern "C" { \ MathThunkCallingConvention function##Thunk(MathThunkCallingConvention); \ } \ static MathThunk UnaryDoubleOpWrapper(function) = &function##Thunk; #elif CPU(X86) && COMPILER(GCC) && (PLATFORM(MAC) || OS(LINUX)) #define defineUnaryDoubleOpWrapper(function) \ asm( \ ".text\n" \ ".globl " SYMBOL_STRING(function##Thunk) "\n" \ HIDE_SYMBOL(function##Thunk) "\n" \ SYMBOL_STRING(function##Thunk) ":" "\n" \ "subl $8, %esp\n" \ "movsd %xmm0, (%esp) \n" \ "call " GLOBAL_REFERENCE(function) "\n" \ "fstpl (%esp) \n" \ "movsd (%esp), %xmm0 \n" \ "addl $8, %esp\n" \ "ret\n" \ );\ extern "C" { \ MathThunkCallingConvention function##Thunk(MathThunkCallingConvention); \ } \ static MathThunk UnaryDoubleOpWrapper(function) = &function##Thunk; #elif CPU(ARM_THUMB2) && COMPILER(GCC) && PLATFORM(IOS) #define defineUnaryDoubleOpWrapper(function) \ asm( \ ".text\n" \ ".align 2\n" \ ".globl " SYMBOL_STRING(function##Thunk) "\n" \ HIDE_SYMBOL(function##Thunk) "\n" \ ".thumb\n" \ ".thumb_func " THUMB_FUNC_PARAM(function##Thunk) "\n" \ SYMBOL_STRING(function##Thunk) ":" "\n" \ "push {lr}\n" \ "vmov r0, r1, d0\n" \ "blx " GLOBAL_REFERENCE(function) "\n" \ "vmov d0, r0, r1\n" \ "pop {lr}\n" \ "bx lr\n" \ ); \ extern "C" { \ MathThunkCallingConvention function##Thunk(MathThunkCallingConvention); \ } \ static MathThunk UnaryDoubleOpWrapper(function) = &function##Thunk; #else #define defineUnaryDoubleOpWrapper(function) \ static MathThunk UnaryDoubleOpWrapper(function) = 0 #endif defineUnaryDoubleOpWrapper(jsRound); defineUnaryDoubleOpWrapper(exp); defineUnaryDoubleOpWrapper(log); defineUnaryDoubleOpWrapper(floor); defineUnaryDoubleOpWrapper(ceil); static const double oneConstant = 1.0; static const double negativeHalfConstant = -0.5; static const double zeroConstant = 0.0; static const double halfConstant = 0.5; MacroAssemblerCodeRef floorThunkGenerator(VM* vm) { SpecializedThunkJIT jit(1); MacroAssembler::Jump nonIntJump; if (!UnaryDoubleOpWrapper(floor) || !jit.supportsFloatingPoint()) return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm)); jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump); jit.returnInt32(SpecializedThunkJIT::regT0); nonIntJump.link(&jit); jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0); SpecializedThunkJIT::Jump intResult; SpecializedThunkJIT::JumpList doubleResult; if (jit.supportsFloatingPointTruncate()) { jit.loadDouble(&zeroConstant, SpecializedThunkJIT::fpRegT1); doubleResult.append(jit.branchDouble(MacroAssembler::DoubleEqual, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1)); SpecializedThunkJIT::JumpList slowPath; // Handle the negative doubles in the slow path for now. slowPath.append(jit.branchDouble(MacroAssembler::DoubleLessThanOrUnordered, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1)); slowPath.append(jit.branchTruncateDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0)); intResult = jit.jump(); slowPath.link(&jit); } jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(floor)); jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT1); if (jit.supportsFloatingPointTruncate()) intResult.link(&jit); jit.returnInt32(SpecializedThunkJIT::regT0); doubleResult.link(&jit); jit.returnDouble(SpecializedThunkJIT::fpRegT0); return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "floor"); } MacroAssemblerCodeRef ceilThunkGenerator(VM* vm) { SpecializedThunkJIT jit(1); if (!UnaryDoubleOpWrapper(ceil) || !jit.supportsFloatingPoint()) return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm)); MacroAssembler::Jump nonIntJump; jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump); jit.returnInt32(SpecializedThunkJIT::regT0); nonIntJump.link(&jit); jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0); jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(ceil)); SpecializedThunkJIT::JumpList doubleResult; jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT1); jit.returnInt32(SpecializedThunkJIT::regT0); doubleResult.link(&jit); jit.returnDouble(SpecializedThunkJIT::fpRegT0); return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "ceil"); } MacroAssemblerCodeRef roundThunkGenerator(VM* vm) { SpecializedThunkJIT jit(1); if (!UnaryDoubleOpWrapper(jsRound) || !jit.supportsFloatingPoint()) return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm)); MacroAssembler::Jump nonIntJump; jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump); jit.returnInt32(SpecializedThunkJIT::regT0); nonIntJump.link(&jit); jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0); SpecializedThunkJIT::Jump intResult; SpecializedThunkJIT::JumpList doubleResult; if (jit.supportsFloatingPointTruncate()) { jit.loadDouble(&zeroConstant, SpecializedThunkJIT::fpRegT1); doubleResult.append(jit.branchDouble(MacroAssembler::DoubleEqual, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1)); SpecializedThunkJIT::JumpList slowPath; // Handle the negative doubles in the slow path for now. slowPath.append(jit.branchDouble(MacroAssembler::DoubleLessThanOrUnordered, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1)); jit.loadDouble(&halfConstant, SpecializedThunkJIT::fpRegT1); jit.addDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1); slowPath.append(jit.branchTruncateDoubleToInt32(SpecializedThunkJIT::fpRegT1, SpecializedThunkJIT::regT0)); intResult = jit.jump(); slowPath.link(&jit); } jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(jsRound)); jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT1); if (jit.supportsFloatingPointTruncate()) intResult.link(&jit); jit.returnInt32(SpecializedThunkJIT::regT0); doubleResult.link(&jit); jit.returnDouble(SpecializedThunkJIT::fpRegT0); return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "round"); } MacroAssemblerCodeRef expThunkGenerator(VM* vm) { if (!UnaryDoubleOpWrapper(exp)) return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm)); SpecializedThunkJIT jit(1); if (!jit.supportsFloatingPoint()) return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm)); jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0); jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(exp)); jit.returnDouble(SpecializedThunkJIT::fpRegT0); return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "exp"); } MacroAssemblerCodeRef logThunkGenerator(VM* vm) { if (!UnaryDoubleOpWrapper(log)) return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm)); SpecializedThunkJIT jit(1); if (!jit.supportsFloatingPoint()) return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm)); jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0); jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(log)); jit.returnDouble(SpecializedThunkJIT::fpRegT0); return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "log"); } MacroAssemblerCodeRef absThunkGenerator(VM* vm) { SpecializedThunkJIT jit(1); if (!jit.supportsFloatingPointAbs()) return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm)); MacroAssembler::Jump nonIntJump; jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump); jit.rshift32(SpecializedThunkJIT::regT0, MacroAssembler::TrustedImm32(31), SpecializedThunkJIT::regT1); jit.add32(SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT0); jit.xor32(SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT0); jit.appendFailure(jit.branch32(MacroAssembler::Equal, SpecializedThunkJIT::regT0, MacroAssembler::TrustedImm32(1 << 31))); jit.returnInt32(SpecializedThunkJIT::regT0); nonIntJump.link(&jit); // Shame about the double int conversion here. jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0); jit.absDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1); jit.returnDouble(SpecializedThunkJIT::fpRegT1); return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "abs"); } MacroAssemblerCodeRef powThunkGenerator(VM* vm) { SpecializedThunkJIT jit(2); if (!jit.supportsFloatingPoint()) return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm)); jit.loadDouble(&oneConstant, SpecializedThunkJIT::fpRegT1); jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0); MacroAssembler::Jump nonIntExponent; jit.loadInt32Argument(1, SpecializedThunkJIT::regT0, nonIntExponent); jit.appendFailure(jit.branch32(MacroAssembler::LessThan, SpecializedThunkJIT::regT0, MacroAssembler::TrustedImm32(0))); MacroAssembler::Jump exponentIsZero = jit.branchTest32(MacroAssembler::Zero, SpecializedThunkJIT::regT0); MacroAssembler::Label startLoop(jit.label()); MacroAssembler::Jump exponentIsEven = jit.branchTest32(MacroAssembler::Zero, SpecializedThunkJIT::regT0, MacroAssembler::TrustedImm32(1)); jit.mulDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1); exponentIsEven.link(&jit); jit.mulDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT0); jit.rshift32(MacroAssembler::TrustedImm32(1), SpecializedThunkJIT::regT0); jit.branchTest32(MacroAssembler::NonZero, SpecializedThunkJIT::regT0).linkTo(startLoop, &jit); exponentIsZero.link(&jit); { SpecializedThunkJIT::JumpList doubleResult; jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT1, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT0); jit.returnInt32(SpecializedThunkJIT::regT0); doubleResult.link(&jit); jit.returnDouble(SpecializedThunkJIT::fpRegT1); } if (jit.supportsFloatingPointSqrt()) { nonIntExponent.link(&jit); jit.loadDouble(&negativeHalfConstant, SpecializedThunkJIT::fpRegT3); jit.loadDoubleArgument(1, SpecializedThunkJIT::fpRegT2, SpecializedThunkJIT::regT0); jit.appendFailure(jit.branchDouble(MacroAssembler::DoubleLessThanOrEqual, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1)); jit.appendFailure(jit.branchDouble(MacroAssembler::DoubleNotEqualOrUnordered, SpecializedThunkJIT::fpRegT2, SpecializedThunkJIT::fpRegT3)); jit.sqrtDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT0); jit.divDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1); SpecializedThunkJIT::JumpList doubleResult; jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT1, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT0); jit.returnInt32(SpecializedThunkJIT::regT0); doubleResult.link(&jit); jit.returnDouble(SpecializedThunkJIT::fpRegT1); } else jit.appendFailure(nonIntExponent); return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "pow"); } MacroAssemblerCodeRef imulThunkGenerator(VM* vm) { SpecializedThunkJIT jit(2); MacroAssembler::Jump nonIntArg0Jump; jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntArg0Jump); SpecializedThunkJIT::Label doneLoadingArg0(&jit); MacroAssembler::Jump nonIntArg1Jump; jit.loadInt32Argument(1, SpecializedThunkJIT::regT1, nonIntArg1Jump); SpecializedThunkJIT::Label doneLoadingArg1(&jit); jit.mul32(SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT0); jit.returnInt32(SpecializedThunkJIT::regT0); if (jit.supportsFloatingPointTruncate()) { nonIntArg0Jump.link(&jit); jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0); jit.branchTruncateDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, SpecializedThunkJIT::BranchIfTruncateSuccessful).linkTo(doneLoadingArg0, &jit); jit.xor32(SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT0); jit.jump(doneLoadingArg0); } else jit.appendFailure(nonIntArg0Jump); if (jit.supportsFloatingPointTruncate()) { nonIntArg1Jump.link(&jit); jit.loadDoubleArgument(1, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT1); jit.branchTruncateDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT1, SpecializedThunkJIT::BranchIfTruncateSuccessful).linkTo(doneLoadingArg1, &jit); jit.xor32(SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT1); jit.jump(doneLoadingArg1); } else jit.appendFailure(nonIntArg1Jump); return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "imul"); } } #endif // ENABLE(JIT)