/* * Copyright (C) 2009, 2012 Apple Inc. All rights reserved. * Copyright (C) 2010 Patrick Gansterer * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #if ENABLE(JIT) #if USE(JSVALUE32_64) #include "JIT.h" #include "JITInlines.h" #include "JITStubCall.h" #include "JSArray.h" #include "JSCell.h" #include "JSFunction.h" #include "JSPropertyNameIterator.h" #include "JSVariableObject.h" #include "LinkBuffer.h" namespace JSC { JIT::CodeRef JIT::privateCompileCTINativeCall(VM* vm, NativeFunction func) { Call nativeCall; emitPutImmediateToCallFrameHeader(0, JSStack::CodeBlock); storePtr(callFrameRegister, &m_vm->topCallFrame); #if CPU(X86) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, regT0); emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, regT1, regT0); emitPutCellToCallFrameHeader(regT1, JSStack::ScopeChain); peek(regT1); emitPutToCallFrameHeader(regT1, JSStack::ReturnPC); // Calling convention: f(ecx, edx, ...); // Host function signature: f(ExecState*); move(callFrameRegister, X86Registers::ecx); subPtr(TrustedImm32(16 - sizeof(void*)), stackPointerRegister); // Align stack after call. move(regT0, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. // call the function nativeCall = call(); addPtr(TrustedImm32(16 - sizeof(void*)), stackPointerRegister); #elif CPU(ARM) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, regT2); emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, regT1, regT2); emitPutCellToCallFrameHeader(regT1, JSStack::ScopeChain); preserveReturnAddressAfterCall(regT3); // Callee preserved emitPutToCallFrameHeader(regT3, JSStack::ReturnPC); // Calling convention: f(r0 == regT0, r1 == regT1, ...); // Host function signature: f(ExecState*); move(callFrameRegister, ARMRegisters::r0); emitGetFromCallFrameHeaderPtr(JSStack::Callee, ARMRegisters::r1); move(regT2, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. loadPtr(Address(ARMRegisters::r1, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); // call the function nativeCall = call(); restoreReturnAddressBeforeReturn(regT3); #elif CPU(MIPS) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, regT0); emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, regT1, regT0); emitPutCellToCallFrameHeader(regT1, JSStack::ScopeChain); preserveReturnAddressAfterCall(regT3); // Callee preserved emitPutToCallFrameHeader(regT3, JSStack::ReturnPC); // Calling convention: f(a0, a1, a2, a3); // Host function signature: f(ExecState*); // Allocate stack space for 16 bytes (8-byte aligned) // 16 bytes (unused) for 4 arguments subPtr(TrustedImm32(16), stackPointerRegister); // Setup arg0 move(callFrameRegister, MIPSRegisters::a0); // Call emitGetFromCallFrameHeaderPtr(JSStack::Callee, MIPSRegisters::a2); loadPtr(Address(MIPSRegisters::a2, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); move(regT0, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. // call the function nativeCall = call(); // Restore stack space addPtr(TrustedImm32(16), stackPointerRegister); restoreReturnAddressBeforeReturn(regT3); #elif CPU(SH4) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, regT2); emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, regT1, regT2); emitPutCellToCallFrameHeader(regT1, JSStack::ScopeChain); preserveReturnAddressAfterCall(regT3); // Callee preserved emitPutToCallFrameHeader(regT3, JSStack::ReturnPC); // Calling convention: f(r0 == regT4, r1 == regT5, ...); // Host function signature: f(ExecState*); move(callFrameRegister, regT4); emitGetFromCallFrameHeaderPtr(JSStack::Callee, regT5); move(regT2, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. loadPtr(Address(regT5, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); // call the function nativeCall = call(); restoreReturnAddressBeforeReturn(regT3); #else #error "JIT not supported on this platform." breakpoint(); #endif // CPU(X86) // Check for an exception Jump sawException = branch32(NotEqual, AbsoluteAddress(reinterpret_cast(&vm->exception) + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), TrustedImm32(JSValue::EmptyValueTag)); // Return. ret(); // Handle an exception sawException.link(this); // Grab the return address. preserveReturnAddressAfterCall(regT1); move(TrustedImmPtr(&vm->exceptionLocation), regT2); storePtr(regT1, regT2); poke(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof(void*)); storePtr(callFrameRegister, &m_vm->topCallFrame); // Set the return address. move(TrustedImmPtr(FunctionPtr(ctiVMThrowTrampoline).value()), regT1); restoreReturnAddressBeforeReturn(regT1); ret(); // All trampolines constructed! copy the code, link up calls, and set the pointers on the Machine object. LinkBuffer patchBuffer(*m_vm, this, GLOBAL_THUNK_ID); patchBuffer.link(nativeCall, FunctionPtr(func)); return FINALIZE_CODE(patchBuffer, ("JIT CTI native call")); } void JIT::emit_op_mov(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; if (m_codeBlock->isConstantRegisterIndex(src)) emitStore(dst, getConstantOperand(src)); else { emitLoad(src, regT1, regT0); emitStore(dst, regT1, regT0); map(m_bytecodeOffset + OPCODE_LENGTH(op_mov), dst, regT1, regT0); } } void JIT::emit_op_end(Instruction* currentInstruction) { ASSERT(returnValueRegister != callFrameRegister); emitLoad(currentInstruction[1].u.operand, regT1, regT0); restoreReturnAddressBeforeReturn(Address(callFrameRegister, JSStack::ReturnPC * static_cast(sizeof(Register)))); ret(); } void JIT::emit_op_jmp(Instruction* currentInstruction) { unsigned target = currentInstruction[1].u.operand; addJump(jump(), target); } void JIT::emit_op_new_object(Instruction* currentInstruction) { Structure* structure = currentInstruction[3].u.objectAllocationProfile->structure(); size_t allocationSize = JSObject::allocationSize(structure->inlineCapacity()); MarkedAllocator* allocator = &m_vm->heap.allocatorForObjectWithoutDestructor(allocationSize); RegisterID resultReg = regT0; RegisterID allocatorReg = regT1; RegisterID scratchReg = regT2; move(TrustedImmPtr(allocator), allocatorReg); emitAllocateJSObject(allocatorReg, TrustedImmPtr(structure), resultReg, scratchReg); emitStoreCell(currentInstruction[1].u.operand, resultReg); } void JIT::emitSlow_op_new_object(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_new_object); stubCall.addArgument(TrustedImmPtr(currentInstruction[3].u.objectAllocationProfile->structure())); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_check_has_instance(Instruction* currentInstruction) { unsigned baseVal = currentInstruction[3].u.operand; emitLoadPayload(baseVal, regT0); // Check that baseVal is a cell. emitJumpSlowCaseIfNotJSCell(baseVal); // Check that baseVal 'ImplementsHasInstance'. loadPtr(Address(regT0, JSCell::structureOffset()), regT0); addSlowCase(branchTest8(Zero, Address(regT0, Structure::typeInfoFlagsOffset()), TrustedImm32(ImplementsDefaultHasInstance))); } void JIT::emit_op_instanceof(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned value = currentInstruction[2].u.operand; unsigned proto = currentInstruction[3].u.operand; // Load the operands into registers. // We use regT0 for baseVal since we will be done with this first, and we can then use it for the result. emitLoadPayload(value, regT2); emitLoadPayload(proto, regT1); // Check that proto are cells. baseVal must be a cell - this is checked by op_check_has_instance. emitJumpSlowCaseIfNotJSCell(value); emitJumpSlowCaseIfNotJSCell(proto); // Check that prototype is an object loadPtr(Address(regT1, JSCell::structureOffset()), regT3); addSlowCase(emitJumpIfNotObject(regT3)); // Optimistically load the result true, and start looping. // Initially, regT1 still contains proto and regT2 still contains value. // As we loop regT2 will be updated with its prototype, recursively walking the prototype chain. move(TrustedImm32(1), regT0); Label loop(this); // Load the prototype of the cell in regT2. If this is equal to regT1 - WIN! // Otherwise, check if we've hit null - if we have then drop out of the loop, if not go again. loadPtr(Address(regT2, JSCell::structureOffset()), regT2); load32(Address(regT2, Structure::prototypeOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT2); Jump isInstance = branchPtr(Equal, regT2, regT1); branchTest32(NonZero, regT2).linkTo(loop, this); // We get here either by dropping out of the loop, or if value was not an Object. Result is false. move(TrustedImm32(0), regT0); // isInstance jumps right down to here, to skip setting the result to false (it has already set true). isInstance.link(this); emitStoreBool(dst, regT0); } void JIT::emitSlow_op_check_has_instance(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned value = currentInstruction[2].u.operand; unsigned baseVal = currentInstruction[3].u.operand; linkSlowCaseIfNotJSCell(iter, baseVal); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_check_has_instance); stubCall.addArgument(value); stubCall.addArgument(baseVal); stubCall.call(dst); emitJumpSlowToHot(jump(), currentInstruction[4].u.operand); } void JIT::emitSlow_op_instanceof(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned value = currentInstruction[2].u.operand; unsigned proto = currentInstruction[3].u.operand; linkSlowCaseIfNotJSCell(iter, value); linkSlowCaseIfNotJSCell(iter, proto); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_instanceof); stubCall.addArgument(value); stubCall.addArgument(proto); stubCall.call(dst); } void JIT::emit_op_is_undefined(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned value = currentInstruction[2].u.operand; emitLoad(value, regT1, regT0); Jump isCell = branch32(Equal, regT1, TrustedImm32(JSValue::CellTag)); compare32(Equal, regT1, TrustedImm32(JSValue::UndefinedTag), regT0); Jump done = jump(); isCell.link(this); loadPtr(Address(regT0, JSCell::structureOffset()), regT1); Jump isMasqueradesAsUndefined = branchTest8(NonZero, Address(regT1, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined)); move(TrustedImm32(0), regT0); Jump notMasqueradesAsUndefined = jump(); isMasqueradesAsUndefined.link(this); move(TrustedImmPtr(m_codeBlock->globalObject()), regT0); loadPtr(Address(regT1, Structure::globalObjectOffset()), regT1); compare32(Equal, regT0, regT1, regT0); notMasqueradesAsUndefined.link(this); done.link(this); emitStoreBool(dst, regT0); } void JIT::emit_op_is_boolean(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned value = currentInstruction[2].u.operand; emitLoadTag(value, regT0); compare32(Equal, regT0, TrustedImm32(JSValue::BooleanTag), regT0); emitStoreBool(dst, regT0); } void JIT::emit_op_is_number(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned value = currentInstruction[2].u.operand; emitLoadTag(value, regT0); add32(TrustedImm32(1), regT0); compare32(Below, regT0, TrustedImm32(JSValue::LowestTag + 1), regT0); emitStoreBool(dst, regT0); } void JIT::emit_op_is_string(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned value = currentInstruction[2].u.operand; emitLoad(value, regT1, regT0); Jump isNotCell = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)); loadPtr(Address(regT0, JSCell::structureOffset()), regT1); compare8(Equal, Address(regT1, Structure::typeInfoTypeOffset()), TrustedImm32(StringType), regT0); Jump done = jump(); isNotCell.link(this); move(TrustedImm32(0), regT0); done.link(this); emitStoreBool(dst, regT0); } void JIT::emit_op_tear_off_activation(Instruction* currentInstruction) { unsigned activation = currentInstruction[1].u.operand; Jump activationNotCreated = branch32(Equal, tagFor(activation), TrustedImm32(JSValue::EmptyValueTag)); JITStubCall stubCall(this, cti_op_tear_off_activation); stubCall.addArgument(activation); stubCall.call(); activationNotCreated.link(this); } void JIT::emit_op_tear_off_arguments(Instruction* currentInstruction) { int arguments = currentInstruction[1].u.operand; int activation = currentInstruction[2].u.operand; Jump argsNotCreated = branch32(Equal, tagFor(unmodifiedArgumentsRegister(arguments)), TrustedImm32(JSValue::EmptyValueTag)); JITStubCall stubCall(this, cti_op_tear_off_arguments); stubCall.addArgument(unmodifiedArgumentsRegister(arguments)); stubCall.addArgument(activation); stubCall.call(); argsNotCreated.link(this); } void JIT::emit_op_to_primitive(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int src = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump isImm = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)); addSlowCase(branchPtr(NotEqual, Address(regT0, JSCell::structureOffset()), TrustedImmPtr(m_vm->stringStructure.get()))); isImm.link(this); if (dst != src) emitStore(dst, regT1, regT0); map(m_bytecodeOffset + OPCODE_LENGTH(op_to_primitive), dst, regT1, regT0); } void JIT::emitSlow_op_to_primitive(Instruction* currentInstruction, Vector::iterator& iter) { int dst = currentInstruction[1].u.operand; linkSlowCase(iter); JITStubCall stubCall(this, cti_op_to_primitive); stubCall.addArgument(regT1, regT0); stubCall.call(dst); } void JIT::emit_op_strcat(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_strcat); stubCall.addArgument(TrustedImm32(currentInstruction[2].u.operand)); stubCall.addArgument(TrustedImm32(currentInstruction[3].u.operand)); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_not(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; emitLoadTag(src, regT0); emitLoad(src, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::BooleanTag))); xor32(TrustedImm32(1), regT0); emitStoreBool(dst, regT0, (dst == src)); } void JIT::emitSlow_op_not(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; linkSlowCase(iter); JITStubCall stubCall(this, cti_op_not); stubCall.addArgument(src); stubCall.call(dst); } void JIT::emit_op_jfalse(Instruction* currentInstruction) { unsigned cond = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitLoad(cond, regT1, regT0); ASSERT((JSValue::BooleanTag + 1 == JSValue::Int32Tag) && !(JSValue::Int32Tag + 1)); addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::BooleanTag))); addJump(branchTest32(Zero, regT0), target); } void JIT::emitSlow_op_jfalse(Instruction* currentInstruction, Vector::iterator& iter) { unsigned cond = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; linkSlowCase(iter); if (supportsFloatingPoint()) { // regT1 contains the tag from the hot path. Jump notNumber = branch32(Above, regT1, TrustedImm32(JSValue::LowestTag)); emitLoadDouble(cond, fpRegT0); emitJumpSlowToHot(branchDoubleZeroOrNaN(fpRegT0, fpRegT1), target); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jfalse)); notNumber.link(this); } JITStubCall stubCall(this, cti_op_jtrue); stubCall.addArgument(cond); stubCall.call(); emitJumpSlowToHot(branchTest32(Zero, regT0), target); // Inverted. } void JIT::emit_op_jtrue(Instruction* currentInstruction) { unsigned cond = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitLoad(cond, regT1, regT0); ASSERT((JSValue::BooleanTag + 1 == JSValue::Int32Tag) && !(JSValue::Int32Tag + 1)); addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::BooleanTag))); addJump(branchTest32(NonZero, regT0), target); } void JIT::emitSlow_op_jtrue(Instruction* currentInstruction, Vector::iterator& iter) { unsigned cond = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; linkSlowCase(iter); if (supportsFloatingPoint()) { // regT1 contains the tag from the hot path. Jump notNumber = branch32(Above, regT1, TrustedImm32(JSValue::LowestTag)); emitLoadDouble(cond, fpRegT0); emitJumpSlowToHot(branchDoubleNonZero(fpRegT0, fpRegT1), target); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jtrue)); notNumber.link(this); } JITStubCall stubCall(this, cti_op_jtrue); stubCall.addArgument(cond); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target); } void JIT::emit_op_jeq_null(Instruction* currentInstruction) { unsigned src = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump isImmediate = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)); // First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure. loadPtr(Address(regT0, JSCell::structureOffset()), regT2); Jump isNotMasqueradesAsUndefined = branchTest8(Zero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined)); move(TrustedImmPtr(m_codeBlock->globalObject()), regT0); addJump(branchPtr(Equal, Address(regT2, Structure::globalObjectOffset()), regT0), target); Jump masqueradesGlobalObjectIsForeign = jump(); // Now handle the immediate cases - undefined & null isImmediate.link(this); ASSERT((JSValue::UndefinedTag + 1 == JSValue::NullTag) && (JSValue::NullTag & 0x1)); or32(TrustedImm32(1), regT1); addJump(branch32(Equal, regT1, TrustedImm32(JSValue::NullTag)), target); isNotMasqueradesAsUndefined.link(this); masqueradesGlobalObjectIsForeign.link(this); } void JIT::emit_op_jneq_null(Instruction* currentInstruction) { unsigned src = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump isImmediate = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)); // First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure. loadPtr(Address(regT0, JSCell::structureOffset()), regT2); addJump(branchTest8(Zero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined)), target); move(TrustedImmPtr(m_codeBlock->globalObject()), regT0); addJump(branchPtr(NotEqual, Address(regT2, Structure::globalObjectOffset()), regT0), target); Jump wasNotImmediate = jump(); // Now handle the immediate cases - undefined & null isImmediate.link(this); ASSERT((JSValue::UndefinedTag + 1 == JSValue::NullTag) && (JSValue::NullTag & 0x1)); or32(TrustedImm32(1), regT1); addJump(branch32(NotEqual, regT1, TrustedImm32(JSValue::NullTag)), target); wasNotImmediate.link(this); } void JIT::emit_op_jneq_ptr(Instruction* currentInstruction) { unsigned src = currentInstruction[1].u.operand; Special::Pointer ptr = currentInstruction[2].u.specialPointer; unsigned target = currentInstruction[3].u.operand; emitLoad(src, regT1, regT0); addJump(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)), target); addJump(branchPtr(NotEqual, regT0, TrustedImmPtr(actualPointerFor(m_codeBlock, ptr))), target); } void JIT::emit_op_eq(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; unsigned src2 = currentInstruction[3].u.operand; emitLoad2(src1, regT1, regT0, src2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, regT3)); addSlowCase(branch32(Equal, regT1, TrustedImm32(JSValue::CellTag))); addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::LowestTag))); compare32(Equal, regT0, regT2, regT0); emitStoreBool(dst, regT0); } void JIT::emitSlow_op_eq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; JumpList storeResult; JumpList genericCase; genericCase.append(getSlowCase(iter)); // tags not equal linkSlowCase(iter); // tags equal and JSCell genericCase.append(branchPtr(NotEqual, Address(regT0, JSCell::structureOffset()), TrustedImmPtr(m_vm->stringStructure.get()))); genericCase.append(branchPtr(NotEqual, Address(regT2, JSCell::structureOffset()), TrustedImmPtr(m_vm->stringStructure.get()))); // String case. JITStubCall stubCallEqStrings(this, cti_op_eq_strings); stubCallEqStrings.addArgument(regT0); stubCallEqStrings.addArgument(regT2); stubCallEqStrings.call(); storeResult.append(jump()); // Generic case. genericCase.append(getSlowCase(iter)); // doubles genericCase.link(this); JITStubCall stubCallEq(this, cti_op_eq); stubCallEq.addArgument(op1); stubCallEq.addArgument(op2); stubCallEq.call(regT0); storeResult.link(this); emitStoreBool(dst, regT0); } void JIT::emit_op_neq(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; unsigned src2 = currentInstruction[3].u.operand; emitLoad2(src1, regT1, regT0, src2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, regT3)); addSlowCase(branch32(Equal, regT1, TrustedImm32(JSValue::CellTag))); addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::LowestTag))); compare32(NotEqual, regT0, regT2, regT0); emitStoreBool(dst, regT0); } void JIT::emitSlow_op_neq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; JumpList storeResult; JumpList genericCase; genericCase.append(getSlowCase(iter)); // tags not equal linkSlowCase(iter); // tags equal and JSCell genericCase.append(branchPtr(NotEqual, Address(regT0, JSCell::structureOffset()), TrustedImmPtr(m_vm->stringStructure.get()))); genericCase.append(branchPtr(NotEqual, Address(regT2, JSCell::structureOffset()), TrustedImmPtr(m_vm->stringStructure.get()))); // String case. JITStubCall stubCallEqStrings(this, cti_op_eq_strings); stubCallEqStrings.addArgument(regT0); stubCallEqStrings.addArgument(regT2); stubCallEqStrings.call(regT0); storeResult.append(jump()); // Generic case. genericCase.append(getSlowCase(iter)); // doubles genericCase.link(this); JITStubCall stubCallEq(this, cti_op_eq); stubCallEq.addArgument(regT1, regT0); stubCallEq.addArgument(regT3, regT2); stubCallEq.call(regT0); storeResult.link(this); xor32(TrustedImm32(0x1), regT0); emitStoreBool(dst, regT0); } void JIT::compileOpStrictEq(Instruction* currentInstruction, CompileOpStrictEqType type) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; unsigned src2 = currentInstruction[3].u.operand; emitLoad2(src1, regT1, regT0, src2, regT3, regT2); // Bail if the tags differ, or are double. addSlowCase(branch32(NotEqual, regT1, regT3)); addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::LowestTag))); // Jump to a slow case if both are strings. Jump notCell = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)); Jump firstNotString = branchPtr(NotEqual, Address(regT0, JSCell::structureOffset()), TrustedImmPtr(m_vm->stringStructure.get())); addSlowCase(branchPtr(Equal, Address(regT2, JSCell::structureOffset()), TrustedImmPtr(m_vm->stringStructure.get()))); notCell.link(this); firstNotString.link(this); // Simply compare the payloads. if (type == OpStrictEq) compare32(Equal, regT0, regT2, regT0); else compare32(NotEqual, regT0, regT2, regT0); emitStoreBool(dst, regT0); } void JIT::emit_op_stricteq(Instruction* currentInstruction) { compileOpStrictEq(currentInstruction, OpStrictEq); } void JIT::emitSlow_op_stricteq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; unsigned src2 = currentInstruction[3].u.operand; linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_stricteq); stubCall.addArgument(src1); stubCall.addArgument(src2); stubCall.call(dst); } void JIT::emit_op_nstricteq(Instruction* currentInstruction) { compileOpStrictEq(currentInstruction, OpNStrictEq); } void JIT::emitSlow_op_nstricteq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; unsigned src2 = currentInstruction[3].u.operand; linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_nstricteq); stubCall.addArgument(src1); stubCall.addArgument(src2); stubCall.call(dst); } void JIT::emit_op_eq_null(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump isImmediate = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)); loadPtr(Address(regT0, JSCell::structureOffset()), regT2); Jump isMasqueradesAsUndefined = branchTest8(NonZero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined)); move(TrustedImm32(0), regT1); Jump wasNotMasqueradesAsUndefined = jump(); isMasqueradesAsUndefined.link(this); move(TrustedImmPtr(m_codeBlock->globalObject()), regT0); loadPtr(Address(regT2, Structure::globalObjectOffset()), regT2); compare32(Equal, regT0, regT2, regT1); Jump wasNotImmediate = jump(); isImmediate.link(this); compare32(Equal, regT1, TrustedImm32(JSValue::NullTag), regT2); compare32(Equal, regT1, TrustedImm32(JSValue::UndefinedTag), regT1); or32(regT2, regT1); wasNotImmediate.link(this); wasNotMasqueradesAsUndefined.link(this); emitStoreBool(dst, regT1); } void JIT::emit_op_neq_null(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump isImmediate = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)); loadPtr(Address(regT0, JSCell::structureOffset()), regT2); Jump isMasqueradesAsUndefined = branchTest8(NonZero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined)); move(TrustedImm32(1), regT1); Jump wasNotMasqueradesAsUndefined = jump(); isMasqueradesAsUndefined.link(this); move(TrustedImmPtr(m_codeBlock->globalObject()), regT0); loadPtr(Address(regT2, Structure::globalObjectOffset()), regT2); compare32(NotEqual, regT0, regT2, regT1); Jump wasNotImmediate = jump(); isImmediate.link(this); compare32(NotEqual, regT1, TrustedImm32(JSValue::NullTag), regT2); compare32(NotEqual, regT1, TrustedImm32(JSValue::UndefinedTag), regT1); and32(regT2, regT1); wasNotImmediate.link(this); wasNotMasqueradesAsUndefined.link(this); emitStoreBool(dst, regT1); } void JIT::emit_op_throw(Instruction* currentInstruction) { unsigned exception = currentInstruction[1].u.operand; JITStubCall stubCall(this, cti_op_throw); stubCall.addArgument(exception); stubCall.call(); #ifndef NDEBUG // cti_op_throw always changes it's return address, // this point in the code should never be reached. breakpoint(); #endif } void JIT::emit_op_get_pnames(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int base = currentInstruction[2].u.operand; int i = currentInstruction[3].u.operand; int size = currentInstruction[4].u.operand; int breakTarget = currentInstruction[5].u.operand; JumpList isNotObject; emitLoad(base, regT1, regT0); if (!m_codeBlock->isKnownNotImmediate(base)) isNotObject.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag))); if (base != m_codeBlock->thisRegister() || m_codeBlock->isStrictMode()) { loadPtr(Address(regT0, JSCell::structureOffset()), regT2); isNotObject.append(emitJumpIfNotObject(regT2)); } // We could inline the case where you have a valid cache, but // this call doesn't seem to be hot. Label isObject(this); JITStubCall getPnamesStubCall(this, cti_op_get_pnames); getPnamesStubCall.addArgument(regT0); getPnamesStubCall.call(dst); load32(Address(regT0, OBJECT_OFFSETOF(JSPropertyNameIterator, m_jsStringsSize)), regT3); store32(TrustedImm32(Int32Tag), intTagFor(i)); store32(TrustedImm32(0), intPayloadFor(i)); store32(TrustedImm32(Int32Tag), intTagFor(size)); store32(regT3, payloadFor(size)); Jump end = jump(); isNotObject.link(this); addJump(branch32(Equal, regT1, TrustedImm32(JSValue::NullTag)), breakTarget); addJump(branch32(Equal, regT1, TrustedImm32(JSValue::UndefinedTag)), breakTarget); JITStubCall toObjectStubCall(this, cti_to_object); toObjectStubCall.addArgument(regT1, regT0); toObjectStubCall.call(base); jump().linkTo(isObject, this); end.link(this); } void JIT::emit_op_next_pname(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int base = currentInstruction[2].u.operand; int i = currentInstruction[3].u.operand; int size = currentInstruction[4].u.operand; int it = currentInstruction[5].u.operand; int target = currentInstruction[6].u.operand; JumpList callHasProperty; Label begin(this); load32(intPayloadFor(i), regT0); Jump end = branch32(Equal, regT0, intPayloadFor(size)); // Grab key @ i loadPtr(payloadFor(it), regT1); loadPtr(Address(regT1, OBJECT_OFFSETOF(JSPropertyNameIterator, m_jsStrings)), regT2); load32(BaseIndex(regT2, regT0, TimesEight), regT2); store32(TrustedImm32(JSValue::CellTag), tagFor(dst)); store32(regT2, payloadFor(dst)); // Increment i add32(TrustedImm32(1), regT0); store32(regT0, intPayloadFor(i)); // Verify that i is valid: loadPtr(payloadFor(base), regT0); // Test base's structure loadPtr(Address(regT0, JSCell::structureOffset()), regT2); callHasProperty.append(branchPtr(NotEqual, regT2, Address(Address(regT1, OBJECT_OFFSETOF(JSPropertyNameIterator, m_cachedStructure))))); // Test base's prototype chain loadPtr(Address(Address(regT1, OBJECT_OFFSETOF(JSPropertyNameIterator, m_cachedPrototypeChain))), regT3); loadPtr(Address(regT3, OBJECT_OFFSETOF(StructureChain, m_vector)), regT3); addJump(branchTestPtr(Zero, Address(regT3)), target); Label checkPrototype(this); callHasProperty.append(branch32(Equal, Address(regT2, Structure::prototypeOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), TrustedImm32(JSValue::NullTag))); loadPtr(Address(regT2, Structure::prototypeOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT2); loadPtr(Address(regT2, JSCell::structureOffset()), regT2); callHasProperty.append(branchPtr(NotEqual, regT2, Address(regT3))); addPtr(TrustedImm32(sizeof(Structure*)), regT3); branchTestPtr(NonZero, Address(regT3)).linkTo(checkPrototype, this); // Continue loop. addJump(jump(), target); // Slow case: Ask the object if i is valid. callHasProperty.link(this); loadPtr(addressFor(dst), regT1); JITStubCall stubCall(this, cti_has_property); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(); // Test for valid key. addJump(branchTest32(NonZero, regT0), target); jump().linkTo(begin, this); // End of loop. end.link(this); } void JIT::emit_op_push_with_scope(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_push_with_scope); stubCall.addArgument(currentInstruction[1].u.operand); stubCall.call(); } void JIT::emit_op_pop_scope(Instruction*) { JITStubCall(this, cti_op_pop_scope).call(); } void JIT::emit_op_to_number(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int src = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump isInt32 = branch32(Equal, regT1, TrustedImm32(JSValue::Int32Tag)); addSlowCase(branch32(AboveOrEqual, regT1, TrustedImm32(JSValue::LowestTag))); isInt32.link(this); if (src != dst) emitStore(dst, regT1, regT0); map(m_bytecodeOffset + OPCODE_LENGTH(op_to_number), dst, regT1, regT0); } void JIT::emitSlow_op_to_number(Instruction* currentInstruction, Vector::iterator& iter) { int dst = currentInstruction[1].u.operand; linkSlowCase(iter); JITStubCall stubCall(this, cti_op_to_number); stubCall.addArgument(regT1, regT0); stubCall.call(dst); } void JIT::emit_op_push_name_scope(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_push_name_scope); stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[1].u.operand))); stubCall.addArgument(currentInstruction[2].u.operand); stubCall.addArgument(TrustedImm32(currentInstruction[3].u.operand)); stubCall.call(); } void JIT::emit_op_catch(Instruction* currentInstruction) { // cti_op_throw returns the callFrame for the handler. move(regT0, callFrameRegister); // Now store the exception returned by cti_op_throw. loadPtr(Address(stackPointerRegister, OBJECT_OFFSETOF(struct JITStackFrame, vm)), regT3); load32(Address(regT3, OBJECT_OFFSETOF(VM, exception) + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT0); load32(Address(regT3, OBJECT_OFFSETOF(VM, exception) + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT1); store32(TrustedImm32(JSValue().payload()), Address(regT3, OBJECT_OFFSETOF(VM, exception) + OBJECT_OFFSETOF(JSValue, u.asBits.payload))); store32(TrustedImm32(JSValue().tag()), Address(regT3, OBJECT_OFFSETOF(VM, exception) + OBJECT_OFFSETOF(JSValue, u.asBits.tag))); unsigned exception = currentInstruction[1].u.operand; emitStore(exception, regT1, regT0); map(m_bytecodeOffset + OPCODE_LENGTH(op_catch), exception, regT1, regT0); } void JIT::emit_op_switch_imm(Instruction* currentInstruction) { unsigned tableIndex = currentInstruction[1].u.operand; unsigned defaultOffset = currentInstruction[2].u.operand; unsigned scrutinee = currentInstruction[3].u.operand; // create jump table for switch destinations, track this switch statement. SimpleJumpTable* jumpTable = &m_codeBlock->immediateSwitchJumpTable(tableIndex); m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset, SwitchRecord::Immediate)); jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); JITStubCall stubCall(this, cti_op_switch_imm); stubCall.addArgument(scrutinee); stubCall.addArgument(TrustedImm32(tableIndex)); stubCall.call(); jump(regT0); } void JIT::emit_op_switch_char(Instruction* currentInstruction) { unsigned tableIndex = currentInstruction[1].u.operand; unsigned defaultOffset = currentInstruction[2].u.operand; unsigned scrutinee = currentInstruction[3].u.operand; // create jump table for switch destinations, track this switch statement. SimpleJumpTable* jumpTable = &m_codeBlock->characterSwitchJumpTable(tableIndex); m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset, SwitchRecord::Character)); jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); JITStubCall stubCall(this, cti_op_switch_char); stubCall.addArgument(scrutinee); stubCall.addArgument(TrustedImm32(tableIndex)); stubCall.call(); jump(regT0); } void JIT::emit_op_switch_string(Instruction* currentInstruction) { unsigned tableIndex = currentInstruction[1].u.operand; unsigned defaultOffset = currentInstruction[2].u.operand; unsigned scrutinee = currentInstruction[3].u.operand; // create jump table for switch destinations, track this switch statement. StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTable(tableIndex); m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset)); JITStubCall stubCall(this, cti_op_switch_string); stubCall.addArgument(scrutinee); stubCall.addArgument(TrustedImm32(tableIndex)); stubCall.call(); jump(regT0); } void JIT::emit_op_throw_static_error(Instruction* currentInstruction) { unsigned message = currentInstruction[1].u.operand; JITStubCall stubCall(this, cti_op_throw_static_error); stubCall.addArgument(m_codeBlock->getConstant(message)); stubCall.addArgument(TrustedImm32(currentInstruction[2].u.operand)); stubCall.call(); } void JIT::emit_op_debug(Instruction* currentInstruction) { #if ENABLE(DEBUG_WITH_BREAKPOINT) UNUSED_PARAM(currentInstruction); breakpoint(); #else JITStubCall stubCall(this, cti_op_debug); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); stubCall.addArgument(Imm32(currentInstruction[4].u.operand)); stubCall.call(); #endif } void JIT::emit_op_enter(Instruction*) { emitEnterOptimizationCheck(); // Even though JIT code doesn't use them, we initialize our constant // registers to zap stale pointers, to avoid unnecessarily prolonging // object lifetime and increasing GC pressure. for (int i = 0; i < m_codeBlock->m_numVars; ++i) emitStore(i, jsUndefined()); } void JIT::emit_op_create_activation(Instruction* currentInstruction) { unsigned activation = currentInstruction[1].u.operand; Jump activationCreated = branch32(NotEqual, tagFor(activation), TrustedImm32(JSValue::EmptyValueTag)); JITStubCall(this, cti_op_push_activation).call(activation); activationCreated.link(this); } void JIT::emit_op_create_arguments(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; Jump argsCreated = branch32(NotEqual, tagFor(dst), TrustedImm32(JSValue::EmptyValueTag)); JITStubCall(this, cti_op_create_arguments).call(); emitStore(dst, regT1, regT0); emitStore(unmodifiedArgumentsRegister(dst), regT1, regT0); argsCreated.link(this); } void JIT::emit_op_init_lazy_reg(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; emitStore(dst, JSValue()); } void JIT::emit_op_get_callee(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; emitGetFromCallFrameHeaderPtr(JSStack::Callee, regT0); move(TrustedImm32(JSValue::CellTag), regT1); emitValueProfilingSite(); emitStore(dst, regT1, regT0); } void JIT::emit_op_create_this(Instruction* currentInstruction) { int callee = currentInstruction[2].u.operand; RegisterID calleeReg = regT0; RegisterID resultReg = regT0; RegisterID allocatorReg = regT1; RegisterID structureReg = regT2; RegisterID scratchReg = regT3; emitLoadPayload(callee, calleeReg); loadPtr(Address(calleeReg, JSFunction::offsetOfAllocationProfile() + ObjectAllocationProfile::offsetOfAllocator()), allocatorReg); loadPtr(Address(calleeReg, JSFunction::offsetOfAllocationProfile() + ObjectAllocationProfile::offsetOfStructure()), structureReg); addSlowCase(branchTestPtr(Zero, allocatorReg)); emitAllocateJSObject(allocatorReg, structureReg, resultReg, scratchReg); emitStoreCell(currentInstruction[1].u.operand, resultReg); } void JIT::emitSlow_op_create_this(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); // doesn't have an allocation profile linkSlowCase(iter); // allocation failed JITStubCall stubCall(this, cti_op_create_this); stubCall.addArgument(TrustedImm32(currentInstruction[3].u.operand)); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_convert_this(Instruction* currentInstruction) { unsigned thisRegister = currentInstruction[1].u.operand; emitLoad(thisRegister, regT3, regT2); addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::CellTag))); if (shouldEmitProfiling()) { loadPtr(Address(regT2, JSCell::structureOffset()), regT0); move(regT3, regT1); emitValueProfilingSite(); } addSlowCase(branchPtr(Equal, Address(regT2, JSCell::structureOffset()), TrustedImmPtr(m_vm->stringStructure.get()))); } void JIT::emitSlow_op_convert_this(Instruction* currentInstruction, Vector::iterator& iter) { void* globalThis = m_codeBlock->globalObject()->globalThis(); unsigned thisRegister = currentInstruction[1].u.operand; linkSlowCase(iter); if (shouldEmitProfiling()) { move(TrustedImm32(JSValue::UndefinedTag), regT1); move(TrustedImm32(0), regT0); } Jump isNotUndefined = branch32(NotEqual, regT3, TrustedImm32(JSValue::UndefinedTag)); emitValueProfilingSite(); move(TrustedImmPtr(globalThis), regT0); move(TrustedImm32(JSValue::CellTag), regT1); emitStore(thisRegister, regT1, regT0); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_convert_this)); linkSlowCase(iter); if (shouldEmitProfiling()) { move(TrustedImm32(JSValue::CellTag), regT1); move(TrustedImmPtr(m_vm->stringStructure.get()), regT0); } isNotUndefined.link(this); emitValueProfilingSite(); JITStubCall stubCall(this, cti_op_convert_this); stubCall.addArgument(regT3, regT2); stubCall.call(thisRegister); } void JIT::emit_op_profile_will_call(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_profile_will_call); stubCall.addArgument(currentInstruction[1].u.operand); stubCall.call(); } void JIT::emit_op_profile_did_call(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_profile_did_call); stubCall.addArgument(currentInstruction[1].u.operand); stubCall.call(); } void JIT::emit_op_get_arguments_length(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int argumentsRegister = currentInstruction[2].u.operand; addSlowCase(branch32(NotEqual, tagFor(argumentsRegister), TrustedImm32(JSValue::EmptyValueTag))); load32(payloadFor(JSStack::ArgumentCount), regT0); sub32(TrustedImm32(1), regT0); emitStoreInt32(dst, regT0); } void JIT::emitSlow_op_get_arguments_length(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); int dst = currentInstruction[1].u.operand; int base = currentInstruction[2].u.operand; int ident = currentInstruction[3].u.operand; JITStubCall stubCall(this, cti_op_get_by_id_generic); stubCall.addArgument(base); stubCall.addArgument(TrustedImmPtr(&(m_codeBlock->identifier(ident)))); stubCall.call(dst); } void JIT::emit_op_get_argument_by_val(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int argumentsRegister = currentInstruction[2].u.operand; int property = currentInstruction[3].u.operand; addSlowCase(branch32(NotEqual, tagFor(argumentsRegister), TrustedImm32(JSValue::EmptyValueTag))); emitLoad(property, regT1, regT2); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); add32(TrustedImm32(1), regT2); // regT2 now contains the integer index of the argument we want, including this load32(payloadFor(JSStack::ArgumentCount), regT3); addSlowCase(branch32(AboveOrEqual, regT2, regT3)); neg32(regT2); loadPtr(BaseIndex(callFrameRegister, regT2, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.payload) + CallFrame::thisArgumentOffset() * static_cast(sizeof(Register))), regT0); loadPtr(BaseIndex(callFrameRegister, regT2, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.tag) + CallFrame::thisArgumentOffset() * static_cast(sizeof(Register))), regT1); emitValueProfilingSite(); emitStore(dst, regT1, regT0); } void JIT::emitSlow_op_get_argument_by_val(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned arguments = currentInstruction[2].u.operand; unsigned property = currentInstruction[3].u.operand; linkSlowCase(iter); Jump skipArgumentsCreation = jump(); linkSlowCase(iter); linkSlowCase(iter); JITStubCall(this, cti_op_create_arguments).call(); emitStore(arguments, regT1, regT0); emitStore(unmodifiedArgumentsRegister(arguments), regT1, regT0); skipArgumentsCreation.link(this); JITStubCall stubCall(this, cti_op_get_by_val_generic); stubCall.addArgument(arguments); stubCall.addArgument(property); stubCall.callWithValueProfiling(dst); } void JIT::emit_op_put_to_base(Instruction* currentInstruction) { int base = currentInstruction[1].u.operand; int id = currentInstruction[2].u.operand; int value = currentInstruction[3].u.operand; PutToBaseOperation* operation = currentInstruction[4].u.putToBaseOperation; switch (operation->m_kind) { case PutToBaseOperation::GlobalVariablePutChecked: addSlowCase(branchTest8(NonZero, AbsoluteAddress(operation->m_predicatePointer))); case PutToBaseOperation::GlobalVariablePut: { JSGlobalObject* globalObject = m_codeBlock->globalObject(); if (operation->m_isDynamic) addSlowCase(branchPtr(NotEqual, payloadFor(base), TrustedImmPtr(globalObject))); emitLoad(value, regT1, regT0); storePtr(regT0, reinterpret_cast(operation->m_registerAddress) + OBJECT_OFFSETOF(JSValue, u.asBits.payload)); storePtr(regT1, reinterpret_cast(operation->m_registerAddress) + OBJECT_OFFSETOF(JSValue, u.asBits.tag)); if (Heap::isWriteBarrierEnabled()) emitWriteBarrier(globalObject, regT0, regT2, ShouldFilterImmediates, WriteBarrierForVariableAccess); break; } case PutToBaseOperation::VariablePut: { loadPtr(payloadFor(base), regT3); emitLoad(value, regT1, regT0); loadPtr(Address(regT3, JSVariableObject::offsetOfRegisters()), regT2); store32(regT0, Address(regT2, operation->m_offset * sizeof(Register) + OBJECT_OFFSETOF(JSValue, u.asBits.payload))); store32(regT1, Address(regT2, operation->m_offset * sizeof(Register) + OBJECT_OFFSETOF(JSValue, u.asBits.tag))); if (Heap::isWriteBarrierEnabled()) emitWriteBarrier(regT3, regT1, regT0, regT2, ShouldFilterImmediates, WriteBarrierForVariableAccess); break; } case PutToBaseOperation::GlobalPropertyPut: { JSGlobalObject* globalObject = m_codeBlock->globalObject(); loadPtr(payloadFor(base), regT3); emitLoad(value, regT1, regT0); loadPtr(&operation->m_structure, regT2); addSlowCase(branchPtr(NotEqual, Address(regT3, JSCell::structureOffset()), regT2)); ASSERT(!operation->m_structure || !operation->m_structure->inlineCapacity()); loadPtr(Address(regT3, JSObject::butterflyOffset()), regT2); load32(&operation->m_offsetInButterfly, regT3); storePtr(regT0, BaseIndex(regT2, regT3, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.payload))); storePtr(regT1, BaseIndex(regT2, regT3, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.tag))); if (Heap::isWriteBarrierEnabled()) emitWriteBarrier(globalObject, regT1, regT2, ShouldFilterImmediates, WriteBarrierForVariableAccess); break; } case PutToBaseOperation::Uninitialised: case PutToBaseOperation::Readonly: case PutToBaseOperation::Generic: JITStubCall stubCall(this, cti_op_put_to_base); stubCall.addArgument(TrustedImm32(base)); stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(id))); stubCall.addArgument(TrustedImm32(value)); stubCall.addArgument(TrustedImmPtr(operation)); stubCall.call(); break; } } } // namespace JSC #endif // USE(JSVALUE32_64) #endif // ENABLE(JIT)