/* * Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved. * * @APPLE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this * file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_LICENSE_HEADER_END@ */ #include "IODataQueueClientPrivate.h" #include #include #include #include #include #include #include static IOReturn _IODataQueueSendDataAvailableNotification(IODataQueueMemory *dataQueue); Boolean IODataQueueDataAvailable(IODataQueueMemory *dataQueue) { return (dataQueue && (dataQueue->head != dataQueue->tail)); } IODataQueueEntry *IODataQueuePeek(IODataQueueMemory *dataQueue) { IODataQueueEntry *entry = 0; if (dataQueue && (dataQueue->head != dataQueue->tail)) { IODataQueueEntry * head = 0; UInt32 headSize = 0; UInt32 headOffset = dataQueue->head; UInt32 queueSize = dataQueue->queueSize; head = (IODataQueueEntry *)((char *)dataQueue->queue + headOffset); headSize = head->size; // Check if there's enough room before the end of the queue for a header. // If there is room, check if there's enough room to hold the header and // the data. if ((headOffset + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize) || ((headOffset + headSize + DATA_QUEUE_ENTRY_HEADER_SIZE) > queueSize)) { // No room for the header or the data, wrap to the beginning of the queue. entry = dataQueue->queue; } else { entry = head; } } return entry; } IOReturn IODataQueueDequeue(IODataQueueMemory *dataQueue, void *data, uint32_t *dataSize) { IOReturn retVal = kIOReturnSuccess; IODataQueueEntry * entry = 0; UInt32 entrySize = 0; UInt32 newHeadOffset = 0; if (dataQueue) { if (dataQueue->head != dataQueue->tail) { IODataQueueEntry * head = 0; UInt32 headSize = 0; UInt32 headOffset = dataQueue->head; UInt32 queueSize = dataQueue->queueSize; head = (IODataQueueEntry *)((char *)dataQueue->queue + headOffset); headSize = head->size; // we wraped around to beginning, so read from there // either there was not even room for the header if ((headOffset + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize) || // or there was room for the header, but not for the data ((headOffset + headSize + DATA_QUEUE_ENTRY_HEADER_SIZE) > queueSize)) { entry = dataQueue->queue; entrySize = entry->size; newHeadOffset = entrySize + DATA_QUEUE_ENTRY_HEADER_SIZE; // else it is at the end } else { entry = head; entrySize = entry->size; newHeadOffset = headOffset + entrySize + DATA_QUEUE_ENTRY_HEADER_SIZE; } } if (entry) { if (data) { if (dataSize) { if (entrySize <= *dataSize) { memcpy(data, &(entry->data), entrySize); OSAtomicCompareAndSwap32Barrier(dataQueue->head, newHeadOffset, (int32_t *)&dataQueue->head); } else { retVal = kIOReturnNoSpace; } } else { retVal = kIOReturnBadArgument; } } else { OSAtomicCompareAndSwap32Barrier(dataQueue->head, newHeadOffset, (int32_t *)&dataQueue->head); } // RY: Update the data size here. This will // ensure that dataSize is always updated. if (dataSize) { *dataSize = entrySize; } } else { retVal = kIOReturnUnderrun; } } else { retVal = kIOReturnBadArgument; } return retVal; } static IOReturn __IODataQueueEnqueue(IODataQueueMemory *dataQueue, uint32_t dataSize, void *data, IODataQueueClientEnqueueReadBytesCallback callback, void * refcon) { UInt32 head = dataQueue->head; // volatile UInt32 tail = dataQueue->tail; UInt32 queueSize = dataQueue->queueSize; UInt32 entrySize = dataSize + DATA_QUEUE_ENTRY_HEADER_SIZE; IOReturn retVal = kIOReturnSuccess; IODataQueueEntry * entry; if ( tail >= head ) { // Is there enough room at the end for the entry? if ( (tail + entrySize) <= queueSize ) { entry = (IODataQueueEntry *)((UInt8 *)dataQueue->queue + tail); if ( data ) memcpy(&(entry->data), data, dataSize); else if ( callback ) (*callback)(refcon, &(entry->data), dataSize); entry->size = dataSize; // The tail can be out of bound when the size of the new entry // exactly matches the available space at the end of the queue. // The tail can range from 0 to queueSize inclusive. OSAtomicAdd32Barrier(entrySize, (int32_t *)&dataQueue->tail); } else if ( head > entrySize ) // Is there enough room at the beginning? { entry = (IODataQueueEntry *)((UInt8 *)dataQueue->queue); if ( data ) memcpy(&(entry->data), data, dataSize); else if ( callback ) (*callback)(refcon, &(entry->data), dataSize); // Wrap around to the beginning, but do not allow the tail to catch // up to the head. entry->size = dataSize; // We need to make sure that there is enough room to set the size before // doing this. The user client checks for this and will look for the size // at the beginning if there isn't room for it at the end. if ( ( queueSize - tail ) >= DATA_QUEUE_ENTRY_HEADER_SIZE ) { ((IODataQueueEntry *)((UInt8 *)dataQueue->queue + tail))->size = dataSize; } OSAtomicCompareAndSwap32Barrier(dataQueue->tail, entrySize, (int32_t *)&dataQueue->tail); } else { retVal = kIOReturnOverrun; // queue is full } } else { // Do not allow the tail to catch up to the head when the queue is full. // That's why the comparison uses a '>' rather than '>='. if ( (head - tail) > entrySize ) { entry = (IODataQueueEntry *)((UInt8 *)dataQueue->queue + tail); if ( data ) memcpy(&(entry->data), data, dataSize); else if ( callback ) (*callback)(refcon, &(entry->data), dataSize); entry->size = dataSize; OSAtomicAdd32Barrier(entrySize, (int32_t *)&dataQueue->tail); } else { retVal = kIOReturnOverrun; // queue is full } } // Send notification (via mach message) that data is available. if ( retVal == kIOReturnSuccess ) { if ( ( head == tail ) /* queue was empty prior to enqueue() */ || ( dataQueue->head == tail ) ) /* queue was emptied during enqueue() */ { retVal = _IODataQueueSendDataAvailableNotification(dataQueue); } } else if ( retVal == kIOReturnOverrun ) { // Send extra data available notification, this will fail and we will // get a send possible notification when the client starts responding (void) _IODataQueueSendDataAvailableNotification(dataQueue); } return retVal; } IOReturn IODataQueueEnqueue(IODataQueueMemory *dataQueue, void *data, uint32_t dataSize) { return __IODataQueueEnqueue(dataQueue, dataSize, data, NULL, NULL); } IOReturn _IODataQueueEnqueueWithReadCallback(IODataQueueMemory *dataQueue, uint32_t dataSize, IODataQueueClientEnqueueReadBytesCallback callback, void * refcon) { return __IODataQueueEnqueue(dataQueue, dataSize, NULL, callback, refcon); } IOReturn IODataQueueWaitForAvailableData(IODataQueueMemory *dataQueue, mach_port_t notifyPort) { IOReturn kr; struct { mach_msg_header_t msgHdr; // OSNotificationHeader notifyHeader; mach_msg_trailer_t trailer; } msg; if (dataQueue && (notifyPort != MACH_PORT_NULL)) { kr = mach_msg(&msg.msgHdr, MACH_RCV_MSG, 0, sizeof(msg), notifyPort, 0, MACH_PORT_NULL); } else { kr = kIOReturnBadArgument; } return kr; } mach_port_t IODataQueueAllocateNotificationPort() { mach_port_t port = MACH_PORT_NULL; mach_port_limits_t limits; mach_msg_type_number_t info_cnt; mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &port); info_cnt = MACH_PORT_LIMITS_INFO_COUNT; mach_port_get_attributes(mach_task_self(), port, MACH_PORT_LIMITS_INFO, (mach_port_info_t)&limits, &info_cnt); limits.mpl_qlimit = 1; // Set queue to only 1 message mach_port_set_attributes(mach_task_self(), port, MACH_PORT_LIMITS_INFO, (mach_port_info_t)&limits, MACH_PORT_LIMITS_INFO_COUNT); return port; } IOReturn IODataQueueSetNotificationPort(IODataQueueMemory *dataQueue, mach_port_t notifyPort) { IODataQueueAppendix * appendix = NULL; UInt32 queueSize = 0; if ( !dataQueue ) return kIOReturnBadArgument; queueSize = dataQueue->queueSize; appendix = (IODataQueueAppendix *)((UInt8 *)dataQueue + queueSize + DATA_QUEUE_MEMORY_HEADER_SIZE); appendix->msgh.msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 0); appendix->msgh.msgh_size = sizeof(appendix->msgh); appendix->msgh.msgh_remote_port = notifyPort; appendix->msgh.msgh_local_port = MACH_PORT_NULL; appendix->msgh.msgh_id = 0; return kIOReturnSuccess; } IOReturn _IODataQueueSendDataAvailableNotification(IODataQueueMemory *dataQueue) { IODataQueueAppendix * appendix = NULL; UInt32 queueSize = 0; queueSize = dataQueue->queueSize; appendix = (IODataQueueAppendix *)((UInt8 *)dataQueue + queueSize + DATA_QUEUE_MEMORY_HEADER_SIZE); if ( appendix->msgh.msgh_remote_port == MACH_PORT_NULL ) return kIOReturnSuccess; // return success if no port is declared kern_return_t kr; mach_msg_header_t msgh = appendix->msgh; kr = mach_msg(&msgh, MACH_SEND_MSG | MACH_SEND_TIMEOUT, msgh.msgh_size, 0, MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL); switch(kr) { case MACH_SEND_TIMED_OUT: // Notification already sent case MACH_MSG_SUCCESS: break; default: // perhaps add log here break; } return kr; }