/* * Copyright (c) 2000-2007 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ #include #include #include #include #include #include /* * ml_set_physical() -- turn off DR and (if 64-bit) turn SF on * it is assumed that pf64Bit is already in cr6 * ml_set_physical_get_ffs() -- turn DR off, SF on, and get feature flags * ml_set_physical_disabled() -- turn DR and EE off, SF on, get feature flags * ml_set_translation_off() -- turn DR, IR, and EE off, SF on, get feature flags * * Callable only from assembler, these return: * r2 -- new MSR * r11 -- old MSR * r10 -- feature flags (pf64Bit etc, ie SPRG 2) * cr6 -- feature flags 24-27, ie pf64Bit, pf128Byte, and pf32Byte * * Uses r0 and r2. ml_set_translation_off also uses r3 and cr5. */ .align 4 .globl EXT(ml_set_translation_off) LEXT(ml_set_translation_off) mfsprg r10,2 // get feature flags li r0,0 ; Clear this mtcrf 0x02,r10 // move pf64Bit etc to cr6 ori r0,r0,lo16(MASK(MSR_EE)+MASK(MSR_FP)+MASK(MSR_IR)+MASK(MSR_DR)) // turn off all 4 mfmsr r11 // get MSR oris r0,r0,hi16(MASK(MSR_VEC)) // Turn off vector too mtcrf 0x04,r10 // move pfNoMSRir etc to cr5 andc r2,r11,r0 // turn off EE, IR, and DR bt++ pf64Bitb,ml_set_physical_64 // skip if 64-bit (only they take the hint) bf pfNoMSRirb,ml_set_physical_32 // skip if we can load MSR directly li r0,loadMSR // Get the MSR setter SC mr r3,r2 // copy new MSR to r2 sc // Set it blr .align 4 .globl EXT(ml_set_physical_disabled) LEXT(ml_set_physical_disabled) li r0,0 ; Clear mfsprg r10,2 // get feature flags ori r0,r0,lo16(MASK(MSR_EE)) // turn EE and fp off mtcrf 0x02,r10 // move pf64Bit etc to cr6 b ml_set_physical_join .align 5 .globl EXT(ml_set_physical_get_ffs) LEXT(ml_set_physical_get_ffs) mfsprg r10,2 // get feature flags mtcrf 0x02,r10 // move pf64Bit etc to cr6 .globl EXT(ml_set_physical) LEXT(ml_set_physical) li r0,0 // do not turn off interrupts ml_set_physical_join: oris r0,r0,hi16(MASK(MSR_VEC)) // Always gonna turn of vectors mfmsr r11 // get MSR ori r0,r0,lo16(MASK(MSR_DR)+MASK(MSR_FP)) // always turn off DR and FP bit andc r2,r11,r0 // turn off DR and maybe EE bt++ pf64Bitb,ml_set_physical_64 // skip if 64-bit (only they take the hint) ml_set_physical_32: mtmsr r2 // turn off translation isync blr ml_set_physical_64: li r0,1 // get a 1 to slam into SF rldimi r2,r0,63,MSR_SF_BIT // set SF bit (bit 0) mtmsrd r2 // set 64-bit mode, turn off data relocation isync // synchronize blr /* * ml_restore(old_MSR) * * Callable only from assembler, restores the MSR in r11 saved by ml_set_physical. * We assume cr6 and r11 are as set by ml_set_physical, ie: * cr6 - pf64Bit flag (feature flags 24-27) * r11 - old MSR */ .align 5 .globl EXT(ml_restore) LEXT(ml_restore) bt++ pf64Bitb,ml_restore_64 // handle 64-bit cpus (only they take the hint) mtmsr r11 // restore a 32-bit MSR isync blr ml_restore_64: mtmsrd r11 // restore a 64-bit MSR isync blr /* PCI config cycle probing * * boolean_t ml_probe_read(vm_offset_t paddr, unsigned int *val) * * Read the memory location at physical address paddr. * This is a part of a device probe, so there is a good chance we will * have a machine check here. So we have to be able to handle that. * We assume that machine checks are enabled both in MSR and HIDs */ ; Force a line boundry here .align 5 .globl EXT(ml_probe_read) LEXT(ml_probe_read) mfsprg r9,2 ; Get feature flags rlwinm. r0,r9,0,pf64Bitb,pf64Bitb ; Are we on a 64-bit machine? rlwinm r3,r3,0,0,31 ; Clean up for 64-bit machines bne++ mpr64bit ; Go do this the 64-bit way... mpr32bit: lis r8,hi16(MASK(MSR_VEC)) ; Get the vector flag mfmsr r0 ; Save the current MSR ori r8,r8,lo16(MASK(MSR_FP)) ; Add the FP flag neg r10,r3 ; Number of bytes to end of page andc r0,r0,r8 ; Clear VEC and FP rlwinm. r10,r10,0,20,31 ; Clear excess junk and test for page bndry ori r8,r8,lo16(MASK(MSR_EE)|MASK(MSR_IR)|MASK(MSR_DR)) ; Drop EE, IR, and DR mr r12,r3 ; Save the load address andc r2,r0,r8 ; Clear VEC, FP, and EE mtcrf 0x04,r9 ; Set the features cmplwi cr1,r10,4 ; At least 4 bytes left in page? beq- mprdoit ; We are right on the boundary... li r3,0 bltlr- cr1 ; No, just return failure... mprdoit: bt pfNoMSRirb,mprNoMSR ; No MSR... mtmsr r2 ; Translation and all off isync ; Toss prefetch b mprNoMSRx mprNoMSR: mr r5,r0 li r0,loadMSR ; Get the MSR setter SC mr r3,r2 ; Get new MSR sc ; Set it mr r0,r5 li r3,0 mprNoMSRx: mfspr r6, hid0 ; Get a copy of hid0 rlwinm. r5, r9, 0, pfNoMuMMCKb, pfNoMuMMCKb ; Check for NoMuMMCK bne mprNoMuM rlwinm r5, r6, 0, ice+1, ice-1 ; Turn off L1 I-Cache mtspr hid0, r5 isync ; Wait for I-Cache off rlwinm r5, r6, 0, mum+1, mum-1 ; Turn off MuM w/ I-Cache on mtspr hid0, r5 mprNoMuM: ; ; We need to insure that there is no more than 1 BAT register that ; can get a hit. There could be repercussions beyond the ken ; of mortal man. It is best not to tempt fate. ; ; Note: we will reload these from the shadow BATs later li r10,0 ; Clear a register sync ; Make sure all is well mtdbatu 1,r10 ; Invalidate DBAT 1 mtdbatu 2,r10 ; Invalidate DBAT 2 mtdbatu 3,r10 ; Invalidate DBAT 3 rlwinm r10,r12,0,0,14 ; Round down to a 128k boundary ori r11,r10,0x32 ; Set uncached, coherent, R/W ori r10,r10,2 ; Make the upper half (128k, valid supervisor) mtdbatl 0,r11 ; Set lower BAT first mtdbatu 0,r10 ; Now the upper sync ; Just make sure dcbf 0,r12 ; Make sure we kill the cache to avoid paradoxes sync ori r11,r2,lo16(MASK(MSR_DR)) ; Turn on data translation mtmsr r11 ; Do it for real isync ; Make sure of it eieio ; Make sure of all previous accesses sync ; Make sure it is all caught up lwz r11,0(r12) ; Get it and maybe machine check here eieio ; Make sure of ordering again sync ; Get caught up yet again isync ; Do not go further till we are here mtmsr r2 ; Turn translation back off isync lis r10,hi16(EXT(shadow_BAT)+shdDBAT) ; Get shadow address ori r10,r10,lo16(EXT(shadow_BAT)+shdDBAT) ; Get shadow address lwz r5,0(r10) ; Pick up DBAT 0 high lwz r6,4(r10) ; Pick up DBAT 0 low lwz r7,8(r10) ; Pick up DBAT 1 high lwz r8,16(r10) ; Pick up DBAT 2 high lwz r9,24(r10) ; Pick up DBAT 3 high mtdbatu 0,r5 ; Restore DBAT 0 high mtdbatl 0,r6 ; Restore DBAT 0 low mtdbatu 1,r7 ; Restore DBAT 1 high mtdbatu 2,r8 ; Restore DBAT 2 high mtdbatu 3,r9 ; Restore DBAT 3 high sync li r3,1 ; We made it mtmsr r0 ; Restore translation and exceptions isync ; Toss speculations stw r11,0(r4) ; Save the loaded value blr ; Return... ; Force a line boundry here. This means we will be able to check addresses better .align 5 .globl EXT(ml_probe_read_mck) LEXT(ml_probe_read_mck) /* PCI config cycle probing - 64-bit * * boolean_t ml_probe_read_64(addr64_t paddr, unsigned int *val) * * Read the memory location at physical address paddr. * This is a part of a device probe, so there is a good chance we will * have a machine check here. So we have to be able to handle that. * We assume that machine checks are enabled both in MSR and HIDs */ ; Force a line boundry here .align 6 .globl EXT(ml_probe_read_64) LEXT(ml_probe_read_64) mfsprg r9,2 ; Get feature flags rlwinm r3,r3,0,1,0 ; Copy low 32 bits to top 32 rlwinm. r0,r9,0,pf64Bitb,pf64Bitb ; Are we on a 64-bit machine? rlwimi r3,r4,0,0,31 ; Insert low part of 64-bit address in bottom 32 bits mr r4,r5 ; Move result to common register beq-- mpr32bit ; Go do this the 32-bit way... mpr64bit: andi. r0,r3,3 ; Check if we are on a word boundary li r0,0 ; Clear the EE bit (and everything else for that matter) bne-- mprFail ; Boundary not good... mfmsr r11 ; Get the MSR mtmsrd r0,1 ; Set the EE bit only (do not care about RI) rlwinm r11,r11,0,MSR_EE_BIT,MSR_EE_BIT ; Isolate just the EE bit mfmsr r10 ; Refresh our view of the MSR (VMX/FP may have changed) or r12,r10,r11 ; Turn on EE if on before we turned it off ori r0,r0,lo16(MASK(MSR_IR)|MASK(MSR_DR)) ; Get the IR and DR bits li r2,1 ; Get a 1 sldi r2,r2,63 ; Get the 64-bit bit andc r10,r10,r0 ; Clear IR and DR or r10,r10,r2 ; Set 64-bit li r0,1 ; Get a 1 mtmsrd r10 ; Translation and EE off, 64-bit on isync sldi r0,r0,32+8 ; Get the right bit to inhibit caching mfspr r8,hid4 ; Get HID4 or r2,r8,r0 ; Set bit to make real accesses cache-inhibited sync ; Sync up mtspr hid4,r2 ; Make real accesses cache-inhibited isync ; Toss prefetches lis r7,0xE000 ; Get the unlikeliest ESID possible srdi r7,r7,1 ; Make 0x7FFFFFFFF0000000 slbie r7 ; Make sure the ERAT is cleared sync isync eieio ; Make sure of all previous accesses lwz r11,0(r3) ; Get it and maybe machine check here eieio ; Make sure of ordering again sync ; Get caught up yet again isync ; Do not go further till we are here sync ; Sync up mtspr hid4,r8 ; Make real accesses not cache-inhibited isync ; Toss prefetches lis r7,0xE000 ; Get the unlikeliest ESID possible srdi r7,r7,1 ; Make 0x7FFFFFFFF0000000 slbie r7 ; Make sure the ERAT is cleared mtmsrd r12 ; Restore entry MSR isync stw r11,0(r4) ; Pass back the result li r3,1 ; Indicate success blr ; Leave... mprFail: li r3,0 ; Set failure blr ; Leave... ; Force a line boundry here. This means we will be able to check addresses better .align 6 .globl EXT(ml_probe_read_mck_64) LEXT(ml_probe_read_mck_64) /* Read physical address byte * * unsigned int ml_phys_read_byte(vm_offset_t paddr) * unsigned int ml_phys_read_byte_64(addr64_t paddr) * * Read the byte at physical address paddr. Memory should not be cache inhibited. */ ; Force a line boundry here .align 5 .globl EXT(ml_phys_read_byte_64) LEXT(ml_phys_read_byte_64) rlwinm r3,r3,0,1,0 ; Copy low 32 bits to top 32 rlwimi r3,r4,0,0,31 ; Insert low part of 64-bit address in bottom 32 bits b ml_phys_read_byte_join .globl EXT(ml_phys_read_byte) LEXT(ml_phys_read_byte) rlwinm r3,r3,0,0,31 ; truncate address to 32-bits ml_phys_read_byte_join: ; r3 = address to read (reg64_t) mflr r11 ; Save the return bl rdwrpre ; Get set up, translation/interrupts off, 64-bit on, etc. lbz r3,0(r3) ; Get the byte b rdwrpost ; Clean up and leave... /* Read physical address half word * * unsigned int ml_phys_read_half(vm_offset_t paddr) * unsigned int ml_phys_read_half_64(addr64_t paddr) * * Read the half word at physical address paddr. Memory should not be cache inhibited. */ ; Force a line boundry here .align 5 .globl EXT(ml_phys_read_half_64) LEXT(ml_phys_read_half_64) rlwinm r3,r3,0,1,0 ; Copy low 32 bits to top 32 rlwimi r3,r4,0,0,31 ; Insert low part of 64-bit address in bottom 32 bits b ml_phys_read_half_join .globl EXT(ml_phys_read_half) LEXT(ml_phys_read_half) rlwinm r3,r3,0,0,31 ; truncate address to 32-bits ml_phys_read_half_join: ; r3 = address to read (reg64_t) mflr r11 ; Save the return bl rdwrpre ; Get set up, translation/interrupts off, 64-bit on, etc. lhz r3,0(r3) ; Get the half word b rdwrpost ; Clean up and leave... /* Read physical address word * * unsigned int ml_phys_read(vm_offset_t paddr) * unsigned int ml_phys_read_64(addr64_t paddr) * unsigned int ml_phys_read_word(vm_offset_t paddr) * unsigned int ml_phys_read_word_64(addr64_t paddr) * * Read the word at physical address paddr. Memory should not be cache inhibited. */ ; Force a line boundry here .align 5 .globl EXT(ml_phys_read_64) .globl EXT(ml_phys_read_word_64) LEXT(ml_phys_read_64) LEXT(ml_phys_read_word_64) rlwinm r3,r3,0,1,0 ; Copy low 32 bits to top 32 rlwimi r3,r4,0,0,31 ; Insert low part of 64-bit address in bottom 32 bits b ml_phys_read_word_join .globl EXT(ml_phys_read) .globl EXT(ml_phys_read_word) LEXT(ml_phys_read) LEXT(ml_phys_read_word) rlwinm r3,r3,0,0,31 ; truncate address to 32-bits ml_phys_read_word_join: ; r3 = address to read (reg64_t) mflr r11 ; Save the return bl rdwrpre ; Get set up, translation/interrupts off, 64-bit on, etc. lwz r3,0(r3) ; Get the word b rdwrpost ; Clean up and leave... /* Read physical address double word * * unsigned long long ml_phys_read_double(vm_offset_t paddr) * unsigned long long ml_phys_read_double_64(addr64_t paddr) * * Read the double word at physical address paddr. Memory should not be cache inhibited. */ ; Force a line boundry here .align 5 .globl EXT(ml_phys_read_double_64) LEXT(ml_phys_read_double_64) rlwinm r3,r3,0,1,0 ; Copy low 32 bits to top 32 rlwimi r3,r4,0,0,31 ; Insert low part of 64-bit address in bottom 32 bits b ml_phys_read_double_join .globl EXT(ml_phys_read_double) LEXT(ml_phys_read_double) rlwinm r3,r3,0,0,31 ; truncate address to 32-bits ml_phys_read_double_join: ; r3 = address to read (reg64_t) mflr r11 ; Save the return bl rdwrpre ; Get set up, translation/interrupts off, 64-bit on, etc. lwz r4,4(r3) ; Get the low word lwz r3,0(r3) ; Get the high word b rdwrpost ; Clean up and leave... /* Write physical address byte * * void ml_phys_write_byte(vm_offset_t paddr, unsigned int data) * void ml_phys_write_byte_64(addr64_t paddr, unsigned int data) * * Write the byte at physical address paddr. Memory should not be cache inhibited. */ .align 5 .globl EXT(ml_phys_write_byte_64) LEXT(ml_phys_write_byte_64) rlwinm r3,r3,0,1,0 ; Copy low 32 bits to top 32 rlwimi r3,r4,0,0,31 ; Insert low part of 64-bit address in bottom 32 bits mr r4,r5 ; Copy over the data b ml_phys_write_byte_join .globl EXT(ml_phys_write_byte) LEXT(ml_phys_write_byte) rlwinm r3,r3,0,0,31 ; truncate address to 32-bits ml_phys_write_byte_join: ; r3 = address to write (reg64_t), r4 = data mflr r11 ; Save the return bl rdwrpre ; Get set up, translation/interrupts off, 64-bit on, etc. stb r4,0(r3) ; Set the byte b rdwrpost ; Clean up and leave... /* Write physical address half word * * void ml_phys_write_half(vm_offset_t paddr, unsigned int data) * void ml_phys_write_half_64(addr64_t paddr, unsigned int data) * * Write the half word at physical address paddr. Memory should not be cache inhibited. */ .align 5 .globl EXT(ml_phys_write_half_64) LEXT(ml_phys_write_half_64) rlwinm r3,r3,0,1,0 ; Copy low 32 bits to top 32 rlwimi r3,r4,0,0,31 ; Insert low part of 64-bit address in bottom 32 bits mr r4,r5 ; Copy over the data b ml_phys_write_half_join .globl EXT(ml_phys_write_half) LEXT(ml_phys_write_half) rlwinm r3,r3,0,0,31 ; truncate address to 32-bits ml_phys_write_half_join: ; r3 = address to write (reg64_t), r4 = data mflr r11 ; Save the return bl rdwrpre ; Get set up, translation/interrupts off, 64-bit on, etc. sth r4,0(r3) ; Set the half word b rdwrpost ; Clean up and leave... /* Write physical address word * * void ml_phys_write(vm_offset_t paddr, unsigned int data) * void ml_phys_write_64(addr64_t paddr, unsigned int data) * void ml_phys_write_word(vm_offset_t paddr, unsigned int data) * void ml_phys_write_word_64(addr64_t paddr, unsigned int data) * * Write the word at physical address paddr. Memory should not be cache inhibited. */ .align 5 .globl EXT(ml_phys_write_64) .globl EXT(ml_phys_write_word_64) LEXT(ml_phys_write_64) LEXT(ml_phys_write_word_64) rlwinm r3,r3,0,1,0 ; Copy low 32 bits to top 32 rlwimi r3,r4,0,0,31 ; Insert low part of 64-bit address in bottom 32 bits mr r4,r5 ; Copy over the data b ml_phys_write_word_join .globl EXT(ml_phys_write) .globl EXT(ml_phys_write_word) LEXT(ml_phys_write) LEXT(ml_phys_write_word) rlwinm r3,r3,0,0,31 ; truncate address to 32-bits ml_phys_write_word_join: ; r3 = address to write (reg64_t), r4 = data mflr r11 ; Save the return bl rdwrpre ; Get set up, translation/interrupts off, 64-bit on, etc. stw r4,0(r3) ; Set the word b rdwrpost ; Clean up and leave... /* Write physical address double word * * void ml_phys_write_double(vm_offset_t paddr, unsigned long long data) * void ml_phys_write_double_64(addr64_t paddr, unsigned long long data) * * Write the double word at physical address paddr. Memory should not be cache inhibited. */ .align 5 .globl EXT(ml_phys_write_double_64) LEXT(ml_phys_write_double_64) rlwinm r3,r3,0,1,0 ; Copy low 32 bits to top 32 rlwimi r3,r4,0,0,31 ; Insert low part of 64-bit address in bottom 32 bits mr r4,r5 ; Copy over the high data mr r5,r6 ; Copy over the low data b ml_phys_write_double_join .globl EXT(ml_phys_write_double) LEXT(ml_phys_write_double) rlwinm r3,r3,0,0,31 ; truncate address to 32-bits ml_phys_write_double_join: ; r3 = address to write (reg64_t), r4,r5 = data (long long) mflr r11 ; Save the return bl rdwrpre ; Get set up, translation/interrupts off, 64-bit on, etc. stw r4,0(r3) ; Set the high word stw r5,4(r3) ; Set the low word b rdwrpost ; Clean up and leave... .align 5 rdwrpre: mfsprg r12,2 ; Get feature flags lis r8,hi16(MASK(MSR_VEC)) ; Get the vector flag mfmsr r10 ; Save the MSR ori r8,r8,lo16(MASK(MSR_FP)) ; Add the FP flag mtcrf 0x02,r12 ; move pf64Bit andc r10,r10,r8 ; Clear VEC and FP ori r9,r8,lo16(MASK(MSR_EE)|MASK(MSR_IR)|MASK(MSR_DR)) ; Drop EE, DR, and IR li r2,1 ; Prepare for 64 bit andc r9,r10,r9 ; Clear VEC, FP, DR, and EE bf-- pf64Bitb,rdwrpre32 ; Join 32-bit code... srdi r7,r3,31 ; Get a 1 if address is in I/O memory rldimi r9,r2,63,MSR_SF_BIT ; set SF bit (bit 0) cmpldi cr7,r7,1 ; Is source in I/O memory? mtmsrd r9 ; set 64-bit mode, turn off EE, DR, and IR isync ; synchronize sldi r0,r2,32+8 ; Get the right bit to turn off caching bnelr++ cr7 ; We are not in the I/O area, all ready... mfspr r8,hid4 ; Get HID4 or r2,r8,r0 ; Set bit to make real accesses cache-inhibited sync ; Sync up mtspr hid4,r2 ; Make real accesses cache-inhibited isync ; Toss prefetches lis r7,0xE000 ; Get the unlikeliest ESID possible srdi r7,r7,1 ; Make 0x7FFFFFFFF0000000 slbie r7 ; Make sure the ERAT is cleared sync isync blr ; Finally, all ready... .align 5 rdwrpre32: rlwimi r9,r10,0,MSR_IR_BIT,MSR_IR_BIT ; Leave the IR bit unchanged mtmsr r9 ; Drop EE, DR, and leave IR unchanged isync blr ; All set up, leave... .align 5 rdwrpost: mtlr r11 ; Restore the return bt++ pf64Bitb,rdwrpost64 ; Join 64-bit code... mtmsr r10 ; Restore entry MSR (sans FP and VEC) isync blr ; Leave... rdwrpost64: bne++ cr7,rdwrpcok ; Skip enabling real mode caching if we did not change it... sync ; Sync up mtspr hid4,r8 ; Make real accesses not cache-inhibited isync ; Toss prefetches lis r7,0xE000 ; Get the unlikeliest ESID possible srdi r7,r7,1 ; Make 0x7FFFFFFFF0000000 slbie r7 ; Make sure the ERAT is cleared rdwrpcok: mtmsrd r10 ; Restore entry MSR (sans FP and VEC) isync blr ; Leave... /* set interrupts enabled or disabled * * boolean_t set_interrupts_enabled(boolean_t enable) * * Set EE bit to "enable" and return old value as boolean */ ; Force a line boundry here .align 5 .globl EXT(ml_set_interrupts_enabled) LEXT(ml_set_interrupts_enabled) andi. r4,r3,1 ; Are we turning interruptions on? lis r0,hi16(MASK(MSR_VEC)) ; Get vector enable mfmsr r5 ; Get the current MSR ori r0,r0,lo16(MASK(MSR_EE)|MASK(MSR_FP)) ; Get float enable and EE enable rlwinm r3,r5,17,31,31 ; Set return value andc r5,r5,r0 ; Force VEC and FP off bne CheckPreemption ; Interrupts going on, check ASTs... mtmsr r5 ; Slam diable (always going disabled here) isync ; Need this because FP/Vec might go off blr .align 5 CheckPreemption: mfsprg r9,1 ; Get current activation lwz r7,ACT_PER_PROC(r9) ; Get the per_proc block ori r5,r5,lo16(MASK(MSR_EE)) ; Turn on the enable lwz r8,PP_PENDING_AST(r7) ; Get pending AST mask li r6,AST_URGENT ; Get the type we will preempt for lwz r7,ACT_PREEMPT_CNT(r9) ; Get preemption count lis r0,hi16(DoPreemptCall) ; High part of Preempt FW call cmpwi cr1,r7,0 ; Are preemptions masked off? and. r8,r8,r6 ; Are we urgent? crorc cr1_eq,cr0_eq,cr1_eq ; Remember if preemptions are masked or not urgent ori r0,r0,lo16(DoPreemptCall) ; Bottome of FW call mtmsr r5 ; Restore the MSR now, before we can preempt isync ; Need this because FP/Vec might go off beqlr++ cr1 ; Return if no premption... sc ; Preempt blr ; Force a line boundry here .align 5 .globl EXT(timer_update) LEXT(timer_update) stw r4,TIMER_HIGHCHK(r3) eieio stw r5,TIMER_LOW(r3) eieio stw r4,TIMER_HIGH(r3) blr ; Force a line boundry here .align 5 .globl EXT(timer_grab) LEXT(timer_grab) 0: lwz r11,TIMER_HIGH(r3) lwz r4,TIMER_LOW(r3) isync lwz r9,TIMER_HIGHCHK(r3) cmpw r11,r9 bne-- 0b mr r3,r11 blr ; Force a line boundry here .align 5 .globl EXT(thread_timer_event) LEXT(thread_timer_event) mfsprg r10,1 ; Get the current activation lwz r10,ACT_PER_PROC(r10) ; Get the per_proc block addi r10,r10,PP_PROCESSOR lwz r11,THREAD_TIMER(r10) lwz r9,TIMER_LOW(r11) lwz r7,TIMER_TSTAMP(r11) lwz r8,TIMER_TSTAMP+4(r11) subfc r8,r8,r4 subfe r7,r7,r3 addc r8,r8,r9 addze. r7,r7 beq++ 0f lwz r6,TIMER_HIGH(r11) add r7,r7,r6 stw r7,TIMER_HIGHCHK(r11) eieio stw r8,TIMER_LOW(r11) eieio stw r7,TIMER_HIGH(r11) b 1f 0: stw r8,TIMER_LOW(r11) 1: stw r5,THREAD_TIMER(r10) stw r3,TIMER_TSTAMP(r5) stw r4,TIMER_TSTAMP+4(r5) blr ; Force a line boundry here .align 5 .globl EXT(state_event) LEXT(state_event) mfsprg r10,1 ; Get the current activation lwz r10,ACT_PER_PROC(r10) ; Get the per_proc block addi r10,r10,PP_PROCESSOR lwz r11,CURRENT_STATE(r10) lwz r9,TIMER_LOW(r11) lwz r7,TIMER_TSTAMP(r11) lwz r8,TIMER_TSTAMP+4(r11) subfc r8,r8,r4 subfe r7,r7,r3 addc r8,r8,r9 addze. r7,r7 beq++ 0f lwz r6,TIMER_HIGH(r11) add r7,r7,r6 stw r7,TIMER_HIGHCHK(r11) eieio stw r8,TIMER_LOW(r11) eieio stw r7,TIMER_HIGH(r11) b 1f 0: stw r8,TIMER_LOW(r11) 1: stw r5,CURRENT_STATE(r10) stw r3,TIMER_TSTAMP(r5) stw r4,TIMER_TSTAMP+4(r5) blr /* Set machine into idle power-saving mode. * * void machine_idle(void) * * We will use the PPC NAP or DOZE for this. * This call always returns. Must be called with spllo (i.e., interruptions * enabled). * */ ; Force a line boundry here .align 5 .globl EXT(machine_idle) LEXT(machine_idle) mfsprg r12,1 ; Get the current activation lwz r12,ACT_PER_PROC(r12) ; Get the per_proc block lhz r10,PP_CPU_FLAGS(r12) ; Get the flags lwz r11,PP_INTS_ENABLED(r12) ; Get interrupt enabled state andi. r10,r10,SignalReady ; Are Signal ready? cmpwi cr1,r11,0 ; Are interrupt disabled? cror cr0_eq, cr1_eq, cr0_eq ; Interrupt disabled or Signal not ready? mfmsr r3 ; Save the MSR beq-- nonap ; Yes, return after re-enabling interrupts lis r0,hi16(MASK(MSR_VEC)) ; Get the vector flag ori r0,r0,lo16(MASK(MSR_FP)) ; Add the FP flag andc r3,r3,r0 ; Clear VEC and FP ori r0,r0,lo16(MASK(MSR_EE)) ; Drop EE also andc r5,r3,r0 ; Clear VEC, FP, DR, and EE mtmsr r5 ; Hold up interruptions for now isync ; May have messed with fp/vec mfsprg r11,2 ; Get CPU specific features mfspr r6,hid0 ; Get the current power-saving mode mtcrf 0xC7,r11 ; Get the facility flags lis r4,hi16(napm) ; Assume we can nap bt pfWillNapb,yesnap ; Yeah, nap is ok... lis r4,hi16(dozem) ; Assume we can doze bt pfCanDozeb,yesnap ; We can sleep or doze one this machine... nonap: ori r3,r3,lo16(MASK(MSR_EE)) ; Flip on EE mtmsr r3 ; Turn interruptions back on blr ; Leave... yesnap: mftbu r9 ; Get the upper timebase mftb r7 ; Get the lower timebase mftbu r8 ; Get the upper one again cmplw r9,r8 ; Did the top tick? bne-- yesnap ; Yeah, need to get it again... stw r8,napStamp(r12) ; Set high order time stamp stw r7,napStamp+4(r12) ; Set low order nap stamp rlwinm. r0,r11,0,pfAltivecb,pfAltivecb ; Do we have altivec? beq-- minovec ; No... dssall ; Stop the streams before we nap/doze sync lwz r8,napStamp(r12) ; Reload high order time stamp clearpipe: cmplw r8,r8 bne- clearpipe isync minovec: rlwinm. r7,r11,0,pfNoL2PFNapb,pfNoL2PFNapb ; Turn off L2 Prefetch before nap? beq++ miL2PFok mfspr r7,msscr0 ; Get currect MSSCR0 value rlwinm r7,r7,0,0,l2pfes-1 ; Disable L2 Prefetch mtspr msscr0,r7 ; Updates MSSCR0 value sync isync miL2PFok: rlwinm. r7,r11,0,pfSlowNapb,pfSlowNapb ; Should nap at slow speed? beq minoslownap mfspr r7,hid1 ; Get current HID1 value oris r7,r7,hi16(hid1psm) ; Select PLL1 mtspr hid1,r7 ; Update HID1 value ; ; We have to open up interruptions here because book 4 says that we should ; turn on only the POW bit and that we should have interrupts enabled. ; The interrupt handler will detect that nap or doze is set if an interrupt ; is taken and set everything up to return directly to machine_idle_ret. ; So, make sure everything we need there is already set up... ; minoslownap: lis r10,hi16(dozem|napm|sleepm) ; Mask of power management bits bf-- pf64Bitb,mipNSF1 ; skip if 32-bit... sldi r4,r4,32 ; Position the flags sldi r10,r10,32 ; Position the masks mipNSF1: li r2,lo16(MASK(MSR_DR)|MASK(MSR_IR)) ; Get the translation mask andc r6,r6,r10 ; Clean up the old power bits ori r7,r5,lo16(MASK(MSR_EE)) ; Flip on EE to make exit msr andc r5,r5,r2 ; Clear IR and DR from current MSR or r6,r6,r4 ; Set nap or doze ori r5,r5,lo16(MASK(MSR_EE)) ; Flip on EE to make nap msr oris r2,r5,hi16(MASK(MSR_POW)) ; Turn on power management in next MSR sync mtspr hid0,r6 ; Set up the HID for nap/doze mfspr r6,hid0 ; Yes, this is silly, keep it here mfspr r6,hid0 ; Yes, this is a duplicate, keep it here mfspr r6,hid0 ; Yes, this is a duplicate, keep it here mfspr r6,hid0 ; Yes, this is a duplicate, keep it here mfspr r6,hid0 ; Yes, this is a duplicate, keep it here mfspr r6,hid0 ; Yes, this is a duplicate, keep it here isync ; Make sure it is set ; ; Turn translation off to nap ; bt pfNoMSRirb,miNoMSR ; Jump if we need to use SC for this... mtmsr r5 ; Turn translation off, interrupts on isync ; Wait for it b miNoMSRx ; Jump back in line... miNoMSR: mr r3,r5 ; Pass in the new MSR value li r0,loadMSR ; MSR setter ultrafast sc ; Do it to it like you never done before... miNoMSRx: bf-- pf64Bitb,mipowloop ; skip if 32-bit... li r3,0x10 ; Fancy nap threshold is 0x10 ticks mftb r8 ; Get the low half of the time base mfdec r4 ; Get the decrementer ticks cmplw r4,r3 ; Less than threshold? blt mipowloop mtdec r3 ; Load decrementer with threshold isync ; and make sure, mfdec r3 ; really sure, it gets there rlwinm r6,r2,0,MSR_EE_BIT+1,MSR_EE_BIT-1 ; Clear out the EE bit sync ; Make sure queues are clear mtmsr r6 ; Set MSR with EE off but POW on isync ; Make sure this takes before we proceed mftb r9 ; Get the low half of the time base sub r9,r9,r8 ; Get the number of ticks spent waiting sub r4,r4,r9 ; Adjust the decrementer value mtdec r4 ; Load decrementer with the rest of the timeout isync ; and make sure, mfdec r4 ; really sure, it gets there mipowloop: sync ; Make sure queues are clear mtmsr r2 ; Nap or doze, MSR with POW, EE set, translation off isync ; Make sure this takes before we proceed b mipowloop ; loop if POW does not take ; ; Note that the interrupt handler will turn off the nap/doze bits in the hid. ; Also remember that the interrupt handler will force return to here whenever ; the nap/doze bits are set. ; .globl EXT(machine_idle_ret) LEXT(machine_idle_ret) mtmsr r7 ; Make sure the MSR is what we want isync ; In case we turn on translation ; ; Protect against a lost decrementer trap if the current decrementer value is negative ; by more than 10 ticks, re-arm it since it is unlikely to fire at this point... ; A hardware interrupt got us out of machine_idle and may also be contributing to this state ; mfdec r6 ; Get decrementer cmpwi cr0,r6,-10 ; Compare decrementer with -10 bgelr++ ; Return if greater li r0,1 ; Load 1 mtdec r0 ; Set decrementer to 1 blr ; Return... /* Put machine to sleep. * This call never returns. We always exit sleep via a soft reset. * All external interruptions must be drained at this point and disabled. * * void ml_ppc_do_sleep(void) * * We will use the PPC SLEEP for this. * * There is one bit of hackery in here: we need to enable for * interruptions when we go to sleep and there may be a pending * decrimenter rupt. So we make the decrimenter 0x7FFFFFFF and enable for * interruptions. The decrimenter rupt vector recognizes this and returns * directly back here. * */ ; Force a line boundry here .align 5 .globl EXT(ml_ppc_do_sleep) LEXT(ml_ppc_do_sleep) #if 0 mfmsr r5 ; Hack to spin instead of sleep rlwinm r5,r5,0,MSR_DR_BIT+1,MSR_IR_BIT-1 ; Turn off translation rlwinm r5,r5,0,MSR_EE_BIT+1,MSR_EE_BIT-1 ; Turn off interruptions mtmsr r5 ; No talking isync deadsleep: addi r3,r3,1 ; Make analyzer happy addi r3,r3,1 addi r3,r3,1 b deadsleep ; Die the death of 1000 joys... #endif mfsprg r12,1 ; Get the current activation lwz r12,ACT_PER_PROC(r12) ; Get the per_proc block mfsprg r11,2 ; Get CPU specific features eqv r10,r10,r10 ; Get all foxes mtcrf 0x04,r11 ; move pfNoMSRirb to cr5 mfspr r4,hid0 ; Get the current power-saving mode mtcrf 0x02,r11 ; move pf64Bit to cr6 rlwinm. r5,r11,0,pfNoL2PFNapb,pfNoL2PFNapb ; Turn off L2 Prefetch before sleep? beq mpsL2PFok mfspr r5,msscr0 ; Get currect MSSCR0 value rlwinm r5,r5,0,0,l2pfes-1 ; Disable L2 Prefetch mtspr msscr0,r5 ; Updates MSSCR0 value sync isync mpsL2PFok: bt++ pf64Bitb,mpsPF64bit ; PM bits are shifted on 64bit systems. rlwinm r4,r4,0,sleep+1,doze-1 ; Clear all possible power-saving modes (not DPM though) oris r4,r4,hi16(sleepm) ; Set sleep b mpsClearDEC mpsPF64bit: lis r5, hi16(dozem|napm|sleepm) ; Clear all possible power-saving modes (not DPM though) sldi r5, r5, 32 andc r4, r4, r5 lis r5, hi16(napm) ; Set sleep sldi r5, r5, 32 or r4, r4, r5 mpsClearDEC: mfmsr r5 ; Get the current MSR rlwinm r10,r10,0,1,31 ; Make 0x7FFFFFFF mtdec r10 ; Load decrimenter with 0x7FFFFFFF isync ; and make sure, mfdec r9 ; really sure, it gets there li r2,1 ; Prepare for 64 bit rlwinm r5,r5,0,MSR_DR_BIT+1,MSR_IR_BIT-1 ; Turn off translation ; ; Note that we need translation off before we set the HID to sleep. Otherwise ; we will ignore any PTE misses that occur and cause an infinite loop. ; bf++ pf64Bitb,mpsCheckMSR ; check 64-bit processor rldimi r5,r2,63,MSR_SF_BIT ; set SF bit (bit 0) mtmsrd r5 ; set 64-bit mode, turn off EE, DR, and IR isync ; Toss prefetch b mpsNoMSRx mpsCheckMSR: bt pfNoMSRirb,mpsNoMSR ; No MSR... mtmsr r5 ; Translation off isync ; Toss prefetch b mpsNoMSRx mpsNoMSR: li r0,loadMSR ; Get the MSR setter SC mr r3,r5 ; Get new MSR sc ; Set it mpsNoMSRx: ori r3,r5,lo16(MASK(MSR_EE)) ; Flip on EE sync mtspr hid0,r4 ; Set up the HID to sleep mfspr r4,hid0 ; Yes, this is silly, keep it here mfspr r4,hid0 ; Yes, this is a duplicate, keep it here mfspr r4,hid0 ; Yes, this is a duplicate, keep it here mfspr r4,hid0 ; Yes, this is a duplicate, keep it here mfspr r4,hid0 ; Yes, this is a duplicate, keep it here mfspr r4,hid0 ; Yes, this is a duplicate, keep it here mtmsr r3 ; Enable for interrupts to drain decrimenter add r6,r4,r5 ; Just waste time add r6,r6,r4 ; A bit more add r6,r6,r5 ; A bit more mtmsr r5 ; Interruptions back off isync ; Toss prefetch ; ; We are here with translation off, interrupts off, all possible ; interruptions drained off, and a decrimenter that will not pop. ; bl EXT(cacheInit) ; Clear out the caches. This will leave them on bl EXT(cacheDisable) ; Turn off all caches mfmsr r5 ; Get the current MSR oris r5,r5,hi16(MASK(MSR_POW)) ; Turn on power management in next MSR ; Leave EE off because power goes off shortly mfsprg r12,0 ; Get the per_proc_info li r10,PP_CPU_FLAGS lhz r11,PP_CPU_FLAGS(r12) ; Get the flags ori r11,r11,SleepState ; Marked SleepState sth r11,PP_CPU_FLAGS(r12) ; Set the flags dcbf r10,r12 mfsprg r11,2 ; Get CPU specific features rlwinm. r0,r11,0,pf64Bitb,pf64Bitb ; Test for 64 bit processor eqv r4,r4,r4 ; Get all foxes rlwinm r4,r4,0,1,31 ; Make 0x7FFFFFFF beq slSleepNow ; skip if 32-bit... li r3, 0x4000 ; Cause decrimenter to roll over soon mtdec r3 ; Load decrimenter with 0x00004000 isync ; and make sure, mfdec r3 ; really sure, it gets there slSleepNow: sync ; Sync it all up mtmsr r5 ; Do sleep with interruptions enabled isync ; Take a pill mtdec r4 ; Load decrimenter with 0x7FFFFFFF isync ; and make sure, mfdec r3 ; really sure, it gets there b slSleepNow ; Go back to sleep if we wake up... /* Initialize all caches including the TLBs * * void cacheInit(void) * * This is used to force the caches to an initial clean state. First, we * check if the cache is on, if so, we need to flush the contents to memory. * Then we invalidate the L1. Next, we configure and invalidate the L2 etc. * Finally we turn on all of the caches * * Note that if translation is not disabled when this is called, the TLB will not * be completely clear after return. * */ ; Force a line boundry here .align 5 .globl EXT(cacheInit) LEXT(cacheInit) mfsprg r12,0 ; Get the per_proc_info mfspr r9,hid0 ; Get the current power-saving mode mfsprg r11,2 ; Get CPU specific features mfmsr r7 ; Get the current MSR rlwinm r7,r7,0,MSR_FP_BIT+1,MSR_FP_BIT-1 ; Force floating point off rlwinm r7,r7,0,MSR_VEC_BIT+1,MSR_VEC_BIT-1 ; Force vectors off rlwimi r11,r11,pfLClckb+1,31,31 ; Move pfLClck to another position (to keep from using non-volatile CRs) rlwinm r5,r7,0,MSR_DR_BIT+1,MSR_IR_BIT-1 ; Turn off translation rlwinm r5,r5,0,MSR_EE_BIT+1,MSR_EE_BIT-1 ; Turn off interruptions mtcrf 0x87,r11 ; Get the feature flags lis r10,hi16(dozem|napm|sleepm|dpmm) ; Mask of power management bits bf-- pf64Bitb,cIniNSF1 ; Skip if 32-bit... sldi r10,r10,32 ; Position the masks cIniNSF1: andc r4,r9,r10 ; Clean up the old power bits mtspr hid0,r4 ; Set up the HID mfspr r4,hid0 ; Yes, this is silly, keep it here mfspr r4,hid0 ; Yes, this is a duplicate, keep it here mfspr r4,hid0 ; Yes, this is a duplicate, keep it here mfspr r4,hid0 ; Yes, this is a duplicate, keep it here mfspr r4,hid0 ; Yes, this is a duplicate, keep it here mfspr r4,hid0 ; Yes, this is a duplicate, keep it here bt pfNoMSRirb,ciNoMSR ; No MSR... mtmsr r5 ; Translation and all off isync ; Toss prefetch b ciNoMSRx ciNoMSR: li r0,loadMSR ; Get the MSR setter SC mr r3,r5 ; Get new MSR sc ; Set it ciNoMSRx: bf pfAltivecb,cinoDSS ; No Altivec here... dssall ; Stop streams sync cinoDSS: li r5,tlbieLock ; Get the TLBIE lock li r0,128 ; Get number of TLB entries li r6,0 ; Start at 0 bf-- pf64Bitb,citlbhang ; Skip if 32-bit... li r0,1024 ; Get the number of TLB entries citlbhang: lwarx r2,0,r5 ; Get the TLBIE lock mr. r2,r2 ; Is it locked? bne- citlbhang ; It is locked, go wait... stwcx. r0,0,r5 ; Try to get it bne- citlbhang ; We was beat... mtctr r0 ; Set the CTR cipurgeTLB: tlbie r6 ; Purge this entry addi r6,r6,4096 ; Next page bdnz cipurgeTLB ; Do them all... mtcrf 0x80,r11 ; Set SMP capability sync ; Make sure all TLB purges are done eieio ; Order, order in the court bf pfSMPcapb,cinoSMP ; SMP incapable... tlbsync ; Sync all TLBs sync isync bf-- pf64Bitb,cinoSMP ; Skip if 32-bit... ptesync ; Wait for quiet again sync cinoSMP: stw r2,tlbieLock(0) ; Unlock TLBIE lock bt++ pf64Bitb,cin64 ; Skip if 64-bit... rlwinm. r0,r9,0,ice,dce ; Were either of the level 1s on? beq- cinoL1 ; No, no need to flush... rlwinm. r0,r11,0,pfL1fab,pfL1fab ; do we have L1 flush assist? beq ciswdl1 ; If no hw flush assist, go do by software... mfspr r8,msscr0 ; Get the memory system control register oris r8,r8,hi16(dl1hwfm) ; Turn on the hardware flush request mtspr msscr0,r8 ; Start the flush operation ciwdl1f: mfspr r8,msscr0 ; Get the control register again rlwinm. r8,r8,0,dl1hwf,dl1hwf ; Has the flush request been reset yet? bne ciwdl1f ; No, flush is still in progress... b ciinvdl1 ; Go invalidate l1... ; ; We need to either make this very complicated or to use ROM for ; the flush. The problem is that if during the following sequence a ; snoop occurs that invalidates one of the lines in the cache, the ; PLRU sequence will be altered making it possible to miss lines ; during the flush. So, we either need to dedicate an area of RAM ; to each processor, lock use of a RAM area, or use ROM. ROM is ; by far the easiest. Note that this is not an issue for machines ; that have harware flush assists. ; ciswdl1: lwz r0,pfl1dSize(r12) ; Get the level 1 cache size bf 31,cisnlck ; Skip if pfLClck not set... mfspr r4,msscr0 ; ? rlwinm r6,r4,0,0,l2pfes-1 ; ? mtspr msscr0,r6 ; Set it sync isync mfspr r8,ldstcr ; Save the LDSTCR li r2,1 ; Get a mask of 0x01 lis r3,0xFFF0 ; Point to ROM rlwinm r11,r0,29,3,31 ; Get the amount of memory to handle all indexes li r6,0 ; Start here cisiniflsh: dcbf r6,r3 ; Flush each line of the range we use addi r6,r6,32 ; Bump to the next cmplw r6,r0 ; Have we reached the end? blt+ cisiniflsh ; Nope, continue initial flush... sync ; Make sure it is done addi r11,r11,-1 ; Get mask for index wrap li r6,0 ; Get starting offset cislckit: not r5,r2 ; Lock all but 1 way rlwimi r5,r8,0,0,23 ; Build LDSTCR mtspr ldstcr,r5 ; Lock a way sync ; Clear out memory accesses isync ; Wait for all cistouch: lwzx r10,r3,r6 ; Pick up some trash addi r6,r6,32 ; Go to the next index and. r0,r6,r11 ; See if we are about to do next index bne+ cistouch ; Nope, do more... sync ; Make sure it is all done isync sub r6,r6,r11 ; Back up to start + 1 addi r6,r6,-1 ; Get it right cisflush: dcbf r3,r6 ; Flush everything out addi r6,r6,32 ; Go to the next index and. r0,r6,r11 ; See if we are about to do next index bne+ cisflush ; Nope, do more... sync ; Make sure it is all done isync rlwinm. r2,r2,1,24,31 ; Shift to next way bne+ cislckit ; Do this for all ways... mtspr ldstcr,r8 ; Slam back to original sync isync mtspr msscr0,r4 ; ? sync isync b cinoL1 ; Go on to level 2... cisnlck: rlwinm r2,r0,0,1,30 ; Double cache size add r0,r0,r2 ; Get 3 times cache size rlwinm r0,r0,26,6,31 ; Get 3/2 number of cache lines lis r3,0xFFF0 ; Dead recon ROM address for now mtctr r0 ; Number of lines to flush ciswfldl1a: lwz r2,0(r3) ; Flush anything else addi r3,r3,32 ; Next line bdnz ciswfldl1a ; Flush the lot... ciinvdl1: sync ; Make sure all flushes have been committed mfspr r8,hid0 ; Get the HID0 bits rlwinm r8,r8,0,dce+1,ice-1 ; Clear cache enables mtspr hid0,r8 ; and turn off L1 cache sync ; Make sure all is done isync ori r8,r8,lo16(icem|dcem|icfim|dcfim) ; Set the HID0 bits for enable, and invalidate sync isync mtspr hid0,r8 ; Start the invalidate and turn on cache rlwinm r8,r8,0,dcfi+1,icfi-1 ; Turn off the invalidate bits mtspr hid0,r8 ; Turn off the invalidate (needed for some older machines) sync cinoL1: ; ; Flush and disable the level 2 ; mfsprg r10,2 ; need to check 2 features we did not put in CR rlwinm. r0,r10,0,pfL2b,pfL2b ; do we have L2? beq cinol2 ; No level 2 cache to flush mfspr r8,l2cr ; Get the L2CR lwz r3,pfl2cr(r12) ; Get the L2CR value rlwinm. r0,r8,0,l2e,l2e ; Was the L2 enabled? bne ciflushl2 ; Yes, force flush cmplwi r8, 0 ; Was the L2 all the way off? beq ciinvdl2 ; Yes, force invalidate lis r0,hi16(l2sizm|l2clkm|l2ramm|l2ohm) ; Get confiuration bits xor r2,r8,r3 ; Get changing bits? ori r0,r0,lo16(l2slm|l2dfm|l2bypm) ; More config bits and. r0,r0,r2 ; Did any change? bne- ciinvdl2 ; Yes, just invalidate and get PLL synced... ciflushl2: rlwinm. r0,r10,0,pfL2fab,pfL2fab ; hardware-assisted L2 flush? beq ciswfl2 ; Flush not in hardware... mr r10,r8 ; Take a copy now bf 31,cinol2lck ; Skip if pfLClck not set... oris r10,r10,hi16(l2ionlym|l2donlym) ; Set both instruction- and data-only sync mtspr l2cr,r10 ; Lock out the cache sync isync cinol2lck: ori r10,r10,lo16(l2hwfm) ; Request flush sync ; Make sure everything is done mtspr l2cr,r10 ; Request flush cihwfl2: mfspr r10,l2cr ; Get back the L2CR rlwinm. r10,r10,0,l2hwf,l2hwf ; Is the flush over? bne+ cihwfl2 ; Nope, keep going... b ciinvdl2 ; Flush done, go invalidate L2... ciswfl2: lwz r0,pfl2Size(r12) ; Get the L2 size oris r2,r8,hi16(l2dom) ; Set L2 to data only mode b ciswfl2doa ; Branch to next line... .align 5 ciswfl2doc: mtspr l2cr,r2 ; Disable L2 sync isync b ciswfl2dod ; It is off, go invalidate it... ciswfl2doa: b ciswfl2dob ; Branch to next... ciswfl2dob: sync ; Finish memory stuff isync ; Stop speculation b ciswfl2doc ; Jump back up and turn on data only... ciswfl2dod: rlwinm r0,r0,27,5,31 ; Get the number of lines lis r10,0xFFF0 ; Dead recon ROM for now mtctr r0 ; Set the number of lines ciswfldl2a: lwz r0,0(r10) ; Load something to flush something addi r10,r10,32 ; Next line bdnz ciswfldl2a ; Do the lot... ciinvdl2: rlwinm r8,r3,0,l2e+1,31 ; Clear the enable bit b cinla ; Branch to next line... .align 5 cinlc: mtspr l2cr,r8 ; Disable L2 sync isync b ciinvl2 ; It is off, go invalidate it... cinla: b cinlb ; Branch to next... cinlb: sync ; Finish memory stuff isync ; Stop speculation b cinlc ; Jump back up and turn off cache... ciinvl2: sync isync cmplwi r3, 0 ; Should the L2 be all the way off? beq cinol2 ; Yes, done with L2 oris r2,r8,hi16(l2im) ; Get the invalidate flag set mtspr l2cr,r2 ; Start the invalidate sync isync ciinvdl2a: mfspr r2,l2cr ; Get the L2CR mfsprg r0,2 ; need to check a feature in "non-volatile" set rlwinm. r0,r0,0,pfL2ib,pfL2ib ; flush in HW? beq ciinvdl2b ; Flush not in hardware... rlwinm. r2,r2,0,l2i,l2i ; Is the invalidate still going? bne+ ciinvdl2a ; Assume so, this will take a looong time... sync b cinol2 ; No level 2 cache to flush ciinvdl2b: rlwinm. r2,r2,0,l2ip,l2ip ; Is the invalidate still going? bne+ ciinvdl2a ; Assume so, this will take a looong time... sync mtspr l2cr,r8 ; Turn off the invalidate request cinol2: ; ; Flush and enable the level 3 ; bf pfL3b,cinol3 ; No level 3 cache to flush mfspr r8,l3cr ; Get the L3CR lwz r3,pfl3cr(r12) ; Get the L3CR value rlwinm. r0,r8,0,l3e,l3e ; Was the L3 enabled? bne ciflushl3 ; Yes, force flush cmplwi r8, 0 ; Was the L3 all the way off? beq ciinvdl3 ; Yes, force invalidate lis r0,hi16(l3pem|l3sizm|l3dxm|l3clkm|l3spom|l3ckspm) ; Get configuration bits xor r2,r8,r3 ; Get changing bits? ori r0,r0,lo16(l3pspm|l3repm|l3rtm|l3cyam|l3dmemm|l3dmsizm) ; More config bits and. r0,r0,r2 ; Did any change? bne- ciinvdl3 ; Yes, just invalidate and get PLL synced... ciflushl3: sync ; 7450 book says do this even though not needed mr r10,r8 ; Take a copy now bf 31,cinol3lck ; Skip if pfL23lck not set... oris r10,r10,hi16(l3iom) ; Set instruction-only ori r10,r10,lo16(l3donlym) ; Set data-only sync mtspr l3cr,r10 ; Lock out the cache sync isync cinol3lck: ori r10,r10,lo16(l3hwfm) ; Request flush sync ; Make sure everything is done mtspr l3cr,r10 ; Request flush cihwfl3: mfspr r10,l3cr ; Get back the L3CR rlwinm. r10,r10,0,l3hwf,l3hwf ; Is the flush over? bne+ cihwfl3 ; Nope, keep going... ciinvdl3: rlwinm r8,r3,0,l3e+1,31 ; Clear the enable bit sync ; Make sure of life, liberty, and justice mtspr l3cr,r8 ; Disable L3 sync cmplwi r3, 0 ; Should the L3 be all the way off? beq cinol3 ; Yes, done with L3 ori r8,r8,lo16(l3im) ; Get the invalidate flag set mtspr l3cr,r8 ; Start the invalidate ciinvdl3b: mfspr r8,l3cr ; Get the L3CR rlwinm. r8,r8,0,l3i,l3i ; Is the invalidate still going? bne+ ciinvdl3b ; Assume so... sync lwz r10, pfBootConfig(r12) ; ? rlwinm. r10, r10, 24, 28, 31 ; ? beq ciinvdl3nopdet ; ? mfspr r8,l3pdet ; ? srw r2, r8, r10 ; ? rlwimi r2, r8, 0, 24, 31 ; ? subfic r10, r10, 32 ; ? li r8, -1 ; ? ori r2, r2, 0x0080 ; ? slw r8, r8, r10 ; ? or r8, r2, r8 ; ? mtspr l3pdet, r8 ; ? isync ciinvdl3nopdet: mfspr r8,l3cr ; Get the L3CR rlwinm r8,r8,0,l3clken+1,l3clken-1 ; Clear the clock enable bit mtspr l3cr,r8 ; Disable the clock li r2,128 ; ? ciinvdl3c: addi r2,r2,-1 ; ? cmplwi r2,0 ; ? bne+ ciinvdl3c mfspr r10,msssr0 ; ? rlwinm r10,r10,0,vgL3TAG+1,vgL3TAG-1 ; ? mtspr msssr0,r10 ; ? sync mtspr l3cr,r3 ; Enable it as desired sync cinol3: mfsprg r0,2 ; need to check a feature in "non-volatile" set rlwinm. r0,r0,0,pfL2b,pfL2b ; is there an L2 cache? beq cinol2a ; No level 2 cache to enable lwz r3,pfl2cr(r12) ; Get the L2CR value cmplwi r3, 0 ; Should the L2 be all the way off? beq cinol2a : Yes, done with L2 mtspr l2cr,r3 ; Enable it as desired sync ; ; Invalidate and turn on L1s ; cinol2a: bt 31,cinoexit ; Skip if pfLClck set... rlwinm r8,r9,0,dce+1,ice-1 ; Clear the I- and D- cache enables mtspr hid0,r8 ; Turn off dem caches sync ori r8,r9,lo16(icem|dcem|icfim|dcfim) ; Set the HID0 bits for enable, and invalidate rlwinm r9,r8,0,dcfi+1,icfi-1 ; Turn off the invalidate bits sync isync mtspr hid0,r8 ; Start the invalidate and turn on L1 cache cinoexit: mtspr hid0,r9 ; Turn off the invalidate (needed for some older machines) and restore entry conditions sync mtmsr r7 ; Restore MSR to entry isync blr ; Return... ; ; Handle 64-bit architecture ; This processor can not run without caches, so we just push everything out ; and flush. It will be relativily clean afterwards ; .align 5 cin64: mfspr r10,hid1 ; Save hid1 mfspr r4,hid4 ; Save hid4 mr r12,r10 ; Really save hid1 mr r11,r4 ; Get a working copy of hid4 li r0,0 ; Get a 0 eqv r2,r2,r2 ; Get all foxes rldimi r10,r0,55,7 ; Clear I$ prefetch bits (7:8) isync mtspr hid1,r10 ; Stick it mtspr hid1,r10 ; Stick it again isync rldimi r11,r2,38,25 ; Disable D$ prefetch (25:25) sync mtspr hid4,r11 ; Stick it isync li r3,8 ; Set bit 28+32 sldi r3,r3,32 ; Make it bit 28 or r3,r3,r11 ; Turn on the flash invalidate L1D$ oris r5,r11,0x0600 ; Set disable L1D$ bits sync mtspr hid4,r3 ; Invalidate isync mtspr hid4,r5 ; Un-invalidate and disable L1D$ isync lis r8,GUSModeReg ; Get the GUS mode ring address mfsprg r0,2 ; Get the feature flags ori r8,r8,0x8000 ; Set to read data rlwinm. r0,r0,pfSCOMFixUpb+1,31,31 ; Set shift if we need a fix me up sync mtspr scomc,r8 ; Request the GUS mode mfspr r11,scomd ; Get the GUS mode mfspr r8,scomc ; Get back the status (we just ignore it) sync isync sld r11,r11,r0 ; Fix up if needed ori r6,r11,lo16(GUSMdmapen) ; Set the bit that means direct L2 cache address lis r8,GUSModeReg ; Get GUS mode register address sync mtspr scomd,r6 ; Set that we want direct L2 mode mtspr scomc,r8 ; Tell GUS we want direct L2 mode mfspr r3,scomc ; Get back the status sync isync li r3,0 ; Clear start point cflushlp: lis r6,0x0040 ; Pick 4MB line as our target or r6,r6,r3 ; Put in the line offset lwz r5,0(r6) ; Load a line addis r6,r6,8 ; Roll bit 42:44 lwz r5,0(r6) ; Load a line addis r6,r6,8 ; Roll bit 42:44 lwz r5,0(r6) ; Load a line addis r6,r6,8 ; Roll bit 42:44 lwz r5,0(r6) ; Load a line addis r6,r6,8 ; Roll bit 42:44 lwz r5,0(r6) ; Load a line addis r6,r6,8 ; Roll bit 42:44 lwz r5,0(r6) ; Load a line addis r6,r6,8 ; Roll bit 42:44 lwz r5,0(r6) ; Load a line addis r6,r6,8 ; Roll bit 42:44 lwz r5,0(r6) ; Load a line addi r3,r3,128 ; Next line andis. r5,r3,8 ; Have we done enough? beq++ cflushlp ; Not yet... sync lis r6,0x0040 ; Pick 4MB line as our target cflushx: dcbf 0,r6 ; Flush line and invalidate addi r6,r6,128 ; Next line andis. r5,r6,0x0080 ; Have we done enough? beq++ cflushx ; Keep on flushing... mr r3,r10 ; Copy current hid1 rldimi r3,r2,54,9 ; Set force icbi match mode li r6,0 ; Set start if ICBI range isync mtspr hid1,r3 ; Stick it mtspr hid1,r3 ; Stick it again isync cflicbi: icbi 0,r6 ; Kill I$ addi r6,r6,128 ; Next line andis. r5,r6,1 ; Have we done them all? beq++ cflicbi ; Not yet... lis r8,GUSModeReg ; Get GUS mode register address sync mtspr scomd,r11 ; Set that we do not want direct mode mtspr scomc,r8 ; Tell GUS we do not want direct mode mfspr r3,scomc ; Get back the status sync isync isync mtspr hid0,r9 ; Restore entry hid0 mfspr r9,hid0 ; Yes, this is silly, keep it here mfspr r9,hid0 ; Yes, this is a duplicate, keep it here mfspr r9,hid0 ; Yes, this is a duplicate, keep it here mfspr r9,hid0 ; Yes, this is a duplicate, keep it here mfspr r9,hid0 ; Yes, this is a duplicate, keep it here mfspr r9,hid0 ; Yes, this is a duplicate, keep it here isync isync mtspr hid1,r12 ; Restore entry hid1 mtspr hid1,r12 ; Stick it again isync sync mtspr hid4,r4 ; Restore entry hid4 isync sync mtmsr r7 ; Restore MSR to entry isync blr ; Return... /* Disables all caches * * void cacheDisable(void) * * Turns off all caches on the processor. They are not flushed. * */ ; Force a line boundry here .align 5 .globl EXT(cacheDisable) LEXT(cacheDisable) mfsprg r11,2 ; Get CPU specific features mtcrf 0x83,r11 ; Set feature flags bf pfAltivecb,cdNoAlt ; No vectors... dssall ; Stop streams cdNoAlt: sync btlr pf64Bitb ; No way to disable a 64-bit machine... mfspr r5,hid0 ; Get the hid rlwinm r5,r5,0,dce+1,ice-1 ; Clear the I- and D- cache enables mtspr hid0,r5 ; Turn off dem caches sync rlwinm. r0,r11,0,pfL2b,pfL2b ; is there an L2? beq cdNoL2 ; Skip if no L2... mfspr r5,l2cr ; Get the L2 rlwinm r5,r5,0,l2e+1,31 ; Turn off enable bit b cinlaa ; Branch to next line... .align 5 cinlcc: mtspr l2cr,r5 ; Disable L2 sync isync b cdNoL2 ; It is off, we are done... cinlaa: b cinlbb ; Branch to next... cinlbb: sync ; Finish memory stuff isync ; Stop speculation b cinlcc ; Jump back up and turn off cache... cdNoL2: bf pfL3b,cdNoL3 ; Skip down if no L3... mfspr r5,l3cr ; Get the L3 rlwinm r5,r5,0,l3e+1,31 ; Turn off enable bit rlwinm r5,r5,0,l3clken+1,l3clken-1 ; Turn off cache enable bit mtspr l3cr,r5 ; Disable the caches sync cdNoL3: blr ; Leave... /* Initialize processor thermal monitoring * void ml_thrm_init(void) * * Obsolete, deprecated and will be removed. */ ; Force a line boundry here .align 5 .globl EXT(ml_thrm_init) LEXT(ml_thrm_init) blr /* Set thermal monitor bounds * void ml_thrm_set(unsigned int low, unsigned int high) * * Obsolete, deprecated and will be removed. */ ; Force a line boundry here .align 5 .globl EXT(ml_thrm_set) LEXT(ml_thrm_set) blr /* Read processor temprature * unsigned int ml_read_temp(void) * * Obsolete, deprecated and will be removed. */ ; Force a line boundry here .align 5 .globl EXT(ml_read_temp) LEXT(ml_read_temp) li r3,-1 blr /* Throttle processor speed up or down * unsigned int ml_throttle(unsigned int step) * * Returns old speed and sets new. Both step and return are values from 0 to * 255 that define number of throttle steps, 0 being off and "ictcfim" is max * 2. * * Obsolete, deprecated and will be removed. */ ; Force a line boundry here .align 5 .globl EXT(ml_throttle) LEXT(ml_throttle) li r3,0 blr /* ** ml_get_timebase() ** ** Entry - R3 contains pointer to 64 bit structure. ** ** Exit - 64 bit structure filled in. ** */ ; Force a line boundry here .align 5 .globl EXT(ml_get_timebase) LEXT(ml_get_timebase) loop: mftbu r4 mftb r5 mftbu r6 cmpw r6, r4 bne- loop stw r4, 0(r3) stw r5, 4(r3) blr /* * unsigned int cpu_number(void) * * Returns the current cpu number. */ .align 5 .globl EXT(cpu_number) LEXT(cpu_number) mfsprg r4,1 ; Get the current activation lwz r4,ACT_PER_PROC(r4) ; Get the per_proc block lhz r3,PP_CPU_NUMBER(r4) ; Get CPU number blr ; Return... /* * processor_t current_processor(void) * * Returns the current processor. */ .align 5 .globl EXT(current_processor) LEXT(current_processor) mfsprg r3,1 ; Get the current activation lwz r3,ACT_PER_PROC(r3) ; Get the per_proc block addi r3,r3,PP_PROCESSOR blr #if PROCESSOR_SIZE > PP_PROCESSOR_SIZE #error processor overflows per_proc #endif /* * ast_t *ast_pending(void) * * Returns the address of the pending AST mask for the current processor. */ .align 5 .globl EXT(ast_pending) LEXT(ast_pending) mfsprg r3,1 ; Get the current activation lwz r3,ACT_PER_PROC(r3) ; Get the per_proc block addi r3,r3,PP_PENDING_AST blr ; Return... /* * void machine_set_current_thread(thread_t) * * Set the current thread */ .align 5 .globl EXT(machine_set_current_thread) LEXT(machine_set_current_thread) mfsprg r4,1 ; Get spr1 lwz r5,ACT_PER_PROC(r4) ; Get the PerProc from the previous active thread stw r5,ACT_PER_PROC(r3) ; Set the PerProc in the active thread mtsprg 1,r3 ; Set spr1 with the active thread blr ; Return... /* * thread_t current_thread(void) * thread_t current_act(void) * * * Return the current thread for outside components. */ .align 5 .globl EXT(current_thread) .globl EXT(current_act) LEXT(current_thread) LEXT(current_act) mfsprg r3,1 blr .align 5 .globl EXT(mach_absolute_time) LEXT(mach_absolute_time) 1: mftbu r3 mftb r4 mftbu r0 cmpw r0,r3 bne-- 1b blr /* ** ml_sense_nmi() ** */ ; Force a line boundry here .align 5 .globl EXT(ml_sense_nmi) LEXT(ml_sense_nmi) blr ; Leave... /* ** ml_set_processor_speed_powertune() ** */ ; Force a line boundry here .align 5 .globl EXT(ml_set_processor_speed_powertune) LEXT(ml_set_processor_speed_powertune) mflr r0 ; Save the link register stwu r1, -(FM_ALIGN(4*4)+FM_SIZE)(r1) ; Make some space on the stack stw r28, FM_ARG0+0x00(r1) ; Save a register stw r29, FM_ARG0+0x04(r1) ; Save a register stw r30, FM_ARG0+0x08(r1) ; Save a register stw r31, FM_ARG0+0x0C(r1) ; Save a register stw r0, (FM_ALIGN(4*4)+FM_SIZE+FM_LR_SAVE)(r1) ; Save the return mfsprg r31,1 ; Get the current activation lwz r31,ACT_PER_PROC(r31) ; Get the per_proc block rlwinm r28, r3, 31-dnap, dnap, dnap ; Shift the 1 bit to the dnap+32 bit rlwinm r3, r3, 2, 29, 29 ; Shift the 1 to a 4 and mask addi r3, r3, pfPowerTune0 ; Add in the pfPowerTune0 offset lwzx r29, r31, r3 ; Load the PowerTune number 0 or 1 sldi r28, r28, 32 ; Shift to the top half ld r3, pfHID0(r31) ; Load the saved hid0 value and r28, r28, r3 ; Save the dnap bit lis r4, hi16(dnapm) ; Make a mask for the dnap bit sldi r4, r4, 32 ; Shift to the top half andc r3, r3, r4 ; Clear the dnap bit or r28, r28, r3 ; Insert the dnap bit as needed for later sync mtspr hid0, r3 ; Turn off dnap in hid0 mfspr r3, hid0 ; Yes, this is silly, keep it here mfspr r3, hid0 ; Yes, this is a duplicate, keep it here mfspr r3, hid0 ; Yes, this is a duplicate, keep it here mfspr r3, hid0 ; Yes, this is a duplicate, keep it here mfspr r3, hid0 ; Yes, this is a duplicate, keep it here mfspr r3, hid0 ; Yes, this is a duplicate, keep it here isync ; Make sure it is set lis r3, hi16(PowerTuneControlReg) ; Write zero to the PCR ori r3, r3, lo16(PowerTuneControlReg) li r4, 0 li r5, 0 bl _ml_scom_write lis r3, hi16(PowerTuneControlReg) ; Write the PowerTune value to the PCR ori r3, r3, lo16(PowerTuneControlReg) li r4, 0 mr r5, r29 bl _ml_scom_write rlwinm r29, r29, 13-6, 6, 7 ; Move to PSR speed location and isolate the requested speed spsPowerTuneLoop: lis r3, hi16(PowerTuneStatusReg) ; Read the status from the PSR ori r3, r3, lo16(PowerTuneStatusReg) li r4, 0 bl _ml_scom_read srdi r5, r5, 32 rlwinm r0, r5, 0, 6, 7 ; Isolate the current speed rlwimi r0, r5, 0, 2, 2 ; Copy in the change in progress bit cmpw r0, r29 ; Compare the requested and current speeds beq spsPowerTuneDone rlwinm. r0, r5, 0, 3, 3 beq spsPowerTuneLoop spsPowerTuneDone: sync mtspr hid0, r28 ; Turn on dnap in hid0 if needed mfspr r28, hid0 ; Yes, this is silly, keep it here mfspr r28, hid0 ; Yes, this is a duplicate, keep it here mfspr r28, hid0 ; Yes, this is a duplicate, keep it here mfspr r28, hid0 ; Yes, this is a duplicate, keep it here mfspr r28, hid0 ; Yes, this is a duplicate, keep it here mfspr r28, hid0 ; Yes, this is a duplicate, keep it here isync ; Make sure it is set lwz r0, (FM_ALIGN(4*4)+FM_SIZE+FM_LR_SAVE)(r1) ; Get the return lwz r28, FM_ARG0+0x00(r1) ; Restore a register lwz r29, FM_ARG0+0x04(r1) ; Restore a register lwz r30, FM_ARG0+0x08(r1) ; Restore a register lwz r31, FM_ARG0+0x0C(r1) ; Restore a register lwz r1, FM_BACKPTR(r1) ; Pop the stack mtlr r0 blr /* ** ml_set_processor_speed_dpll() ** */ ; Force a line boundry here .align 5 .globl EXT(ml_set_processor_speed_dpll) LEXT(ml_set_processor_speed_dpll) mfsprg r5,1 ; Get the current activation lwz r5,ACT_PER_PROC(r5) ; Get the per_proc block cmplwi r3, 0 ; Turn off BTIC before low speed beq spsDPLL1 mfspr r4, hid0 ; Get the current hid0 value rlwinm r4, r4, 0, btic+1, btic-1 ; Clear the BTIC bit sync mtspr hid0, r4 ; Set the new hid0 value isync sync spsDPLL1: mfspr r4, hid1 ; Get the current PLL settings rlwimi r4, r3, 31-hid1ps, hid1ps, hid1ps ; Copy the PLL Select bit stw r4, pfHID1(r5) ; Save the new hid1 value mtspr hid1, r4 ; Select desired PLL cmplwi r3, 0 ; Restore BTIC after high speed bne spsDPLL2 lwz r4, pfHID0(r5) ; Load the hid0 value sync mtspr hid0, r4 ; Set the hid0 value isync sync spsDPLL2: blr /* ** ml_set_processor_speed_dfs(divideby) ** divideby == 0 then divide by 1 (full speed) ** divideby == 1 then divide by 2 (half speed) ** divideby == 2 then divide by 4 (quarter speed) ** divideby == 3 then divide by 4 (quarter speed) - preferred ** */ ; Force a line boundry here .align 5 .globl EXT(ml_set_processor_speed_dfs) LEXT(ml_set_processor_speed_dfs) mfspr r4,hid1 ; Get the current HID1 mfsprg r5,0 ; Get the per_proc_info rlwimi r4,r3,31-hid1dfs1,hid1dfs0,hid1dfs1 ; Stick the new divider bits in stw r4,pfHID1(r5) ; Save the new hid1 value sync mtspr hid1,r4 ; Set the new HID1 sync isync blr /* ** ml_set_processor_voltage() ** */ ; Force a line boundry here .align 5 .globl EXT(ml_set_processor_voltage) LEXT(ml_set_processor_voltage) mfsprg r5,1 ; Get the current activation lwz r5,ACT_PER_PROC(r5) ; Get the per_proc block lwz r6, pfPowerModes(r5) ; Get the supported power modes rlwinm. r0, r6, 0, pmDPLLVminb, pmDPLLVminb ; Is DPLL Vmin supported beq spvDone mfspr r4, hid2 ; Get HID2 value rlwimi r4, r3, 31-hid2vmin, hid2vmin, hid2vmin ; Insert the voltage mode bit mtspr hid2, r4 ; Set the voltage mode sync ; Make sure it is done spvDone: blr ; ; unsigned int ml_scom_write(unsigned int reg, unsigned long long data) ; 64-bit machines only ; returns status ; .align 5 .globl EXT(ml_scom_write) LEXT(ml_scom_write) rldicr r3,r3,8,47 ; Align register it correctly rldimi r5,r4,32,0 ; Merge the high part of data sync ; Clean up everything mtspr scomd,r5 ; Stick in the data mtspr scomc,r3 ; Set write to register sync isync mfspr r3,scomc ; Read back status blr ; leave.... ; ; unsigned int ml_read_scom(unsigned int reg, unsigned long long *data) ; 64-bit machines only ; returns status ; ASM Callers: data (r4) can be zero and the 64 bit data will be returned in r5 ; .align 5 .globl EXT(ml_scom_read) LEXT(ml_scom_read) mfsprg r0,2 ; Get the feature flags rldicr r3,r3,8,47 ; Align register it correctly rlwinm r0,r0,pfSCOMFixUpb+1,31,31 ; Set shift if we need a fix me up ori r3,r3,0x8000 ; Set to read data sync mtspr scomc,r3 ; Request the register mfspr r5,scomd ; Get the register contents mfspr r3,scomc ; Get back the status sync isync sld r5,r5,r0 ; Fix up if needed cmplwi r4, 0 ; If data pointer is null, just return beqlr ; the received data in r5 std r5,0(r4) ; Pass back the received data blr ; Leave... ; ; Calculates the hdec to dec ratio ; .align 5 .globl EXT(ml_hdec_ratio) LEXT(ml_hdec_ratio) li r0,0 ; Clear the EE bit (and everything else for that matter) mfmsr r11 ; Get the MSR mtmsrd r0,1 ; Set the EE bit only (do not care about RI) rlwinm r11,r11,0,MSR_EE_BIT,MSR_EE_BIT ; Isolate just the EE bit mfmsr r10 ; Refresh our view of the MSR (VMX/FP may have changed) or r12,r10,r11 ; Turn on EE if on before we turned it off mftb r9 ; Get time now mfspr r2,hdec ; Save hdec mhrcalc: mftb r8 ; Get time now sub r8,r8,r9 ; How many ticks? cmplwi r8,10000 ; 10000 yet? blt mhrcalc ; Nope... mfspr r9,hdec ; Get hdec now sub r3,r2,r9 ; How many ticks? mtmsrd r12,1 ; Flip EE on if needed blr ; Leave... ; ; int setPop(time) ; ; Calculates the number of ticks to the supplied event and ; sets the decrementer. Never set the time for less that the ; minimum, which is 10, nor more than maxDec, which is usually 0x7FFFFFFF ; and never more than that but can be set by root. ; ; .align 7 .globl EXT(setPop) #define kMin 10 LEXT(setPop) spOver: mftbu r8 ; Get upper time addic r2,r4,-kMin ; Subtract minimum from target mftb r9 ; Get lower addme r11,r3 ; Do you have any bits I could borrow? mftbu r10 ; Get upper again subfe r0,r0,r0 ; Get -1 if we went negative 0 otherwise subc r7,r2,r9 ; Subtract bottom and get carry cmplw r8,r10 ; Did timebase upper tick? subfe r6,r8,r11 ; Get the upper difference accounting for borrow lwz r12,maxDec(0) ; Get the maximum decrementer size addme r0,r0 ; Get -1 or -2 if anything negative, 0 otherwise addic r2,r6,-1 ; Set carry if diff < 2**32 srawi r0,r0,1 ; Make all foxes subi r10,r12,kMin ; Adjust maximum for minimum adjust andc r7,r7,r0 ; Pin time at 0 if under minimum subfe r2,r2,r2 ; 0 if diff > 2**32, -1 otherwise sub r7,r7,r10 ; Negative if duration is less than (max - min) or r2,r2,r0 ; If the duration is negative, it is not too big srawi r0,r7,31 ; -1 if duration is too small and r7,r7,r2 ; Clear duration if high part too big and r7,r7,r0 ; Clear duration if low part too big bne-- spOver ; Timer ticked... add r3,r7,r12 ; Add back the max for total mtdec r3 ; Set the decrementer blr ; Leave...