/* * Copyright (c) 2000-2007 Apple, Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* last */ #undef thread_should_halt #undef ipc_port_release /* BSD KERN COMPONENT INTERFACE */ task_t bsd_init_task = TASK_NULL; char init_task_failure_data[1024]; extern unsigned int not_in_kdp; /* Skip acquiring locks if we're in kdp */ thread_t get_firstthread(task_t); int get_task_userstop(task_t); int get_thread_userstop(thread_t); boolean_t thread_should_abort(thread_t); boolean_t current_thread_aborted(void); void task_act_iterate_wth_args(task_t, void(*)(thread_t, void *), void *); void ipc_port_release(ipc_port_t); kern_return_t get_signalact(task_t , thread_t *, int); int get_vmsubmap_entries(vm_map_t, vm_object_offset_t, vm_object_offset_t); void syscall_exit_funnelcheck(void); /* * */ void *get_bsdtask_info(task_t t) { return(t->bsd_info); } /* * */ void *get_bsdthreadtask_info(thread_t th) { return(th->task != TASK_NULL ? th->task->bsd_info : NULL); } /* * */ void set_bsdtask_info(task_t t,void * v) { t->bsd_info=v; } /* * */ void *get_bsdthread_info(thread_t th) { return(th->uthread); } /* * XXX: wait for BSD to fix signal code * Until then, we cannot block here. We know the task * can't go away, so we make sure it is still active after * retrieving the first thread for extra safety. */ thread_t get_firstthread(task_t task) { thread_t thread = (thread_t)queue_first(&task->threads); if (queue_end(&task->threads, (queue_entry_t)thread)) thread = THREAD_NULL; if (!task->active) return (THREAD_NULL); return (thread); } kern_return_t get_signalact( task_t task, thread_t *result_out, int setast) { kern_return_t result = KERN_SUCCESS; thread_t inc, thread = THREAD_NULL; task_lock(task); if (!task->active) { task_unlock(task); return (KERN_FAILURE); } for (inc = (thread_t)queue_first(&task->threads); !queue_end(&task->threads, (queue_entry_t)inc); ) { thread_mtx_lock(inc); if (inc->active && (inc->sched_mode & TH_MODE_ISABORTED) != TH_MODE_ABORT) { thread = inc; break; } thread_mtx_unlock(inc); inc = (thread_t)queue_next(&inc->task_threads); } if (result_out) *result_out = thread; if (thread) { if (setast) act_set_astbsd(thread); thread_mtx_unlock(thread); } else result = KERN_FAILURE; task_unlock(task); return (result); } kern_return_t check_actforsig( task_t task, thread_t thread, int setast) { kern_return_t result = KERN_FAILURE; thread_t inc; task_lock(task); if (!task->active) { task_unlock(task); return (KERN_FAILURE); } for (inc = (thread_t)queue_first(&task->threads); !queue_end(&task->threads, (queue_entry_t)inc); ) { if (inc == thread) { thread_mtx_lock(inc); if (inc->active && (inc->sched_mode & TH_MODE_ISABORTED) != TH_MODE_ABORT) { result = KERN_SUCCESS; break; } thread_mtx_unlock(inc); break; } inc = (thread_t)queue_next(&inc->task_threads); } if (result == KERN_SUCCESS) { if (setast) act_set_astbsd(thread); thread_mtx_unlock(thread); } task_unlock(task); return (result); } /* * This is only safe to call from a thread executing in * in the task's context or if the task is locked Otherwise, * the map could be switched for the task (and freed) before * we to return it here. */ vm_map_t get_task_map(task_t t) { return(t->map); } vm_map_t get_task_map_reference(task_t t) { vm_map_t m; if (t == NULL) return VM_MAP_NULL; task_lock(t); if (!t->active) { task_unlock(t); return VM_MAP_NULL; } m = t->map; vm_map_reference_swap(m); task_unlock(t); return m; } /* * */ ipc_space_t get_task_ipcspace(task_t t) { return(t->itk_space); } int get_task_numactivethreads(task_t task) { thread_t inc; int num_active_thr=0; task_lock(task); for (inc = (thread_t)queue_first(&task->threads); !queue_end(&task->threads, (queue_entry_t)inc); inc = (thread_t)queue_next(&inc->task_threads)) { if(inc->active) num_active_thr++; } task_unlock(task); return num_active_thr; } int get_task_numacts(task_t t) { return(t->thread_count); } /* does this machine need 64bit register set for signal handler */ int is_64signalregset(void) { task_t t = current_task(); if(t->taskFeatures[0] & tf64BitData) return(1); else return(0); } /* * The old map reference is returned. */ vm_map_t swap_task_map(task_t task,vm_map_t map) { thread_t thread = current_thread(); vm_map_t old_map; if (task != thread->task) panic("swap_task_map"); task_lock(task); old_map = task->map; thread->map = task->map = map; task_unlock(task); inval_copy_windows(thread); return old_map; } /* * */ pmap_t get_task_pmap(task_t t) { return(t->map->pmap); } /* * */ pmap_t get_map_pmap(vm_map_t map) { return(map->pmap); } /* * */ task_t get_threadtask(thread_t th) { return(th->task); } /* * */ vm_map_offset_t get_map_min( vm_map_t map) { return(vm_map_min(map)); } /* * */ vm_map_offset_t get_map_max( vm_map_t map) { return(vm_map_max(map)); } vm_map_size_t get_vmmap_size( vm_map_t map) { return(map->size); } int get_vmsubmap_entries( vm_map_t map, vm_object_offset_t start, vm_object_offset_t end) { int total_entries = 0; vm_map_entry_t entry; if (not_in_kdp) vm_map_lock(map); entry = vm_map_first_entry(map); while((entry != vm_map_to_entry(map)) && (entry->vme_start < start)) { entry = entry->vme_next; } while((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { if(entry->is_sub_map) { total_entries += get_vmsubmap_entries(entry->object.sub_map, entry->offset, entry->offset + (entry->vme_end - entry->vme_start)); } else { total_entries += 1; } entry = entry->vme_next; } if (not_in_kdp) vm_map_unlock(map); return(total_entries); } int get_vmmap_entries( vm_map_t map) { int total_entries = 0; vm_map_entry_t entry; if (not_in_kdp) vm_map_lock(map); entry = vm_map_first_entry(map); while(entry != vm_map_to_entry(map)) { if(entry->is_sub_map) { total_entries += get_vmsubmap_entries(entry->object.sub_map, entry->offset, entry->offset + (entry->vme_end - entry->vme_start)); } else { total_entries += 1; } entry = entry->vme_next; } if (not_in_kdp) vm_map_unlock(map); return(total_entries); } /* * */ /* * */ int get_task_userstop( task_t task) { return(task->user_stop_count); } /* * */ int get_thread_userstop( thread_t th) { return(th->user_stop_count); } /* * */ boolean_t thread_should_abort( thread_t th) { return ((th->sched_mode & TH_MODE_ISABORTED) == TH_MODE_ABORT); } /* * This routine is like thread_should_abort() above. It checks to * see if the current thread is aborted. But unlike above, it also * checks to see if thread is safely aborted. If so, it returns * that fact, and clears the condition (safe aborts only should * have a single effect, and a poll of the abort status * qualifies. */ boolean_t current_thread_aborted ( void) { thread_t th = current_thread(); spl_t s; if ((th->sched_mode & TH_MODE_ISABORTED) == TH_MODE_ABORT && (th->options & TH_OPT_INTMASK) != THREAD_UNINT) return (TRUE); if (th->sched_mode & TH_MODE_ABORTSAFELY) { s = splsched(); thread_lock(th); if (th->sched_mode & TH_MODE_ABORTSAFELY) th->sched_mode &= ~TH_MODE_ISABORTED; thread_unlock(th); splx(s); } return FALSE; } /* * */ void task_act_iterate_wth_args( task_t task, void (*func_callback)(thread_t, void *), void *func_arg) { thread_t inc; task_lock(task); for (inc = (thread_t)queue_first(&task->threads); !queue_end(&task->threads, (queue_entry_t)inc); ) { (void) (*func_callback)(inc, func_arg); inc = (thread_t)queue_next(&inc->task_threads); } task_unlock(task); } void ipc_port_release( ipc_port_t port) { ipc_object_release(&(port)->ip_object); } void astbsd_on(void) { boolean_t reenable; reenable = ml_set_interrupts_enabled(FALSE); ast_on_fast(AST_BSD); (void)ml_set_interrupts_enabled(reenable); } #include void fill_taskprocinfo(task_t task, struct proc_taskinfo_internal * ptinfo) { vm_map_t map; task_absolutetime_info_data_t tinfo; thread_t thread; int cswitch = 0, numrunning = 0; map = (task == kernel_task)? kernel_map: task->map; ptinfo->pti_virtual_size = map->size; ptinfo->pti_resident_size = (mach_vm_size_t)(pmap_resident_count(map->pmap)) * PAGE_SIZE_64; task_lock(task); ptinfo->pti_policy = ((task != kernel_task)? POLICY_TIMESHARE: POLICY_RR); tinfo.threads_user = tinfo.threads_system = 0; tinfo.total_user = task->total_user_time; tinfo.total_system = task->total_system_time; queue_iterate(&task->threads, thread, thread_t, task_threads) { uint64_t tval; if ((thread->state & TH_RUN) == TH_RUN) numrunning++; cswitch += thread->c_switch; tval = timer_grab(&thread->user_timer); tinfo.threads_user += tval; tinfo.total_user += tval; tval = timer_grab(&thread->system_timer); tinfo.threads_system += tval; tinfo.total_system += tval; } ptinfo->pti_total_system = tinfo.total_system; ptinfo->pti_total_user = tinfo.total_user; ptinfo->pti_threads_system = tinfo.threads_system; ptinfo->pti_threads_user = tinfo.threads_user; ptinfo->pti_faults = task->faults; ptinfo->pti_pageins = task->pageins; ptinfo->pti_cow_faults = task->cow_faults; ptinfo->pti_messages_sent = task->messages_sent; ptinfo->pti_messages_received = task->messages_received; ptinfo->pti_syscalls_mach = task->syscalls_mach; ptinfo->pti_syscalls_unix = task->syscalls_unix; ptinfo->pti_csw = task->c_switch + cswitch; ptinfo->pti_threadnum = task->thread_count; ptinfo->pti_numrunning = numrunning; ptinfo->pti_priority = task->priority; task_unlock(task); } int fill_taskthreadinfo(task_t task, uint64_t thaddr, struct proc_threadinfo_internal * ptinfo, void * vpp, int *vidp) { thread_t thact; int err=0; mach_msg_type_number_t count; thread_basic_info_data_t basic_info; kern_return_t kret; task_lock(task); for (thact = (thread_t)queue_first(&task->threads); !queue_end(&task->threads, (queue_entry_t)thact); ) { #if defined(__ppc__) || defined(__arm__) if (thact->machine.cthread_self == thaddr) #elif defined (__i386__) if (thact->machine.pcb->cthread_self == thaddr) #else #error architecture not supported #endif { count = THREAD_BASIC_INFO_COUNT; if ((kret = thread_info_internal(thact, THREAD_BASIC_INFO, (thread_info_t)&basic_info, &count)) != KERN_SUCCESS) { err = 1; goto out; } #if 0 ptinfo->pth_user_time = timer_grab(&basic_info.user_time); ptinfo->pth_system_time = timer_grab(&basic_info.system_time); #else ptinfo->pth_user_time = ((basic_info.user_time.seconds * NSEC_PER_SEC) + (basic_info.user_time.microseconds * NSEC_PER_USEC)); ptinfo->pth_system_time = ((basic_info.system_time.seconds * NSEC_PER_SEC) + (basic_info.system_time.microseconds * NSEC_PER_USEC)); #endif ptinfo->pth_cpu_usage = basic_info.cpu_usage; ptinfo->pth_policy = basic_info.policy; ptinfo->pth_run_state = basic_info.run_state; ptinfo->pth_flags = basic_info.flags; ptinfo->pth_sleep_time = basic_info.sleep_time; ptinfo->pth_curpri = thact->sched_pri; ptinfo->pth_priority = thact->priority; ptinfo->pth_maxpriority = thact->max_priority; if ((vpp != NULL) && (thact->uthread != NULL)) bsd_threadcdir(thact->uthread, vpp, vidp); err = 0; goto out; } thact = (thread_t)queue_next(&thact->task_threads); } err = 1; out: task_unlock(task); return(err); } int fill_taskthreadlist(task_t task, void * buffer, int thcount) { int numthr=0; thread_t thact; uint64_t * uptr; uint64_t thaddr; uptr = (uint64_t *)buffer; task_lock(task); for (thact = (thread_t)queue_first(&task->threads); !queue_end(&task->threads, (queue_entry_t)thact); ) { #if defined(__ppc__) || defined(__arm__) thaddr = thact->machine.cthread_self; #elif defined (__i386__) thaddr = thact->machine.pcb->cthread_self; #else #error architecture not supported #endif *uptr++ = thaddr; numthr++; if (numthr >= thcount) goto out; thact = (thread_t)queue_next(&thact->task_threads); } out: task_unlock(task); return(numthr * sizeof(uint64_t)); } int get_numthreads(task_t task) { return(task->thread_count); } void syscall_exit_funnelcheck(void) { thread_t thread; thread = current_thread(); if (thread->funnel_lock) panic("syscall exit with funnel held\n"); }