/* * Copyright (c) 2006 Apple Computer, Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ #include #include /* * The bcopy/memcpy loops, tuned for 64-bit Pentium-M class processors with * Supplemental SSE3 and 64-byte cache lines. This is the 64-bit version. * * The following #defines are tightly coupled to the u-architecture: */ #define kShort 80 // too short to bother with SSE (must be >=80) #define kVeryLong (500*1024) // large enough for non-temporal stores (>=8192 and <2GB) #define kFastUCode ((16*1024)-15) // cutoff for microcode fastpath for "rep/movsl" // void bcopy(const void *src, void *dst, size_t len); .text .code64 .align 5, 0x90 LZero: Lbcopy_sse3x_64: // void bcopy(const void *src, void *dst, size_t len) pushq %rbp // set up a frame for backtraces movq %rsp,%rbp movq %rsi,%rax // copy dest ptr movq %rdi,%rsi // xchange source and dest ptrs movq %rax,%rdi subq %rsi,%rax // (dest - source) cmpq %rdx,%rax // must move in reverse if (dest - source) < length jb LReverseIsland cmpq $(kShort),%rdx // long enough to bother with SSE? jbe LShort // no jmp LNotShort // // void *memcpy(void *dst, const void *src, size_t len); // void *memmove(void *dst, const void *src, size_t len); // // NB: These need to be 32 bytes from bcopy(): // .align 5, 0x90 Lmemcpy: // void *memcpy(void *dst, const void *src, size_t len) Lmemmove: // void *memmove(void *dst, const void *src, size_t len) pushq %rbp // set up a frame for backtraces movq %rsp,%rbp movq %rdi,%r11 // save return value here movq %rdi,%rax subq %rsi,%rax // (dest - source) cmpq %rdx,%rax // must move in reverse if (dest - source) < length jb LReverseIsland cmpq $(kShort),%rdx // long enough to bother with SSE? ja LNotShort // yes // Handle short forward copies. As the most common case, this is the fall-through path. // rdx = length (<= kShort) // rsi = source ptr // rdi = dest ptr LShort: movl %edx,%ecx // copy length using 32-bit operation shrl $2,%ecx // get #doublewords jz LLeftovers 2: // loop copying doublewords movl (%rsi),%eax addq $4,%rsi movl %eax,(%rdi) addq $4,%rdi decl %ecx jnz 2b LLeftovers: // handle leftover bytes (0..3) in last word andl $3,%edx // any leftover bytes? jz 5f 4: // loop copying bytes movb (%rsi),%al incq %rsi movb %al,(%rdi) incq %rdi decl %edx jnz 4b 5: movq %r11,%rax // get return value (dst ptr) for memcpy/memmove popq %rbp ret LReverseIsland: // keep the "jb" above a short branch... jmp LReverse // ...because reverse moves are uncommon // Handle forward moves that are long enough to justify use of SSE. // First, 16-byte align the destination. // rdx = length (> kShort) // rsi = source ptr // rdi = dest ptr LNotShort: cmpq $(kVeryLong),%rdx // long enough to justify heavyweight loops? jae LVeryLong // use very-long-operand path movl %edi,%ecx // copy low half of destination ptr negl %ecx andl $15,%ecx // get #bytes to align destination jz LDestAligned // already aligned subl %ecx,%edx // decrement length rep // align destination movsb // Destination is now aligned. Dispatch to one of sixteen loops over 64-byte chunks, // based on the alignment of the source. All vector loads and stores are aligned. // Even though this means we have to shift and repack vectors, doing so is much faster // than unaligned loads. Since kShort>=80 and we've moved at most 15 bytes already, // there is at least one chunk. When we enter the copy loops, the following registers // are set up: // rdx = residual length (0..63) // rcx = -(length to move), a multiple of 64 less than 2GB // rsi = ptr to 1st source byte not to move (unaligned) // rdi = ptr to 1st dest byte not to move (aligned) LDestAligned: movq %rdx,%rcx // copy length movl %esi,%eax // copy low half of source address andl $63,%edx // get remaining bytes for LShort andl $15,%eax // mask to low 4 bits of source address andq $-64,%rcx // get number of bytes we will copy in inner loop // We'd like to use lea with rip-relative addressing, but cannot in a .code64 block. // lea LTable(%rip),%r8 // point to dispatch table movq $(_COMM_PAGE_32_TO_64(_COMM_PAGE_BCOPY)),%r8 // work around 4586528 addq $(LTable-LZero),%r8 // work around 4586528 addq %rcx,%rsi // point to 1st byte not copied addq %rcx,%rdi movl (%r8,%rax,4),%eax // get offset of routine negq %rcx // now generate offset to 1st byte to be copied addq %r8,%rax // generate address of copy loop jmp *%rax // enter copy loop, selected by source alignment .align 2 LTable: // table of copy loop addresses .long (LMod0 - LTable) .long (LMod1 - LTable) .long (LMod2 - LTable) .long (LMod3 - LTable) .long (LMod4 - LTable) .long (LMod5 - LTable) .long (LMod6 - LTable) .long (LMod7 - LTable) .long (LMod8 - LTable) .long (LMod9 - LTable) .long (LMod10 - LTable) .long (LMod11 - LTable) .long (LMod12 - LTable) .long (LMod13 - LTable) .long (LMod14 - LTable) .long (LMod15 - LTable) // Very long forward moves. These are at least several pages. They are special cased // and aggressively optimized, not so much because they are common or useful, but // because they are subject to benchmark. There isn't enough room for them in the // area reserved on the commpage for bcopy, so we put them elsewhere. We call // the longcopy routine using the normal ABI: // rdi = dest // rsi = source // rdx = length (>= kVeryLong bytes) LVeryLong: pushq %r11 // save return value movq $_COMM_PAGE_32_TO_64(_COMM_PAGE_LONGCOPY),%rax call *%rax // call very long operand routine popq %rax // pop return value popq %rbp ret // On Pentium-M, the microcode for "rep/movsl" is faster than SSE for 16-byte // aligned operands from about 32KB up to kVeryLong for the hot cache case, and from // about 256 bytes up to kVeryLong for cold caches. This is because the microcode // avoids having to read destination cache lines that will be completely overwritten. // The cutoff we use (ie, kFastUCode) must somehow balance the two cases, since // we do not know if the destination is in cache or not. Lfastpath: addq %rcx,%rsi // restore ptrs to 1st byte of source and dest addq %rcx,%rdi negl %ecx // make length positive (known to be < 2GB) orl %edx,%ecx // restore total #bytes remaining to move cld // we'll move forward shrl $2,%ecx // compute #words to move rep // the u-code will optimize this movsl jmp LLeftovers // handle 0..3 leftover bytes // Forward loop for medium length operands in which low four bits of %rsi == 0000 LMod0: cmpl $(-kFastUCode),%ecx // %rcx == -length, where (length < kVeryLong) jle Lfastpath // long enough for fastpath in microcode jmp 1f .align 4,0x90 // 16-byte align inner loops 1: // loop over 64-byte chunks movdqa (%rsi,%rcx),%xmm0 movdqa 16(%rsi,%rcx),%xmm1 movdqa 32(%rsi,%rcx),%xmm2 movdqa 48(%rsi,%rcx),%xmm3 movdqa %xmm0,(%rdi,%rcx) movdqa %xmm1,16(%rdi,%rcx) movdqa %xmm2,32(%rdi,%rcx) movdqa %xmm3,48(%rdi,%rcx) addq $64,%rcx jnz 1b jmp LShort // copy remaining 0..63 bytes and done // Forward loop for medium length operands in which low four bits of %rsi == 0001 LMod1: movdqa -1(%rsi,%rcx),%xmm0 // prime the loop by loading 1st quadword 1: // loop over 64-byte chunks movdqa 15(%rsi,%rcx),%xmm1 movdqa 31(%rsi,%rcx),%xmm2 movdqa 47(%rsi,%rcx),%xmm3 movdqa 63(%rsi,%rcx),%xmm4 movdqa %xmm0,%xmm5 movdqa %xmm4,%xmm0 palignr $1,%xmm3,%xmm4 // dest <- shr( dest || source, imm*8 ) palignr $1,%xmm2,%xmm3 palignr $1,%xmm1,%xmm2 palignr $1,%xmm5,%xmm1 movdqa %xmm1,(%rdi,%rcx) movdqa %xmm2,16(%rdi,%rcx) movdqa %xmm3,32(%rdi,%rcx) movdqa %xmm4,48(%rdi,%rcx) addq $64,%rcx jnz 1b jmp LShort // copy remaining 0..63 bytes and done // Forward loop for medium length operands in which low four bits of %rsi == 0010 LMod2: movdqa -2(%rsi,%rcx),%xmm0 // prime the loop by loading 1st source dq 1: // loop over 64-byte chunks movdqa 14(%rsi,%rcx),%xmm1 movdqa 30(%rsi,%rcx),%xmm2 movdqa 46(%rsi,%rcx),%xmm3 movdqa 62(%rsi,%rcx),%xmm4 movdqa %xmm0,%xmm5 movdqa %xmm4,%xmm0 palignr $2,%xmm3,%xmm4 // dest <- shr( dest || source, imm*8 ) palignr $2,%xmm2,%xmm3 palignr $2,%xmm1,%xmm2 palignr $2,%xmm5,%xmm1 movdqa %xmm1,(%rdi,%rcx) movdqa %xmm2,16(%rdi,%rcx) movdqa %xmm3,32(%rdi,%rcx) movdqa %xmm4,48(%rdi,%rcx) addq $64,%rcx jnz 1b jmp LShort // copy remaining 0..63 bytes and done // Forward loop for medium length operands in which low four bits of %rsi == 0011 LMod3: movdqa -3(%rsi,%rcx),%xmm0 // prime the loop by loading 1st source dq 1: // loop over 64-byte chunks movdqa 13(%rsi,%rcx),%xmm1 movdqa 29(%rsi,%rcx),%xmm2 movdqa 45(%rsi,%rcx),%xmm3 movdqa 61(%rsi,%rcx),%xmm4 movdqa %xmm0,%xmm5 movdqa %xmm4,%xmm0 palignr $3,%xmm3,%xmm4 // dest <- shr( dest || source, imm*8 ) palignr $3,%xmm2,%xmm3 palignr $3,%xmm1,%xmm2 palignr $3,%xmm5,%xmm1 movdqa %xmm1,(%rdi,%rcx) movdqa %xmm2,16(%rdi,%rcx) movdqa %xmm3,32(%rdi,%rcx) movdqa %xmm4,48(%rdi,%rcx) addq $64,%rcx jnz 1b jmp LShort // copy remaining 0..63 bytes and done // Forward loop for medium length operands in which low four bits of %rsi == 0100 // We use the float single data type in order to use "movss" to merge vectors. LMod4: movaps -4(%rsi,%rcx),%xmm0 // 4-byte aligned: prime the loop jmp 1f .align 4,0x90 1: // loop over 64-byte chunks movaps 12(%rsi,%rcx),%xmm1 movaps 28(%rsi,%rcx),%xmm2 movss %xmm1,%xmm0 // copy low 4 bytes of source into destination pshufd $(0x39),%xmm0,%xmm0 // rotate right 4 bytes (mask -- 00 11 10 01) movaps 44(%rsi,%rcx),%xmm3 movss %xmm2,%xmm1 pshufd $(0x39),%xmm1,%xmm1 movaps 60(%rsi,%rcx),%xmm4 movss %xmm3,%xmm2 pshufd $(0x39),%xmm2,%xmm2 movaps %xmm0,(%rdi,%rcx) movss %xmm4,%xmm3 pshufd $(0x39),%xmm3,%xmm3 movaps %xmm1,16(%rdi,%rcx) movaps %xmm2,32(%rdi,%rcx) movaps %xmm4,%xmm0 movaps %xmm3,48(%rdi,%rcx) addq $64,%rcx jnz 1b jmp LShort // copy remaining 0..63 bytes and done // Forward loop for medium length operands in which low four bits of %rsi == 0101 LMod5: movdqa -5(%rsi,%rcx),%xmm0 // prime the loop by loading 1st source dq 1: // loop over 64-byte chunks movdqa 11(%rsi,%rcx),%xmm1 movdqa 27(%rsi,%rcx),%xmm2 movdqa 43(%rsi,%rcx),%xmm3 movdqa 59(%rsi,%rcx),%xmm4 movdqa %xmm0,%xmm5 movdqa %xmm4,%xmm0 palignr $5,%xmm3,%xmm4 // dest <- shr( dest || source, imm*8 ) palignr $5,%xmm2,%xmm3 palignr $5,%xmm1,%xmm2 palignr $5,%xmm5,%xmm1 movdqa %xmm1,(%rdi,%rcx) movdqa %xmm2,16(%rdi,%rcx) movdqa %xmm3,32(%rdi,%rcx) movdqa %xmm4,48(%rdi,%rcx) addq $64,%rcx jnz 1b jmp LShort // copy remaining 0..63 bytes and done // Forward loop for medium length operands in which low four bits of %rsi == 0110 LMod6: movdqa -6(%rsi,%rcx),%xmm0 // prime the loop by loading 1st source dq 1: // loop over 64-byte chunks movdqa 10(%rsi,%rcx),%xmm1 movdqa 26(%rsi,%rcx),%xmm2 movdqa 42(%rsi,%rcx),%xmm3 movdqa 58(%rsi,%rcx),%xmm4 movdqa %xmm0,%xmm5 movdqa %xmm4,%xmm0 palignr $6,%xmm3,%xmm4 // dest <- shr( dest || source, imm*8 ) palignr $6,%xmm2,%xmm3 palignr $6,%xmm1,%xmm2 palignr $6,%xmm5,%xmm1 movdqa %xmm1,(%rdi,%rcx) movdqa %xmm2,16(%rdi,%rcx) movdqa %xmm3,32(%rdi,%rcx) movdqa %xmm4,48(%rdi,%rcx) addq $64,%rcx jnz 1b jmp LShort // copy remaining 0..63 bytes and done // Forward loop for medium length operands in which low four bits of %rsi == 0111 LMod7: movdqa -7(%rsi,%rcx),%xmm0 // prime the loop by loading 1st source dq 1: // loop over 64-byte chunks movdqa 9(%rsi,%rcx),%xmm1 movdqa 25(%rsi,%rcx),%xmm2 movdqa 41(%rsi,%rcx),%xmm3 movdqa 57(%rsi,%rcx),%xmm4 movdqa %xmm0,%xmm5 movdqa %xmm4,%xmm0 palignr $7,%xmm3,%xmm4 // dest <- shr( dest || source, imm*8 ) palignr $7,%xmm2,%xmm3 palignr $7,%xmm1,%xmm2 palignr $7,%xmm5,%xmm1 movdqa %xmm1,(%rdi,%rcx) movdqa %xmm2,16(%rdi,%rcx) movdqa %xmm3,32(%rdi,%rcx) movdqa %xmm4,48(%rdi,%rcx) addq $64,%rcx jnz 1b jmp LShort // copy remaining 0..63 bytes and done // Forward loop for medium length operands in which low four bits of %rsi == 1000 // We use the float double data type in order to use "shufpd" to shift by 8 bytes. LMod8: cmpl $(-kFastUCode),%ecx // %rcx == -length, where (length < kVeryLong) jle Lfastpath // long enough for fastpath in microcode movapd -8(%rsi,%rcx),%xmm0 // 8-byte aligned: prime the loop jmp 1f .align 4,0x90 1: // loop over 64-byte chunks movapd 8(%rsi,%rcx),%xmm1 movapd 24(%rsi,%rcx),%xmm2 shufpd $01,%xmm1,%xmm0 // %xmm0 <- shr( %xmm0 || %xmm1, 8 bytes) movapd 40(%rsi,%rcx),%xmm3 shufpd $01,%xmm2,%xmm1 movapd 56(%rsi,%rcx),%xmm4 shufpd $01,%xmm3,%xmm2 movapd %xmm0,(%rdi,%rcx) shufpd $01,%xmm4,%xmm3 movapd %xmm1,16(%rdi,%rcx) movapd %xmm2,32(%rdi,%rcx) movapd %xmm4,%xmm0 movapd %xmm3,48(%rdi,%rcx) addq $64,%rcx jnz 1b jmp LShort // copy remaining 0..63 bytes and done // Forward loop for medium length operands in which low four bits of %rsi == 1001 LMod9: movdqa -9(%rsi,%rcx),%xmm0 // prime the loop by loading 1st source dq 1: // loop over 64-byte chunks movdqa 7(%rsi,%rcx),%xmm1 movdqa 23(%rsi,%rcx),%xmm2 movdqa 39(%rsi,%rcx),%xmm3 movdqa 55(%rsi,%rcx),%xmm4 movdqa %xmm0,%xmm5 movdqa %xmm4,%xmm0 palignr $9,%xmm3,%xmm4 // dest <- shr( dest || source, imm*8 ) palignr $9,%xmm2,%xmm3 palignr $9,%xmm1,%xmm2 palignr $9,%xmm5,%xmm1 movdqa %xmm1,(%rdi,%rcx) movdqa %xmm2,16(%rdi,%rcx) movdqa %xmm3,32(%rdi,%rcx) movdqa %xmm4,48(%rdi,%rcx) addq $64,%rcx jnz 1b jmp LShort // copy remaining 0..63 bytes and done // Forward loop for medium length operands in which low four bits of %rsi == 1010 LMod10: movdqa -10(%rsi,%rcx),%xmm0 // prime the loop by loading 1st source dq 1: // loop over 64-byte chunks movdqa 6(%rsi,%rcx),%xmm1 movdqa 22(%rsi,%rcx),%xmm2 movdqa 38(%rsi,%rcx),%xmm3 movdqa 54(%rsi,%rcx),%xmm4 movdqa %xmm0,%xmm5 movdqa %xmm4,%xmm0 palignr $10,%xmm3,%xmm4 // dest <- shr( dest || source, imm*8 ) palignr $10,%xmm2,%xmm3 palignr $10,%xmm1,%xmm2 palignr $10,%xmm5,%xmm1 movdqa %xmm1,(%rdi,%rcx) movdqa %xmm2,16(%rdi,%rcx) movdqa %xmm3,32(%rdi,%rcx) movdqa %xmm4,48(%rdi,%rcx) addq $64,%rcx jnz 1b jmp LShort // copy remaining 0..63 bytes and done // Forward loop for medium length operands in which low four bits of %rsi == 1011 LMod11: movdqa -11(%rsi,%rcx),%xmm0 // prime the loop by loading 1st source dq 1: // loop over 64-byte chunks movdqa 5(%rsi,%rcx),%xmm1 movdqa 21(%rsi,%rcx),%xmm2 movdqa 37(%rsi,%rcx),%xmm3 movdqa 53(%rsi,%rcx),%xmm4 movdqa %xmm0,%xmm5 movdqa %xmm4,%xmm0 palignr $11,%xmm3,%xmm4 // dest <- shr( dest || source, imm*8 ) palignr $11,%xmm2,%xmm3 palignr $11,%xmm1,%xmm2 palignr $11,%xmm5,%xmm1 movdqa %xmm1,(%rdi,%rcx) movdqa %xmm2,16(%rdi,%rcx) movdqa %xmm3,32(%rdi,%rcx) movdqa %xmm4,48(%rdi,%rcx) addq $64,%rcx jnz 1b jmp LShort // copy remaining 0..63 bytes and done // Forward loop for medium length operands in which low four bits of %rsi == 1100 // We use the float single data type in order to use "movss" to merge vectors. LMod12: movss (%rsi,%rcx),%xmm0 // prefetch 1st four bytes of source, right justified jmp 1f .align 4,0x90 1: // loop over 64-byte chunks pshufd $(0x93),4(%rsi,%rcx),%xmm1 // load and rotate right 12 bytes (mask -- 10 01 00 11) pshufd $(0x93),20(%rsi,%rcx),%xmm2 pshufd $(0x93),36(%rsi,%rcx),%xmm3 pshufd $(0x93),52(%rsi,%rcx),%xmm4 movaps %xmm4,%xmm5 movss %xmm3,%xmm4 // copy low 4 bytes of source into destination movss %xmm2,%xmm3 movss %xmm1,%xmm2 movss %xmm0,%xmm1 movaps %xmm1,(%rdi,%rcx) movaps %xmm2,16(%rdi,%rcx) movaps %xmm5,%xmm0 movaps %xmm3,32(%rdi,%rcx) movaps %xmm4,48(%rdi,%rcx) addq $64,%rcx jnz 1b jmp LShort // copy remaining 0..63 bytes and done // Forward loop for medium length operands in which low four bits of %rsi == 1101 LMod13: movdqa -13(%rsi,%rcx),%xmm0 // prime the loop by loading 1st source dq 1: // loop over 64-byte chunks movdqa 3(%rsi,%rcx),%xmm1 movdqa 19(%rsi,%rcx),%xmm2 movdqa 35(%rsi,%rcx),%xmm3 movdqa 51(%rsi,%rcx),%xmm4 movdqa %xmm0,%xmm5 movdqa %xmm4,%xmm0 palignr $13,%xmm3,%xmm4 // dest <- shr( dest || source, imm*8 ) palignr $13,%xmm2,%xmm3 palignr $13,%xmm1,%xmm2 palignr $13,%xmm5,%xmm1 movdqa %xmm1,(%rdi,%rcx) movdqa %xmm2,16(%rdi,%rcx) movdqa %xmm3,32(%rdi,%rcx) movdqa %xmm4,48(%rdi,%rcx) addq $64,%rcx jnz 1b jmp LShort // copy remaining 0..63 bytes and done // Forward loop for medium length operands in which low four bits of %rsi == 1110 LMod14: movdqa -14(%rsi,%rcx),%xmm0 // prime the loop by loading 1st source dq 1: // loop over 64-byte chunks movdqa 2(%rsi,%rcx),%xmm1 movdqa 18(%rsi,%rcx),%xmm2 movdqa 34(%rsi,%rcx),%xmm3 movdqa 50(%rsi,%rcx),%xmm4 movdqa %xmm0,%xmm5 movdqa %xmm4,%xmm0 palignr $14,%xmm3,%xmm4 // dest <- shr( dest || source, imm*8 ) palignr $14,%xmm2,%xmm3 palignr $14,%xmm1,%xmm2 palignr $14,%xmm5,%xmm1 movdqa %xmm1,(%rdi,%rcx) movdqa %xmm2,16(%rdi,%rcx) movdqa %xmm3,32(%rdi,%rcx) movdqa %xmm4,48(%rdi,%rcx) addq $64,%rcx jnz 1b jmp LShort // copy remaining 0..63 bytes and done // Forward loop for medium length operands in which low four bits of %rsi == 1111 LMod15: movdqa -15(%rsi,%rcx),%xmm0 // prime the loop by loading 1st source dq 1: // loop over 64-byte chunks movdqa 1(%rsi,%rcx),%xmm1 movdqa 17(%rsi,%rcx),%xmm2 movdqa 33(%rsi,%rcx),%xmm3 movdqa 49(%rsi,%rcx),%xmm4 movdqa %xmm0,%xmm5 movdqa %xmm4,%xmm0 palignr $15,%xmm3,%xmm4 // dest <- shr( dest || source, imm*8 ) palignr $15,%xmm2,%xmm3 palignr $15,%xmm1,%xmm2 palignr $15,%xmm5,%xmm1 movdqa %xmm1,(%rdi,%rcx) movdqa %xmm2,16(%rdi,%rcx) movdqa %xmm3,32(%rdi,%rcx) movdqa %xmm4,48(%rdi,%rcx) addq $64,%rcx jnz 1b jmp LShort // copy remaining 0..63 bytes and done // Reverse moves. These are not optimized as aggressively as their forward // counterparts, as they are only used with destructive overlap. // rdx = length // rsi = source ptr // rdi = dest ptr LReverse: addq %rdx,%rsi // point to end of strings addq %rdx,%rdi cmpq $(kShort),%rdx // long enough to bother with SSE? ja LReverseNotShort // yes // Handle reverse short copies. // edx = length (<= kShort) // rsi = one byte past end of source // rdi = one byte past end of dest LReverseShort: movl %edx,%ecx // copy length shrl $3,%ecx // #quadwords jz 3f 1: subq $8,%rsi movq (%rsi),%rax subq $8,%rdi movq %rax,(%rdi) decl %ecx jnz 1b 3: andl $7,%edx // bytes? jz 5f 4: decq %rsi movb (%rsi),%al decq %rdi movb %al,(%rdi) decl %edx jnz 4b 5: movq %r11,%rax // get return value (dst ptr) for memcpy/memmove popq %rbp ret // Handle a reverse move long enough to justify using SSE. // rdx = length (> kShort) // rsi = one byte past end of source // rdi = one byte past end of dest LReverseNotShort: movl %edi,%ecx // copy destination andl $15,%ecx // get #bytes to align destination je LReverseDestAligned // already aligned subq %rcx,%rdx // adjust length 1: // loop copying 1..15 bytes decq %rsi movb (%rsi),%al decq %rdi movb %al,(%rdi) decl %ecx jnz 1b // Destination is now aligned. Prepare for reverse loops. LReverseDestAligned: movq %rdx,%rcx // copy length andl $63,%edx // get remaining bytes for LReverseShort andq $-64,%rcx // get number of bytes we will copy in inner loop subq %rcx,%rsi // point to endpoint of copy subq %rcx,%rdi testl $15,%esi // is source aligned too? jnz LReverseUnalignedLoop // no LReverseAlignedLoop: // loop over 64-byte chunks movdqa -16(%rsi,%rcx),%xmm0 movdqa -32(%rsi,%rcx),%xmm1 movdqa -48(%rsi,%rcx),%xmm2 movdqa -64(%rsi,%rcx),%xmm3 movdqa %xmm0,-16(%rdi,%rcx) movdqa %xmm1,-32(%rdi,%rcx) movdqa %xmm2,-48(%rdi,%rcx) movdqa %xmm3,-64(%rdi,%rcx) subq $64,%rcx jne LReverseAlignedLoop jmp LReverseShort // copy remaining 0..63 bytes and done // Reverse, unaligned loop. LDDQU==MOVDQU on these machines. LReverseUnalignedLoop: // loop over 64-byte chunks movdqu -16(%rsi,%rcx),%xmm0 movdqu -32(%rsi,%rcx),%xmm1 movdqu -48(%rsi,%rcx),%xmm2 movdqu -64(%rsi,%rcx),%xmm3 movdqa %xmm0,-16(%rdi,%rcx) movdqa %xmm1,-32(%rdi,%rcx) movdqa %xmm2,-48(%rdi,%rcx) movdqa %xmm3,-64(%rdi,%rcx) subq $64,%rcx jne LReverseUnalignedLoop jmp LReverseShort // copy remaining 0..63 bytes and done COMMPAGE_DESCRIPTOR(bcopy_sse3x_64,_COMM_PAGE_BCOPY,kHasSSE2+kHasSupplementalSSE3+kCache64,kHasSSE4_2)