/* * Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * Copyright (c) 1999 Apple Computer, Inc. All rights reserved. * * IOTimerEventSource.cpp * * HISTORY * 2-Feb-1999 Joe Liu (jliu) created. * 1999-10-14 Godfrey van der Linden(gvdl) * Revamped to use thread_call APIs * */ #include __BEGIN_DECLS #include __END_DECLS #include #include #include #include #include #include #define super IOEventSource OSDefineMetaClassAndStructors(IOTimerEventSource, IOEventSource) OSMetaClassDefineReservedUnused(IOTimerEventSource, 0); OSMetaClassDefineReservedUnused(IOTimerEventSource, 1); OSMetaClassDefineReservedUnused(IOTimerEventSource, 2); OSMetaClassDefineReservedUnused(IOTimerEventSource, 3); OSMetaClassDefineReservedUnused(IOTimerEventSource, 4); OSMetaClassDefineReservedUnused(IOTimerEventSource, 5); OSMetaClassDefineReservedUnused(IOTimerEventSource, 6); OSMetaClassDefineReservedUnused(IOTimerEventSource, 7); // // reserved != 0 means IOTimerEventSource::timeoutAndRelease is being used, // not a subclassed implementation. // bool IOTimerEventSource::checkForWork() { return false; } // Timeout handler function. This function is called by the kernel when // the timeout interval expires. // void IOTimerEventSource::timeout(void *self) { IOTimerEventSource *me = (IOTimerEventSource *) self; if (me->enabled && me->action) { IOWorkLoop * wl = me->workLoop; if (wl) { Action doit; wl->closeGate(); doit = (Action) me->action; if (doit && me->enabled && AbsoluteTime_to_scalar(&me->abstime)) { IOTimeStampConstant(IODBG_TIMES(IOTIMES_ACTION), (unsigned int) doit, (unsigned int) me->owner); (*doit)(me->owner, me); } wl->openGate(); } } } void IOTimerEventSource::timeoutAndRelease(void * self, void * count) { IOTimerEventSource *me = (IOTimerEventSource *) self; if (me->enabled && me->action) { IOWorkLoop * wl = me->reserved->workLoop; if (wl) { Action doit; wl->closeGate(); doit = (Action) me->action; if (doit && (me->reserved->calloutGeneration == (SInt32) count)) { IOTimeStampConstant(IODBG_TIMES(IOTIMES_ACTION), (unsigned int) doit, (unsigned int) me->owner); (*doit)(me->owner, me); } wl->openGate(); } } me->reserved->workLoop->release(); me->release(); } void IOTimerEventSource::setTimeoutFunc() { // reserved != 0 means IOTimerEventSource::timeoutAndRelease is being used, // not a subclassed implementation reserved = IONew(ExpansionData, 1); calloutEntry = (void *) thread_call_allocate((thread_call_func_t) &IOTimerEventSource::timeoutAndRelease, (thread_call_param_t) this); } bool IOTimerEventSource::init(OSObject *inOwner, Action inAction) { if (!super::init(inOwner, (IOEventSource::Action) inAction) ) return false; setTimeoutFunc(); if (!calloutEntry) return false; return true; } IOTimerEventSource * IOTimerEventSource::timerEventSource(OSObject *inOwner, Action inAction) { IOTimerEventSource *me = new IOTimerEventSource; if (me && !me->init(inOwner, inAction)) { me->release(); return 0; } return me; } void IOTimerEventSource::free() { if (calloutEntry) { cancelTimeout(); thread_call_free((thread_call_t) calloutEntry); } if (reserved) IODelete(reserved, ExpansionData, 1); super::free(); } void IOTimerEventSource::cancelTimeout() { if (reserved) reserved->calloutGeneration++; bool active = thread_call_cancel((thread_call_t) calloutEntry); AbsoluteTime_to_scalar(&abstime) = 0; if (active && reserved) { release(); workLoop->release(); } } void IOTimerEventSource::enable() { super::enable(); if (kIOReturnSuccess != wakeAtTime(abstime)) super::disable(); // Problem re-scheduling timeout ignore enable } void IOTimerEventSource::disable() { if (reserved) reserved->calloutGeneration++; bool active = thread_call_cancel((thread_call_t) calloutEntry); super::disable(); if (active && reserved) { release(); workLoop->release(); } } IOReturn IOTimerEventSource::setTimeoutTicks(UInt32 ticks) { return setTimeout(ticks, kTickScale); } IOReturn IOTimerEventSource::setTimeoutMS(UInt32 ms) { return setTimeout(ms, kMillisecondScale); } IOReturn IOTimerEventSource::setTimeoutUS(UInt32 us) { return setTimeout(us, kMicrosecondScale); } IOReturn IOTimerEventSource::setTimeout(UInt32 interval, UInt32 scale_factor) { AbsoluteTime end; clock_interval_to_deadline(interval, scale_factor, &end); return wakeAtTime(end); } IOReturn IOTimerEventSource::setTimeout(mach_timespec_t interval) { AbsoluteTime end, nsecs; clock_interval_to_absolutetime_interval (interval.tv_nsec, kNanosecondScale, &nsecs); clock_interval_to_deadline (interval.tv_sec, NSEC_PER_SEC, &end); ADD_ABSOLUTETIME(&end, &nsecs); return wakeAtTime(end); } IOReturn IOTimerEventSource::setTimeout(AbsoluteTime interval) { AbsoluteTime end; clock_get_uptime(&end); ADD_ABSOLUTETIME(&end, &interval); return wakeAtTime(end); } IOReturn IOTimerEventSource::wakeAtTimeTicks(UInt32 ticks) { return wakeAtTime(ticks, kTickScale); } IOReturn IOTimerEventSource::wakeAtTimeMS(UInt32 ms) { return wakeAtTime(ms, kMillisecondScale); } IOReturn IOTimerEventSource::wakeAtTimeUS(UInt32 us) { return wakeAtTime(us, kMicrosecondScale); } IOReturn IOTimerEventSource::wakeAtTime(UInt32 inAbstime, UInt32 scale_factor) { AbsoluteTime end; clock_interval_to_absolutetime_interval(inAbstime, scale_factor, &end); return wakeAtTime(end); } IOReturn IOTimerEventSource::wakeAtTime(mach_timespec_t inAbstime) { AbsoluteTime end, nsecs; clock_interval_to_absolutetime_interval (inAbstime.tv_nsec, kNanosecondScale, &nsecs); clock_interval_to_absolutetime_interval (inAbstime.tv_sec, kSecondScale, &end); ADD_ABSOLUTETIME(&end, &nsecs); return wakeAtTime(end); } void IOTimerEventSource::setWorkLoop(IOWorkLoop *inWorkLoop) { super::setWorkLoop(inWorkLoop); if ( enabled && AbsoluteTime_to_scalar(&abstime) && workLoop ) wakeAtTime(abstime); } IOReturn IOTimerEventSource::wakeAtTime(AbsoluteTime inAbstime) { if (!action) return kIOReturnNoResources; abstime = inAbstime; if ( enabled && AbsoluteTime_to_scalar(&inAbstime) && AbsoluteTime_to_scalar(&abstime) && workLoop ) { if (reserved) { retain(); workLoop->retain(); reserved->workLoop = workLoop; reserved->calloutGeneration++; if (thread_call_enter1_delayed((thread_call_t) calloutEntry, (void *) reserved->calloutGeneration, inAbstime)) { release(); workLoop->release(); } } else thread_call_enter_delayed((thread_call_t) calloutEntry, inAbstime); } return kIOReturnSuccess; }