/* * Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ #include #include #include #include #include #include #include "IOKitKernelInternal.h" #include "IOCopyMapper.h" __BEGIN_DECLS void ipc_port_release_send(ipc_port_t port); #include vm_map_t IOPageableMapForAddress( vm_address_t address ); __END_DECLS /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ volatile ppnum_t gIOHighestAllocatedPage; /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ #define super IOGeneralMemoryDescriptor OSDefineMetaClassAndStructors(IOBufferMemoryDescriptor, IOGeneralMemoryDescriptor); bool IOBufferMemoryDescriptor::initWithAddress( void * /* address */ , IOByteCount /* withLength */ , IODirection /* withDirection */ ) { return false; } bool IOBufferMemoryDescriptor::initWithAddress( vm_address_t /* address */ , IOByteCount /* withLength */ , IODirection /* withDirection */ , task_t /* withTask */ ) { return false; } bool IOBufferMemoryDescriptor::initWithPhysicalAddress( IOPhysicalAddress /* address */ , IOByteCount /* withLength */ , IODirection /* withDirection */ ) { return false; } bool IOBufferMemoryDescriptor::initWithPhysicalRanges( IOPhysicalRange * /* ranges */ , UInt32 /* withCount */ , IODirection /* withDirection */ , bool /* asReference */ ) { return false; } bool IOBufferMemoryDescriptor::initWithRanges( IOVirtualRange * /* ranges */ , UInt32 /* withCount */ , IODirection /* withDirection */ , task_t /* withTask */ , bool /* asReference */ ) { return false; } bool IOBufferMemoryDescriptor::initWithOptions( IOOptionBits options, vm_size_t capacity, vm_offset_t alignment, task_t inTask) { mach_vm_address_t physicalMask = 0; return (initWithPhysicalMask(inTask, options, capacity, alignment, physicalMask)); } bool IOBufferMemoryDescriptor::initWithPhysicalMask( task_t inTask, IOOptionBits options, mach_vm_size_t capacity, mach_vm_address_t alignment, mach_vm_address_t physicalMask) { kern_return_t kr; task_t mapTask = NULL; vm_map_t vmmap = NULL; addr64_t lastIOAddr; IOAddressRange range; IOOptionBits iomdOptions = kIOMemoryTypeVirtual64; if (!capacity) return false; _options = options; _capacity = capacity; _physAddrs = 0; _physSegCount = 0; _buffer = 0; range.address = 0; range.length = 0; _ranges.v64 = ⦥ // Grab IOMD bits from the Buffer MD options iomdOptions |= (options & kIOBufferDescriptorMemoryFlags); if ((options & (kIOMemorySharingTypeMask | kIOMapCacheMask)) && (alignment < page_size)) alignment = page_size; if (physicalMask && (alignment <= 1)) alignment = ((physicalMask ^ PAGE_MASK) & PAGE_MASK) + 1; _alignment = alignment; if (((inTask != kernel_task) && !(options & kIOMemoryPageable)) || (physicalMask && (options & kIOMapCacheMask))) return false; if ((options & kIOMemoryPhysicallyContiguous) && !physicalMask) physicalMask = 0xFFFFFFFF; // set flags for entry + object create vm_prot_t memEntryCacheMode = VM_PROT_READ | VM_PROT_WRITE; // set memory entry cache mode switch (options & kIOMapCacheMask) { case kIOMapInhibitCache: SET_MAP_MEM(MAP_MEM_IO, memEntryCacheMode); break; case kIOMapWriteThruCache: SET_MAP_MEM(MAP_MEM_WTHRU, memEntryCacheMode); break; case kIOMapWriteCombineCache: SET_MAP_MEM(MAP_MEM_WCOMB, memEntryCacheMode); break; case kIOMapCopybackCache: SET_MAP_MEM(MAP_MEM_COPYBACK, memEntryCacheMode); break; case kIOMapDefaultCache: default: SET_MAP_MEM(MAP_MEM_NOOP, memEntryCacheMode); break; } if (options & kIOMemoryPageable) { iomdOptions |= kIOMemoryBufferPageable; // must create the entry before any pages are allocated // set flags for entry + object create memEntryCacheMode |= MAP_MEM_NAMED_CREATE; if (options & kIOMemoryPurgeable) memEntryCacheMode |= MAP_MEM_PURGABLE; } else { memEntryCacheMode |= MAP_MEM_NAMED_REUSE; if (IOMapper::gSystem) // assuming mapped space is 2G lastIOAddr = (1UL << 31) - PAGE_SIZE; else lastIOAddr = ptoa_64(gIOHighestAllocatedPage); if (physicalMask && (lastIOAddr != (lastIOAddr & physicalMask))) { mach_vm_address_t address; iomdOptions &= ~kIOMemoryTypeVirtual64; iomdOptions |= kIOMemoryTypePhysical64; address = IOMallocPhysical(capacity, physicalMask); _buffer = (void *) address; if (!_buffer) return false; mapTask = inTask; inTask = 0; } else { vmmap = kernel_map; // Buffer shouldn't auto prepare they should be prepared explicitly // But it never was enforced so what are you going to do? iomdOptions |= kIOMemoryAutoPrepare; /* Allocate a wired-down buffer inside kernel space. */ if (options & kIOMemoryPhysicallyContiguous) _buffer = (void *) IOKernelAllocateContiguous(capacity, alignment); else if (alignment > 1) _buffer = IOMallocAligned(capacity, alignment); else _buffer = IOMalloc(capacity); if (!_buffer) return false; } } if( (kIOMemoryTypePhysical64 != (kIOMemoryTypeMask & iomdOptions)) && (options & (kIOMemoryPageable | kIOMapCacheMask))) { ipc_port_t sharedMem; vm_size_t size = round_page_32(capacity); kr = mach_make_memory_entry(vmmap, &size, (vm_offset_t)_buffer, memEntryCacheMode, &sharedMem, NULL ); if( (KERN_SUCCESS == kr) && (size != round_page_32(capacity))) { ipc_port_release_send( sharedMem ); kr = kIOReturnVMError; } if( KERN_SUCCESS != kr) return( false ); _memEntry = (void *) sharedMem; if( options & kIOMemoryPageable) { #if IOALLOCDEBUG debug_iomallocpageable_size += size; #endif mapTask = inTask; if (NULL == inTask) inTask = kernel_task; } else if (options & kIOMapCacheMask) { // Prefetch each page to put entries into the pmap volatile UInt8 * startAddr = (UInt8 *)_buffer; volatile UInt8 * endAddr = (UInt8 *)_buffer + capacity; while (startAddr < endAddr) { *startAddr; startAddr += page_size; } } } range.address = (mach_vm_address_t) _buffer; range.length = capacity; if (!super::initWithOptions(&range, 1, 0, inTask, iomdOptions, /* System mapper */ 0)) return false; if (physicalMask && !IOMapper::gSystem) { IOMDDMACharacteristics mdSummary; bzero(&mdSummary, sizeof(mdSummary)); IOReturn rtn = dmaCommandOperation( kIOMDGetCharacteristics, &mdSummary, sizeof(mdSummary)); if (rtn) return false; if (mdSummary.fHighestPage) { ppnum_t highest; while (mdSummary.fHighestPage > (highest = gIOHighestAllocatedPage)) { if (OSCompareAndSwap(highest, mdSummary.fHighestPage, (UInt32 *) &gIOHighestAllocatedPage)) break; } lastIOAddr = ptoa_64(mdSummary.fHighestPage); } else lastIOAddr = ptoa_64(gIOLastPage); if (lastIOAddr != (lastIOAddr & physicalMask)) { if (kIOMemoryTypePhysical64 != (_flags & kIOMemoryTypeMask)) { // flag a retry _physSegCount = 1; } return false; } } if (mapTask) { if (!reserved) { reserved = IONew( ExpansionData, 1 ); if( !reserved) return( false ); } reserved->map = map(mapTask, 0, kIOMapAnywhere, 0, 0); if (!reserved->map) { _buffer = 0; return( false ); } release(); // map took a retain on this mach_vm_address_t buffer = reserved->map->getAddress(); _buffer = (void *) buffer; if (kIOMemoryTypeVirtual64 == (kIOMemoryTypeMask & iomdOptions)) _ranges.v64->address = buffer; } setLength(capacity); return true; } IOBufferMemoryDescriptor * IOBufferMemoryDescriptor::inTaskWithOptions( task_t inTask, IOOptionBits options, vm_size_t capacity, vm_offset_t alignment) { IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor; if (me && !me->initWithOptions(options, capacity, alignment, inTask)) { bool retry = me->_physSegCount; me->release(); me = 0; if (retry) { me = new IOBufferMemoryDescriptor; if (me && !me->initWithOptions(options, capacity, alignment, inTask)) { me->release(); me = 0; } } } return me; } IOBufferMemoryDescriptor * IOBufferMemoryDescriptor::inTaskWithPhysicalMask( task_t inTask, IOOptionBits options, mach_vm_size_t capacity, mach_vm_address_t physicalMask) { IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor; if (me && !me->initWithPhysicalMask(inTask, options, capacity, 1, physicalMask)) { bool retry = me->_physSegCount; me->release(); me = 0; if (retry) { me = new IOBufferMemoryDescriptor; if (me && !me->initWithPhysicalMask(inTask, options, capacity, 1, physicalMask)) { me->release(); me = 0; } } } return me; } bool IOBufferMemoryDescriptor::initWithOptions( IOOptionBits options, vm_size_t capacity, vm_offset_t alignment) { return( initWithOptions(options, capacity, alignment, kernel_task) ); } IOBufferMemoryDescriptor * IOBufferMemoryDescriptor::withOptions( IOOptionBits options, vm_size_t capacity, vm_offset_t alignment) { return(IOBufferMemoryDescriptor::inTaskWithOptions(kernel_task, options, capacity, alignment)); } /* * withCapacity: * * Returns a new IOBufferMemoryDescriptor with a buffer large enough to * hold capacity bytes. The descriptor's length is initially set to the capacity. */ IOBufferMemoryDescriptor * IOBufferMemoryDescriptor::withCapacity(vm_size_t inCapacity, IODirection inDirection, bool inContiguous) { return( IOBufferMemoryDescriptor::withOptions( inDirection | kIOMemoryUnshared | (inContiguous ? kIOMemoryPhysicallyContiguous : 0), inCapacity, inContiguous ? inCapacity : 1 )); } /* * initWithBytes: * * Initialize a new IOBufferMemoryDescriptor preloaded with bytes (copied). * The descriptor's length and capacity are set to the input buffer's size. */ bool IOBufferMemoryDescriptor::initWithBytes(const void * inBytes, vm_size_t inLength, IODirection inDirection, bool inContiguous) { if (!initWithOptions( inDirection | kIOMemoryUnshared | (inContiguous ? kIOMemoryPhysicallyContiguous : 0), inLength, inLength )) return false; // start out with no data setLength(0); if (!appendBytes(inBytes, inLength)) return false; return true; } /* * withBytes: * * Returns a new IOBufferMemoryDescriptor preloaded with bytes (copied). * The descriptor's length and capacity are set to the input buffer's size. */ IOBufferMemoryDescriptor * IOBufferMemoryDescriptor::withBytes(const void * inBytes, vm_size_t inLength, IODirection inDirection, bool inContiguous) { IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor; if (me && !me->initWithBytes(inBytes, inLength, inDirection, inContiguous)) { bool retry = me->_physSegCount; me->release(); me = 0; if (retry) { me = new IOBufferMemoryDescriptor; if (me && !me->initWithBytes(inBytes, inLength, inDirection, inContiguous)) { me->release(); me = 0; } } } return me; } /* * free: * * Free resources */ void IOBufferMemoryDescriptor::free() { // Cache all of the relevant information on the stack for use // after we call super::free()! IOOptionBits flags = _flags; IOOptionBits options = _options; vm_size_t size = _capacity; void * buffer = _buffer; mach_vm_address_t source = (_ranges.v) ? _ranges.v64->address : 0; IOMemoryMap * map = 0; vm_offset_t alignment = _alignment; if (reserved) { map = reserved->map; IODelete( reserved, ExpansionData, 1 ); if (map) map->release(); } /* super::free may unwire - deallocate buffer afterwards */ super::free(); if (options & kIOMemoryPageable) { #if IOALLOCDEBUG debug_iomallocpageable_size -= round_page_32(size); #endif } else if (buffer) { if (kIOMemoryTypePhysical64 == (flags & kIOMemoryTypeMask)) IOFreePhysical(source, size); else if (options & kIOMemoryPhysicallyContiguous) IOKernelFreeContiguous((mach_vm_address_t) buffer, size); else if (alignment > 1) IOFreeAligned(buffer, size); else IOFree(buffer, size); } } /* * getCapacity: * * Get the buffer capacity */ vm_size_t IOBufferMemoryDescriptor::getCapacity() const { return _capacity; } /* * setLength: * * Change the buffer length of the memory descriptor. When a new buffer * is created, the initial length of the buffer is set to be the same as * the capacity. The length can be adjusted via setLength for a shorter * transfer (there is no need to create more buffer descriptors when you * can reuse an existing one, even for different transfer sizes). Note * that the specified length must not exceed the capacity of the buffer. */ void IOBufferMemoryDescriptor::setLength(vm_size_t length) { assert(length <= _capacity); _length = length; _ranges.v64->length = length; } /* * setDirection: * * Change the direction of the transfer. This method allows one to redirect * the descriptor's transfer direction. This eliminates the need to destroy * and create new buffers when different transfer directions are needed. */ void IOBufferMemoryDescriptor::setDirection(IODirection direction) { _direction = direction; } /* * appendBytes: * * Add some data to the end of the buffer. This method automatically * maintains the memory descriptor buffer length. Note that appendBytes * will not copy past the end of the memory descriptor's current capacity. */ bool IOBufferMemoryDescriptor::appendBytes(const void * bytes, vm_size_t withLength) { vm_size_t actualBytesToCopy = min(withLength, _capacity - _length); IOByteCount offset; assert(_length <= _capacity); offset = _length; _length += actualBytesToCopy; _ranges.v64->length += actualBytesToCopy; if (_task == kernel_task) bcopy(/* from */ bytes, (void *)(_ranges.v64->address + offset), actualBytesToCopy); else writeBytes(offset, bytes, actualBytesToCopy); return true; } /* * getBytesNoCopy: * * Return the virtual address of the beginning of the buffer */ void * IOBufferMemoryDescriptor::getBytesNoCopy() { if (kIOMemoryTypePhysical64 == (_flags & kIOMemoryTypeMask)) return _buffer; else return (void *)_ranges.v64->address; } /* * getBytesNoCopy: * * Return the virtual address of an offset from the beginning of the buffer */ void * IOBufferMemoryDescriptor::getBytesNoCopy(vm_size_t start, vm_size_t withLength) { IOVirtualAddress address; if (kIOMemoryTypePhysical64 == (_flags & kIOMemoryTypeMask)) address = (IOVirtualAddress) _buffer; else address = _ranges.v64->address; if (start < _length && (start + withLength) <= _length) return (void *)(address + start); return 0; } /* DEPRECATED */ void * IOBufferMemoryDescriptor::getVirtualSegment(IOByteCount offset, /* DEPRECATED */ IOByteCount * lengthOfSegment) { void * bytes = getBytesNoCopy(offset, 0); if (bytes && lengthOfSegment) *lengthOfSegment = _length - offset; return bytes; } OSMetaClassDefineReservedUsed(IOBufferMemoryDescriptor, 0); OSMetaClassDefineReservedUsed(IOBufferMemoryDescriptor, 1); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 2); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 3); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 4); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 5); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 6); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 7); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 8); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 9); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 10); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 11); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 12); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 13); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 14); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 15);