/* * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ /* * Copyright (c) 1989, 1991, 1993, 1994 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if REV_ENDIAN_FS #include #include #endif /* REV_ENDIAN_FS */ int ffs_sbupdate(struct ufsmount *, int); struct vfsops ufs_vfsops = { ffs_mount, ufs_start, ffs_unmount, ufs_root, ufs_quotactl, ffs_vfs_getattr, ffs_sync, ffs_vget, ffs_fhtovp, ffs_vptofh, ffs_init, ffs_sysctl, ffs_vfs_setattr, {0} }; extern u_long nextgennumber; union _qcvt { int64_t qcvt; int32_t val[2]; }; #define SETHIGH(q, h) { \ union _qcvt tmp; \ tmp.qcvt = (q); \ tmp.val[_QUAD_HIGHWORD] = (h); \ (q) = tmp.qcvt; \ } #define SETLOW(q, l) { \ union _qcvt tmp; \ tmp.qcvt = (q); \ tmp.val[_QUAD_LOWWORD] = (l); \ (q) = tmp.qcvt; \ } /* * Called by main() when ufs is going to be mounted as root. */ int ffs_mountroot(mount_t mp, vnode_t rvp, vfs_context_t context) { struct proc *p = current_proc(); /* XXX */ int error; /* Set asynchronous flag by default */ vfs_setflags(mp, MNT_ASYNC); if (error = ffs_mountfs(rvp, mp, context)) return (error); (void)ffs_statfs(mp, vfs_statfs(mp), NULL); return (0); } /* * VFS Operations. * * mount system call */ int ffs_mount(struct mount *mp, vnode_t devvp, __unused user_addr_t data, vfs_context_t context) { struct proc *p = vfs_context_proc(context); struct ufsmount *ump; register struct fs *fs; u_int size; int error = 0, flags; mode_t accessmode; int ronly; int reload = 0; /* * If updating, check whether changing from read-write to * read-only; if there is no device name, that's all we do. */ if (mp->mnt_flag & MNT_UPDATE) { ump = VFSTOUFS(mp); fs = ump->um_fs; if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) { /* * Flush any dirty data. */ VFS_SYNC(mp, MNT_WAIT, context); /* * Check for and optionally get rid of files open * for writing. */ flags = WRITECLOSE; if (mp->mnt_flag & MNT_FORCE) flags |= FORCECLOSE; if (error = ffs_flushfiles(mp, flags, p)) return (error); fs->fs_clean = 1; fs->fs_ronly = 1; if (error = ffs_sbupdate(ump, MNT_WAIT)) { fs->fs_clean = 0; fs->fs_ronly = 0; return (error); } } /* save fs_ronly to later use */ ronly = fs->fs_ronly; if ((mp->mnt_flag & MNT_RELOAD) || ronly) reload = 1; if ((reload) && (error = ffs_reload(mp, vfs_context_ucred(context), p))) return (error); /* replace the ronly after load */ fs->fs_ronly = ronly; /* * Do not update the file system if the user was in singleuser * and then tries to mount -uw without fscking */ if (!fs->fs_clean && ronly) { printf("WARNING: trying to mount a dirty file system\n"); if (issingleuser() && (mp->mnt_flag & MNT_ROOTFS)) { printf("WARNING: R/W mount of %s denied. Filesystem is not clean - run fsck\n",fs->fs_fsmnt); /* * Reset the readonly bit as reload might have * modified this bit */ fs->fs_ronly = 1; return(EPERM); } } if (ronly && (mp->mnt_kern_flag & MNTK_WANTRDWR)) { fs->fs_ronly = 0; fs->fs_clean = 0; (void) ffs_sbupdate(ump, MNT_WAIT); } if (devvp == 0) { return(0); } } if ((mp->mnt_flag & MNT_UPDATE) == 0) { ufs_ihashinit(); error = ffs_mountfs(devvp, mp, context); } else { if (devvp != ump->um_devvp) error = EINVAL; /* needs translation */ } if (error) { return (error); } ump = VFSTOUFS(mp); fs = ump->um_fs; bzero(fs->fs_fsmnt , sizeof(fs->fs_fsmnt)); strncpy(fs->fs_fsmnt, (caddr_t)mp->mnt_vfsstat.f_mntonname, sizeof(fs->fs_fsmnt) - 1); (void)ffs_statfs(mp, &mp->mnt_vfsstat, p); return (0); } struct ffs_reload_cargs { struct vnode *devvp; kauth_cred_t cred; struct fs *fs; struct proc *p; int error; #if REV_ENDIAN_FS int rev_endian; #endif /* REV_ENDIAN_FS */ }; static int ffs_reload_callback(struct vnode *vp, void *cargs) { struct inode *ip; struct buf *bp; struct fs *fs; struct ffs_reload_cargs *args; args = (struct ffs_reload_cargs *)cargs; /* * flush all the buffers associated with this node */ if (buf_invalidateblks(vp, 0, 0, 0)) panic("ffs_reload: dirty2"); /* * Step 6: re-read inode data */ ip = VTOI(vp); fs = args->fs; if (args->error = (int)buf_bread(args->devvp, (daddr64_t)((unsigned)fsbtodb(fs, ino_to_fsba(fs, ip->i_number))), (int)fs->fs_bsize, NOCRED, &bp)) { buf_brelse(bp); return (VNODE_RETURNED_DONE); } #if REV_ENDIAN_FS if (args->rev_endian) { byte_swap_inode_in(((struct dinode *)buf_dataptr(bp) + ino_to_fsbo(fs, ip->i_number)), ip); } else { #endif /* REV_ENDIAN_FS */ ip->i_din = *((struct dinode *)buf_dataptr(bp) + ino_to_fsbo(fs, ip->i_number)); #if REV_ENDIAN_FS } #endif /* REV_ENDIAN_FS */ buf_brelse(bp); return (VNODE_RETURNED); } /* * Reload all incore data for a filesystem (used after running fsck on * the root filesystem and finding things to fix). The filesystem must * be mounted read-only. * * Things to do to update the mount: * 1) invalidate all cached meta-data. * 2) re-read superblock from disk. * 3) re-read summary information from disk. * 4) invalidate all inactive vnodes. * 5) invalidate all cached file data. * 6) re-read inode data for all active vnodes. */ ffs_reload(struct mount *mountp, kauth_cred_t cred, struct proc *p) { register struct vnode *devvp; void *space; struct buf *bp; struct fs *fs, *newfs; int i, blks, size, error; u_int64_t maxfilesize; /* XXX */ int32_t *lp; struct ffs_reload_cargs args; #if REV_ENDIAN_FS int rev_endian = (mountp->mnt_flag & MNT_REVEND); #endif /* REV_ENDIAN_FS */ if ((mountp->mnt_flag & MNT_RDONLY) == 0) return (EINVAL); /* * Step 1: invalidate all cached meta-data. */ devvp = VFSTOUFS(mountp)->um_devvp; if (buf_invalidateblks(devvp, 0, 0, 0)) panic("ffs_reload: dirty1"); /* * Step 2: re-read superblock from disk. */ size = vfs_devblocksize(mountp); if (error = (int)buf_bread(devvp, (daddr64_t)((unsigned)(SBOFF/size)), SBSIZE, NOCRED,&bp)) { buf_brelse(bp); return (error); } newfs = (struct fs *)buf_dataptr(bp); #if REV_ENDIAN_FS if (rev_endian) { error = byte_swap_sbin(newfs); if (error) { buf_brelse(bp); return (error); } } #endif /* REV_ENDIAN_FS */ if (newfs->fs_magic != FS_MAGIC || newfs->fs_bsize > MAXBSIZE || newfs->fs_bsize < sizeof(struct fs)) { #if REV_ENDIAN_FS if (rev_endian) byte_swap_sbout(newfs); #endif /* REV_ENDIAN_FS */ buf_brelse(bp); return (EIO); /* XXX needs translation */ } fs = VFSTOUFS(mountp)->um_fs; /* * Copy pointer fields back into superblock before copying in XXX * new superblock. These should really be in the ufsmount. XXX * Note that important parameters (eg fs_ncg) are unchanged. */ newfs->fs_csp = fs->fs_csp; newfs->fs_maxcluster = fs->fs_maxcluster; newfs->fs_contigdirs = fs->fs_contigdirs; bcopy(newfs, fs, (u_int)fs->fs_sbsize); if (fs->fs_sbsize < SBSIZE) buf_markinvalid(bp); #if REV_ENDIAN_FS if (rev_endian) byte_swap_sbout(newfs); #endif /* REV_ENDIAN_FS */ buf_brelse(bp); mountp->mnt_maxsymlinklen = fs->fs_maxsymlinklen; ffs_oldfscompat(fs); maxfilesize = 0x100000000ULL; /* 4GB */ if (fs->fs_maxfilesize > maxfilesize) /* XXX */ fs->fs_maxfilesize = maxfilesize; /* XXX */ /* * Step 3: re-read summary information from disk. */ blks = howmany(fs->fs_cssize, fs->fs_fsize); space = fs->fs_csp; for (i = 0; i < blks; i += fs->fs_frag) { size = fs->fs_bsize; if (i + fs->fs_frag > blks) size = (blks - i) * fs->fs_fsize; if (error = (int)buf_bread(devvp, (daddr64_t)((unsigned)fsbtodb(fs, fs->fs_csaddr + i)), size, NOCRED, &bp)) { buf_brelse(bp); return (error); } #if REV_ENDIAN_FS if (rev_endian) { /* csum swaps */ byte_swap_ints((int *)buf_dataptr(bp), size / sizeof(int)); } #endif /* REV_ENDIAN_FS */ bcopy((char *)buf_dataptr(bp), space, (u_int)size); #if REV_ENDIAN_FS if (rev_endian) { /* csum swaps */ byte_swap_ints((int *)buf_dataptr(bp), size / sizeof(int)); } #endif /* REV_ENDIAN_FS */ space = (char *) space + size; buf_brelse(bp); } /* * We no longer know anything about clusters per cylinder group. */ if (fs->fs_contigsumsize > 0) { lp = fs->fs_maxcluster; for (i = 0; i < fs->fs_ncg; i++) *lp++ = fs->fs_contigsumsize; } #if REV_ENDIAN_FS args.rev_endian = rev_endian; #endif /* REV_ENDIAN_FS */ args.devvp = devvp; args.cred = cred; args.fs = fs; args.p = p; args.error = 0; /* * ffs_reload_callback will be called for each vnode * hung off of this mount point that can't be recycled... * vnode_iterate will recycle those that it can (the VNODE_RELOAD option) * the vnode will be in an 'unbusy' state (VNODE_WAIT) and * properly referenced and unreferenced around the callback */ vnode_iterate(mountp, VNODE_RELOAD | VNODE_WAIT, ffs_reload_callback, (void *)&args); return (args.error); } /* * Common code for mount and mountroot */ int ffs_mountfs(devvp, mp, context) struct vnode *devvp; struct mount *mp; vfs_context_t context; { struct ufsmount *ump; struct buf *bp; struct fs *fs; dev_t dev; struct buf *cgbp; struct cg *cgp; int32_t clustersumoff; void *space; int error, i, blks, ronly; u_int32_t size; int32_t *lp; kauth_cred_t cred; u_int64_t maxfilesize; /* XXX */ u_int dbsize = DEV_BSIZE; #if REV_ENDIAN_FS int rev_endian=0; #endif /* REV_ENDIAN_FS */ dev = devvp->v_rdev; cred = vfs_context_ucred(context); ronly = vfs_isrdonly(mp); bp = NULL; ump = NULL; /* Advisory locking should be handled at the VFS layer */ vfs_setlocklocal(mp); /* Obtain the actual device block size */ if (VNOP_IOCTL(devvp, DKIOCGETBLOCKSIZE, (caddr_t)&size, 0, context)) { error = ENXIO; goto out; } if (error = (int)buf_bread(devvp, (daddr64_t)((unsigned)(SBOFF/size)), SBSIZE, cred, &bp)) goto out; fs = (struct fs *)buf_dataptr(bp); #if REV_ENDIAN_FS if (fs->fs_magic != FS_MAGIC || fs->fs_bsize > MAXBSIZE || fs->fs_bsize < sizeof(struct fs)) { int magic = fs->fs_magic; byte_swap_ints(&magic, 1); if (magic != FS_MAGIC) { error = EINVAL; goto out; } if (error = byte_swap_sbin(fs)) goto out; if (fs->fs_magic != FS_MAGIC || fs->fs_bsize > MAXBSIZE || fs->fs_bsize < sizeof(struct fs)) { byte_swap_sbout(fs); error = EINVAL; /* XXX needs translation */ goto out; } rev_endian=1; } #endif /* REV_ENDIAN_FS */ if (fs->fs_magic != FS_MAGIC || fs->fs_bsize > MAXBSIZE || fs->fs_bsize < sizeof(struct fs)) { #if REV_ENDIAN_FS if (rev_endian) byte_swap_sbout(fs); #endif /* REV_ENDIAN_FS */ error = EINVAL; /* XXX needs translation */ goto out; } if (fs->fs_sbsize < 0 || fs->fs_sbsize > SBSIZE) { error = EINVAL; goto out; } /* * Buffer cache does not handle multiple pages in a buf when * invalidating incore buffer in pageout. There are no locks * in the pageout path. So there is a danger of loosing data when * block allocation happens at the same time a pageout of buddy * page occurs. incore() returns buf with both * pages, this leads vnode-pageout to incorrectly flush of entire. * buf. Till the low level ffs code is modified to deal with these * do not mount any FS more than 4K size. */ /* * Can't mount filesystems with a fragment size less than DIRBLKSIZ */ /* * Don't mount dirty filesystems, except for the root filesystem */ if ((fs->fs_bsize > PAGE_SIZE) || (fs->fs_fsize < DIRBLKSIZ) || ((!(mp->mnt_flag & MNT_ROOTFS)) && (!fs->fs_clean))) { #if REV_ENDIAN_FS if (rev_endian) byte_swap_sbout(fs); #endif /* REV_ENDIAN_FS */ error = ENOTSUP; goto out; } /* Let's figure out the devblock size the file system is with */ /* the device block size = fragment size / number of sectors per frag */ dbsize = fs->fs_fsize / NSPF(fs); if(dbsize <= 0 ) { kprintf("device blocksize computaion failed\n"); } else { if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&dbsize, FWRITE, context) != 0) { kprintf("failed to set device blocksize\n"); } /* force the specfs to reread blocksize from size() */ set_fsblocksize(devvp); } /* XXX updating 4.2 FFS superblocks trashes rotational layout tables */ if (fs->fs_postblformat == FS_42POSTBLFMT && !ronly) { #if REV_ENDIAN_FS if (rev_endian) byte_swap_sbout(fs); #endif /* REV_ENDIAN_FS */ error = EROFS; /* needs translation */ goto out; } /* If we are not mounting read only, then check for overlap * condition in cylinder group's free block map. * If overlap exists, then force this into a read only mount * to avoid further corruption. PR#2216969 */ if (ronly == 0){ if (error = (int)buf_bread (devvp, (daddr64_t)((unsigned)fsbtodb(fs, cgtod(fs, 0))), (int)fs->fs_cgsize, NOCRED, &cgbp)) { buf_brelse(cgbp); goto out; } cgp = (struct cg *)buf_dataptr(cgbp); #if REV_ENDIAN_FS if (rev_endian) byte_swap_cgin(cgp,fs); #endif /* REV_ENDIAN_FS */ if (!cg_chkmagic(cgp)){ #if REV_ENDIAN_FS if (rev_endian) byte_swap_cgout(cgp,fs); #endif /* REV_ENDIAN_FS */ buf_brelse(cgbp); goto out; } if (cgp->cg_clustersumoff != 0) { /* Check for overlap */ clustersumoff = cgp->cg_freeoff + howmany(fs->fs_cpg * fs->fs_spc / NSPF(fs), NBBY); clustersumoff = roundup(clustersumoff, sizeof(long)); if (cgp->cg_clustersumoff < clustersumoff) { /* Overlap exists */ mp->mnt_flag |= MNT_RDONLY; ronly = 1; } } #if REV_ENDIAN_FS if (rev_endian) byte_swap_cgout(cgp,fs); #endif /* REV_ENDIAN_FS */ buf_brelse(cgbp); } ump = _MALLOC(sizeof *ump, M_UFSMNT, M_WAITOK); bzero((caddr_t)ump, sizeof *ump); ump->um_fs = _MALLOC((u_long)fs->fs_sbsize, M_UFSMNT, M_WAITOK); bcopy((char *)buf_dataptr(bp), ump->um_fs, (u_int)fs->fs_sbsize); if (fs->fs_sbsize < SBSIZE) buf_markinvalid(bp); #if REV_ENDIAN_FS if (rev_endian) byte_swap_sbout(fs); #endif /* REV_ENDIAN_FS */ buf_brelse(bp); bp = NULL; fs = ump->um_fs; fs->fs_ronly = ronly; if (fs->fs_cssize < 1 || fs->fs_fsize < 1 || fs->fs_ncg < 1) { error = EINVAL; goto out; } if (fs->fs_frag < 1 || fs->fs_frag > MAXFRAG) { error = EINVAL; goto out; } size = fs->fs_cssize; blks = howmany(size, fs->fs_fsize); if (fs->fs_contigsumsize > 0) { if (fs->fs_ncg > INT_MAX / sizeof(int32_t) || size > INT_MAX - fs->fs_ncg * sizeof(int32_t)) { error = EINVAL; goto out; } size += fs->fs_ncg * sizeof(int32_t); } if (fs->fs_ncg > INT_MAX / sizeof(u_int8_t) || size > INT_MAX - fs->fs_ncg * sizeof(u_int8_t)) { error = EINVAL; goto out; } size += fs->fs_ncg * sizeof(u_int8_t); space = _MALLOC((u_long)size, M_UFSMNT, M_WAITOK); fs->fs_csp = space; for (i = 0; i < blks; i += fs->fs_frag) { size = fs->fs_bsize; if (i + fs->fs_frag > blks) size = (blks - i) * fs->fs_fsize; if (error = (int)buf_bread(devvp, (daddr64_t)((unsigned)fsbtodb(fs, fs->fs_csaddr + i)), size, cred, &bp)) { _FREE(fs->fs_csp, M_UFSMNT); goto out; } bcopy((char *)buf_dataptr(bp), space, (u_int)size); #if REV_ENDIAN_FS if (rev_endian) byte_swap_ints((int *) space, size / sizeof(int)); #endif /* REV_ENDIAN_FS */ space = (char *)space + size; buf_brelse(bp); bp = NULL; } if (fs->fs_contigsumsize > 0) { fs->fs_maxcluster = lp = space; for (i = 0; i < fs->fs_ncg; i++) *lp++ = fs->fs_contigsumsize; space = lp; } size = fs->fs_ncg * sizeof(u_int8_t); fs->fs_contigdirs = (u_int8_t *)space; space = (u_int8_t *)space + size; bzero(fs->fs_contigdirs, size); /* XXX Compatibility for old filesystems */ if (fs->fs_avgfilesize <= 0) fs->fs_avgfilesize = AVFILESIZ; if (fs->fs_avgfpdir <= 0) fs->fs_avgfpdir = AFPDIR; /* XXX End of compatibility */ mp->mnt_data = (qaddr_t)ump; mp->mnt_vfsstat.f_fsid.val[0] = (long)dev; mp->mnt_vfsstat.f_fsid.val[1] = vfs_typenum(mp); /* XXX warning hardcoded max symlen and not "mp->mnt_maxsymlinklen = fs->fs_maxsymlinklen;" */ mp->mnt_maxsymlinklen = 60; #if REV_ENDIAN_FS if (rev_endian) mp->mnt_flag |= MNT_REVEND; #endif /* REV_ENDIAN_FS */ ump->um_mountp = mp; ump->um_dev = dev; ump->um_devvp = devvp; ump->um_nindir = fs->fs_nindir; ump->um_bptrtodb = fs->fs_fsbtodb; ump->um_seqinc = fs->fs_frag; for (i = 0; i < MAXQUOTAS; i++) dqfileinit(&ump->um_qfiles[i]); ffs_oldfscompat(fs); ump->um_savedmaxfilesize = fs->fs_maxfilesize; /* XXX */ maxfilesize = 0x100000000ULL; /* 4GB */ #if 0 maxfilesize = (u_int64_t)0x40000000 * fs->fs_bsize - 1; /* XXX */ #endif /* 0 */ if (fs->fs_maxfilesize > maxfilesize) /* XXX */ fs->fs_maxfilesize = maxfilesize; /* XXX */ if (ronly == 0) { fs->fs_clean = 0; (void) ffs_sbupdate(ump, MNT_WAIT); } return (0); out: if (bp) buf_brelse(bp); if (ump) { _FREE(ump->um_fs, M_UFSMNT); _FREE(ump, M_UFSMNT); } return (error); } /* * Sanity checks for old file systems. * * XXX - goes away some day. */ ffs_oldfscompat(fs) struct fs *fs; { int i; fs->fs_npsect = max(fs->fs_npsect, fs->fs_nsect); /* XXX */ fs->fs_interleave = max(fs->fs_interleave, 1); /* XXX */ if (fs->fs_postblformat == FS_42POSTBLFMT) /* XXX */ fs->fs_nrpos = 8; /* XXX */ if (fs->fs_inodefmt < FS_44INODEFMT) { /* XXX */ u_int64_t sizepb = fs->fs_bsize; /* XXX */ /* XXX */ fs->fs_maxfilesize = fs->fs_bsize * NDADDR - 1; /* XXX */ for (i = 0; i < NIADDR; i++) { /* XXX */ sizepb *= NINDIR(fs); /* XXX */ fs->fs_maxfilesize += sizepb; /* XXX */ } /* XXX */ fs->fs_qbmask = ~fs->fs_bmask; /* XXX */ fs->fs_qfmask = ~fs->fs_fmask; /* XXX */ } /* XXX */ return (0); } /* * unmount system call */ int ffs_unmount(mp, mntflags, context) struct mount *mp; int mntflags; vfs_context_t context; { struct proc *p = vfs_context_proc(context); register struct ufsmount *ump; register struct fs *fs; int error, flags; int force; flags = 0; force = 0; if (mntflags & MNT_FORCE) { flags |= FORCECLOSE; force = 1; } if ( (error = ffs_flushfiles(mp, flags, p)) && !force ) return (error); ump = VFSTOUFS(mp); fs = ump->um_fs; if (fs->fs_ronly == 0) { fs->fs_clean = 1; if (error = ffs_sbupdate(ump, MNT_WAIT)) { fs->fs_clean = 0; #ifdef notyet /* we can atleast cleanup ; as the media could be WP */ /* & during mount, we do not check for write failures */ /* FIXME LATER : the Correct fix would be to have */ /* mount detect the WP media and downgrade to readonly mount */ /* For now, here it is */ return (error); #endif /* notyet */ } } _FREE(fs->fs_csp, M_UFSMNT); _FREE(fs, M_UFSMNT); _FREE(ump, M_UFSMNT); return (0); } /* * Flush out all the files in a filesystem. */ ffs_flushfiles(mp, flags, p) register struct mount *mp; int flags; struct proc *p; { register struct ufsmount *ump; int i, error; ump = VFSTOUFS(mp); #if QUOTA /* * NOTE: The open quota files have an indirect reference * on the root directory vnode. We must account for this * extra reference when doing the intial vflush. */ if (mp->mnt_flag & MNT_QUOTA) { struct vnode *rootvp = NULLVP; int quotafilecnt = 0; /* Find out how many quota files we have open. */ for (i = 0; i < MAXQUOTAS; i++) { if (ump->um_qfiles[i].qf_vp != NULLVP) ++quotafilecnt; } /* * Check if the root vnode is in our inode hash * (so we can skip over it). */ rootvp = ufs_ihashget(ump->um_dev, ROOTINO); error = vflush(mp, rootvp, SKIPSYSTEM|flags); if (rootvp) { /* * See if there are additional references on the * root vp besides the ones obtained from the open * quota files and the hfs_chashget call above. */ if ((error == 0) && (rootvp->v_usecount > (1 + quotafilecnt))) { error = EBUSY; /* root dir is still open */ } vnode_put(rootvp); } if (error && (flags & FORCECLOSE) == 0) return (error); for (i = 0; i < MAXQUOTAS; i++) { if (ump->um_qfiles[i].qf_vp == NULLVP) continue; quotaoff(mp, i); } /* * Here we fall through to vflush again to ensure * that we have gotten rid of all the system vnodes. */ } #endif error = vflush(mp, NULLVP, SKIPSWAP|flags); error = vflush(mp, NULLVP, flags); return (error); } /* * Get file system statistics. */ int ffs_statfs(mp, sbp, context) struct mount *mp; register struct vfsstatfs *sbp; vfs_context_t context; { register struct ufsmount *ump; register struct fs *fs; ump = VFSTOUFS(mp); fs = ump->um_fs; if (fs->fs_magic != FS_MAGIC) panic("ffs_statfs"); sbp->f_bsize = fs->fs_fsize; sbp->f_iosize = fs->fs_bsize; sbp->f_blocks = (uint64_t)((unsigned long)fs->fs_dsize); sbp->f_bfree = (uint64_t) ((unsigned long)(fs->fs_cstotal.cs_nbfree * fs->fs_frag + fs->fs_cstotal.cs_nffree)); sbp->f_bavail = (uint64_t) ((unsigned long)freespace(fs, fs->fs_minfree)); sbp->f_files = (uint64_t) ((unsigned long)(fs->fs_ncg * fs->fs_ipg - ROOTINO)); sbp->f_ffree = (uint64_t) ((unsigned long)fs->fs_cstotal.cs_nifree); return (0); } int ffs_vfs_getattr(mp, fsap, context) struct mount *mp; struct vfs_attr *fsap; vfs_context_t context; { struct ufsmount *ump; struct fs *fs; kauth_cred_t cred; struct vnode *devvp; struct buf *bp; struct ufslabel *ulp; char *offset; int bs, error, length; ump = VFSTOUFS(mp); fs = ump->um_fs; cred = vfs_context_ucred(context); VFSATTR_RETURN(fsap, f_bsize, fs->fs_fsize); VFSATTR_RETURN(fsap, f_iosize, fs->fs_bsize); VFSATTR_RETURN(fsap, f_blocks, (uint64_t)((unsigned long)fs->fs_dsize)); VFSATTR_RETURN(fsap, f_bfree, (uint64_t)((unsigned long) (fs->fs_cstotal.cs_nbfree * fs->fs_frag + fs->fs_cstotal.cs_nffree))); VFSATTR_RETURN(fsap, f_bavail, (uint64_t)((unsigned long)freespace(fs, fs->fs_minfree))); VFSATTR_RETURN(fsap, f_files, (uint64_t)((unsigned long) (fs->fs_ncg * fs->fs_ipg - ROOTINO))); VFSATTR_RETURN(fsap, f_ffree, (uint64_t)((unsigned long) fs->fs_cstotal.cs_nifree)); if (VFSATTR_IS_ACTIVE(fsap, f_fsid)) { fsap->f_fsid.val[0] = mp->mnt_vfsstat.f_fsid.val[0]; fsap->f_fsid.val[1] = mp->mnt_vfsstat.f_fsid.val[1]; VFSATTR_SET_SUPPORTED(fsap, f_fsid); } if (VFSATTR_IS_ACTIVE(fsap, f_vol_name)) { devvp = ump->um_devvp; bs = vfs_devblocksize(mp); if (error = (int)buf_meta_bread(devvp, (daddr64_t)(UFS_LABEL_OFFSET / bs), MAX(bs, UFS_LABEL_SIZE), cred, &bp)) { if (bp) buf_brelse(bp); return (error); } /* * Since the disklabel is read directly by older user space * code, make sure this buffer won't remain in the cache when * we release it. */ buf_setflags(bp, B_NOCACHE); offset = buf_dataptr(bp) + (UFS_LABEL_OFFSET % bs); ulp = (struct ufslabel *)offset; if (ufs_label_check(ulp)) { length = ulp->ul_namelen; #if REV_ENDIAN_FS if (mp->mnt_flag & MNT_REVEND) length = OSSwapInt16(length); #endif if (length > 0 && length <= UFS_MAX_LABEL_NAME) { bcopy(ulp->ul_name, fsap->f_vol_name, length); fsap->f_vol_name[UFS_MAX_LABEL_NAME - 1] = '\0'; fsap->f_vol_name[length] = '\0'; } } buf_brelse(bp); VFSATTR_SET_SUPPORTED(fsap, f_vol_name); } if (VFSATTR_IS_ACTIVE(fsap, f_capabilities)) { fsap->f_capabilities.capabilities[VOL_CAPABILITIES_FORMAT] = VOL_CAP_FMT_SYMBOLICLINKS | VOL_CAP_FMT_HARDLINKS | VOL_CAP_FMT_SPARSE_FILES | VOL_CAP_FMT_CASE_SENSITIVE | VOL_CAP_FMT_CASE_PRESERVING | VOL_CAP_FMT_FAST_STATFS | VOL_CAP_FMT_HIDDEN_FILES ; fsap->f_capabilities.capabilities[VOL_CAPABILITIES_INTERFACES] = VOL_CAP_INT_NFSEXPORT | VOL_CAP_INT_VOL_RENAME | VOL_CAP_INT_ADVLOCK | VOL_CAP_INT_FLOCK; fsap->f_capabilities.capabilities[VOL_CAPABILITIES_RESERVED1] = 0; fsap->f_capabilities.capabilities[VOL_CAPABILITIES_RESERVED2] = 0; /* Capabilities we know about: */ fsap->f_capabilities.valid[VOL_CAPABILITIES_FORMAT] = VOL_CAP_FMT_PERSISTENTOBJECTIDS | VOL_CAP_FMT_SYMBOLICLINKS | VOL_CAP_FMT_HARDLINKS | VOL_CAP_FMT_JOURNAL | VOL_CAP_FMT_JOURNAL_ACTIVE | VOL_CAP_FMT_NO_ROOT_TIMES | VOL_CAP_FMT_SPARSE_FILES | VOL_CAP_FMT_ZERO_RUNS | VOL_CAP_FMT_CASE_SENSITIVE | VOL_CAP_FMT_CASE_PRESERVING | VOL_CAP_FMT_FAST_STATFS | VOL_CAP_FMT_2TB_FILESIZE | VOL_CAP_FMT_OPENDENYMODES | VOL_CAP_FMT_HIDDEN_FILES ; fsap->f_capabilities.valid[VOL_CAPABILITIES_INTERFACES] = VOL_CAP_INT_SEARCHFS | VOL_CAP_INT_ATTRLIST | VOL_CAP_INT_NFSEXPORT | VOL_CAP_INT_READDIRATTR | VOL_CAP_INT_EXCHANGEDATA | VOL_CAP_INT_COPYFILE | VOL_CAP_INT_ALLOCATE | VOL_CAP_INT_VOL_RENAME | VOL_CAP_INT_ADVLOCK | VOL_CAP_INT_FLOCK | VOL_CAP_INT_MANLOCK; fsap->f_capabilities.valid[VOL_CAPABILITIES_RESERVED1] = 0; fsap->f_capabilities.valid[VOL_CAPABILITIES_RESERVED2] = 0; VFSATTR_SET_SUPPORTED(fsap, f_capabilities); } if (VFSATTR_IS_ACTIVE(fsap, f_attributes)) { fsap->f_attributes.validattr.commonattr = 0; fsap->f_attributes.validattr.volattr = ATTR_VOL_NAME | ATTR_VOL_CAPABILITIES | ATTR_VOL_ATTRIBUTES; fsap->f_attributes.validattr.dirattr = 0; fsap->f_attributes.validattr.fileattr = 0; fsap->f_attributes.validattr.forkattr = 0; fsap->f_attributes.nativeattr.commonattr = 0; fsap->f_attributes.nativeattr.volattr = ATTR_VOL_NAME | ATTR_VOL_CAPABILITIES | ATTR_VOL_ATTRIBUTES; fsap->f_attributes.nativeattr.dirattr = 0; fsap->f_attributes.nativeattr.fileattr = 0; fsap->f_attributes.nativeattr.forkattr = 0; VFSATTR_SET_SUPPORTED(fsap, f_attributes); } return (0); } int ffs_vfs_setattr(mp, fsap, context) struct mount *mp; struct vfs_attr *fsap; vfs_context_t context; { struct ufsmount *ump; struct vnode *devvp; struct buf *bp; struct ufslabel *ulp; kauth_cred_t cred; char *offset; int bs, error; ump = VFSTOUFS(mp); cred = vfs_context_ucred(context); if (VFSATTR_IS_ACTIVE(fsap, f_vol_name)) { devvp = ump->um_devvp; bs = vfs_devblocksize(mp); if (error = buf_meta_bread(devvp, (daddr64_t)(UFS_LABEL_OFFSET / bs), MAX(bs, UFS_LABEL_SIZE), cred, &bp)) { if (bp) buf_brelse(bp); return (error); } /* * Since the disklabel is read directly by older user space * code, make sure this buffer won't remain in the cache when * we release it. */ buf_setflags(bp, B_NOCACHE); /* Validate the label structure; init if not valid */ offset = buf_dataptr(bp) + (UFS_LABEL_OFFSET % bs); ulp = (struct ufslabel *)offset; if (!ufs_label_check(ulp)) ufs_label_init(ulp); /* Copy new name over existing name */ ulp->ul_namelen = strlen(fsap->f_vol_name); bcopy(fsap->f_vol_name, ulp->ul_name, ulp->ul_namelen); ulp->ul_name[UFS_MAX_LABEL_NAME - 1] = '\0'; ulp->ul_name[ulp->ul_namelen] = '\0'; #if REV_ENDIAN_FS if (mp->mnt_flag & MNT_REVEND) ulp->ul_namelen = OSSwapInt16(ulp->ul_namelen); #endif /* Update the checksum */ ulp->ul_checksum = 0; ulp->ul_checksum = ul_cksum(ulp, sizeof(*ulp)); /* Write the label back to disk */ buf_bwrite(bp); bp = NULL; VFSATTR_SET_SUPPORTED(fsap, f_vol_name); } return (0); } struct ffs_sync_cargs { vfs_context_t context; int waitfor; int error; }; static int ffs_sync_callback(struct vnode *vp, void *cargs) { struct inode *ip; struct ffs_sync_cargs *args; int error; args = (struct ffs_sync_cargs *)cargs; ip = VTOI(vp); if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) || vnode_hasdirtyblks(vp)) { error = VNOP_FSYNC(vp, args->waitfor, args->context); if (error) args->error = error; } return (VNODE_RETURNED); } /* * Go through the disk queues to initiate sandbagged IO; * go through the inodes to write those that have been modified; * initiate the writing of the super block if it has been modified. * * Note: we are always called with the filesystem marked `MPBUSY'. */ int ffs_sync(mp, waitfor, context) struct mount *mp; int waitfor; vfs_context_t context; { struct vnode *nvp, *vp; struct ufsmount *ump = VFSTOUFS(mp); struct fs *fs; struct timeval tv; int error, allerror = 0; struct ffs_sync_cargs args; fs = ump->um_fs; if (fs->fs_fmod != 0 && fs->fs_ronly != 0) { /* XXX */ printf("fs = %s\n", fs->fs_fsmnt); panic("update: rofs mod"); } /* * Write back each (modified) inode. */ args.context = context; args.waitfor = waitfor; args.error = 0; /* * ffs_sync_callback will be called for each vnode * hung off of this mount point... the vnode will be * properly referenced and unreferenced around the callback */ vnode_iterate(mp, 0, ffs_sync_callback, (void *)&args); if (args.error) allerror = args.error; /* * Force stale file system control information to be flushed. */ if (error = VNOP_FSYNC(ump->um_devvp, waitfor, context)) allerror = error; #if QUOTA qsync(mp); #endif /* * Write back modified superblock. */ if (fs->fs_fmod != 0) { fs->fs_fmod = 0; microtime(&tv); fs->fs_time = tv.tv_sec; if (error = ffs_sbupdate(ump, waitfor)) allerror = error; } return (allerror); } /* * Look up a FFS dinode number to find its incore vnode, otherwise read it * in from disk. If it is in core, wait for the lock bit to clear, then * return the inode locked. Detection and handling of mount points must be * done by the calling routine. */ int ffs_vget(mp, ino, vpp, context) mount_t mp; ino64_t ino; vnode_t *vpp; vfs_context_t context; { return(ffs_vget_internal(mp, (ino_t)ino, vpp, NULL, NULL, 0, 0)); } int ffs_vget_internal(mp, ino, vpp, dvp, cnp, mode, fhwanted) mount_t mp; ino_t ino; vnode_t *vpp; vnode_t dvp; struct componentname *cnp; int mode; int fhwanted; { struct proc *p = current_proc(); /* XXX */ struct fs *fs; struct inode *ip; struct ufsmount *ump; struct buf *bp; struct vnode *vp; struct vnode_fsparam vfsp; struct timeval tv; enum vtype vtype; dev_t dev; int i, type, error = 0; *vpp = NULL; ump = VFSTOUFS(mp); dev = ump->um_dev; #if 0 /* Check for unmount in progress */ if (mp->mnt_kern_flag & MNTK_UNMOUNT) { return (EPERM); } #endif /* * Allocate a new inode... do it before we check the * cache, because the MALLOC_ZONE may block */ type = M_FFSNODE; MALLOC_ZONE(ip, struct inode *, sizeof(struct inode), type, M_WAITOK); /* * check in the inode hash */ if ((*vpp = ufs_ihashget(dev, ino)) != NULL) { /* * found it... get rid of the allocation * that we didn't need and return * the 'found' vnode */ FREE_ZONE(ip, sizeof(struct inode), type); vp = *vpp; return (0); } bzero((caddr_t)ip, sizeof(struct inode)); /* * lock the inode */ // lockinit(&ip->i_lock, PINOD, "inode", 0, 0); // lockmgr(&ip->i_lock, LK_EXCLUSIVE, (struct slock *)0, p); ip->i_fs = fs = ump->um_fs; ip->i_dev = dev; ip->i_number = ino; #if QUOTA for (i = 0; i < MAXQUOTAS; i++) ip->i_dquot[i] = NODQUOT; #endif SET(ip->i_flag, IN_ALLOC); /* * Put it onto its hash chain locked so that other requests for * this inode will block if they arrive while we are sleeping waiting * for old data structures to be purged or for the contents of the * disk portion of this inode to be read. */ ufs_ihashins(ip); /* Read in the disk contents for the inode, copy into the inode. */ if (error = (int)buf_bread(ump->um_devvp, (daddr64_t)((unsigned)fsbtodb(fs, ino_to_fsba(fs, ino))), (int)fs->fs_bsize, NOCRED, &bp)) { buf_brelse(bp); goto errout; } #if REV_ENDIAN_FS if (mp->mnt_flag & MNT_REVEND) { byte_swap_inode_in(((struct dinode *)buf_dataptr(bp) + ino_to_fsbo(fs, ino)),ip); } else { ip->i_din = *((struct dinode *)buf_dataptr(bp) + ino_to_fsbo(fs, ino)); } #else ip->i_din = *((struct dinode *)buf_dataptr(bp) + ino_to_fsbo(fs, ino)); #endif /* REV_ENDIAN_FS */ buf_brelse(bp); if (mode == 0) vtype = IFTOVT(ip->i_mode); else vtype = IFTOVT(mode); if (vtype == VNON) { if (fhwanted) { /* NFS is in play */ error = ESTALE; goto errout; } else { error = ENOENT; goto errout; } } vfsp.vnfs_mp = mp; vfsp.vnfs_vtype = vtype; vfsp.vnfs_str = "ufs"; vfsp.vnfs_dvp = dvp; vfsp.vnfs_fsnode = ip; vfsp.vnfs_cnp = cnp; if (mode == 0) vfsp.vnfs_filesize = ip->i_din.di_size; else vfsp.vnfs_filesize = 0; if (vtype == VFIFO ) vfsp.vnfs_vops = FFS_FIFOOPS; else if (vtype == VBLK || vtype == VCHR) vfsp.vnfs_vops = ffs_specop_p; else vfsp.vnfs_vops = ffs_vnodeop_p; if (vtype == VBLK || vtype == VCHR) vfsp.vnfs_rdev = ip->i_rdev; else vfsp.vnfs_rdev = 0; if (dvp && cnp && (cnp->cn_flags & MAKEENTRY)) vfsp.vnfs_flags = 0; else vfsp.vnfs_flags = VNFS_NOCACHE; /* * Tag root directory */ vfsp.vnfs_markroot = (ip->i_number == ROOTINO); vfsp.vnfs_marksystem = 0; if ((error = vnode_create(VNCREATE_FLAVOR, VCREATESIZE, &vfsp, &vp))) goto errout; /* * Finish inode initialization now that aliasing has been resolved. */ ip->i_devvp = ump->um_devvp; ip->i_vnode = vp; vnode_ref(ip->i_devvp); vnode_addfsref(vp); vnode_settag(vp, VT_UFS); /* * Initialize modrev times */ microtime(&tv); SETHIGH(ip->i_modrev, tv.tv_sec); SETLOW(ip->i_modrev, tv.tv_usec * 4294); /* * Set up a generation number for this inode if it does not * already have one. This should only happen on old filesystems. */ if (ip->i_gen == 0) { if (++nextgennumber < (u_long)tv.tv_sec) nextgennumber = tv.tv_sec; ip->i_gen = nextgennumber; if ((vp->v_mount->mnt_flag & MNT_RDONLY) == 0) ip->i_flag |= IN_MODIFIED; } /* * Ensure that uid and gid are correct. This is a temporary * fix until fsck has been changed to do the update. */ if (fs->fs_inodefmt < FS_44INODEFMT) { /* XXX */ ip->i_uid = ip->i_din.di_ouid; /* XXX */ ip->i_gid = ip->i_din.di_ogid; /* XXX */ } /* XXX */ *vpp = vp; CLR(ip->i_flag, IN_ALLOC); if (ISSET(ip->i_flag, IN_WALLOC)) wakeup(ip); return (0); errout: ufs_ihashrem(ip); if (ISSET(ip->i_flag, IN_WALLOC)) wakeup(ip); FREE_ZONE(ip, sizeof(struct inode), type); return (error); } /* * File handle to vnode * * Have to be really careful about stale file handles: * - check that the inode number is valid * - call vget to get the locked inode * - check for an unallocated inode (i_mode == 0) */ int ffs_fhtovp(mp, fhlen, fhp, vpp, context) register struct mount *mp; int fhlen; unsigned char *fhp; struct vnode **vpp; vfs_context_t context; { register struct ufid *ufhp; register struct inode *ip; struct vnode *nvp; struct fs *fs; int error; ino_t ino; if (fhlen < (int)sizeof(struct ufid)) return (EINVAL); ufhp = (struct ufid *)fhp; fs = VFSTOUFS(mp)->um_fs; ino = ntohl(ufhp->ufid_ino); if (ino < ROOTINO || ino >= fs->fs_ncg * fs->fs_ipg) return (ESTALE); error = ffs_vget_internal(mp, ino, &nvp, NULL, NULL, 0, 1); if (error) { *vpp = NULLVP; return (error); } ip = VTOI(nvp); if (ip->i_mode == 0 || ip->i_gen != ntohl(ufhp->ufid_gen)) { vnode_put(nvp); *vpp = NULLVP; return (ESTALE); } *vpp = nvp; return (0); } /* * Vnode pointer to File handle */ /* ARGSUSED */ int ffs_vptofh(vp, fhlenp, fhp, context) struct vnode *vp; int *fhlenp; unsigned char *fhp; vfs_context_t context; { register struct inode *ip; register struct ufid *ufhp; if (*fhlenp < (int)sizeof(struct ufid)) return (EOVERFLOW); ip = VTOI(vp); ufhp = (struct ufid *)fhp; ufhp->ufid_ino = htonl(ip->i_number); ufhp->ufid_gen = htonl(ip->i_gen); *fhlenp = sizeof(struct ufid); return (0); } /* * Initialize the filesystem; just use ufs_init. */ int ffs_init(vfsp) struct vfsconf *vfsp; { return (ufs_init(vfsp)); } /* * fast filesystem related variables. */ ffs_sysctl(int *name, u_int namelen, user_addr_t oldp, size_t *oldlenp, user_addr_t newp, size_t newlen, vfs_context_t context) { extern int doclusterread, doclusterwrite, doreallocblks, doasyncfree; /* all sysctl names at this level are terminal */ if (namelen != 1) return (ENOTDIR); /* overloaded */ switch (name[0]) { case FFS_CLUSTERREAD: return (sysctl_int(oldp, oldlenp, newp, newlen, &doclusterread)); case FFS_CLUSTERWRITE: return (sysctl_int(oldp, oldlenp, newp, newlen, &doclusterwrite)); case FFS_REALLOCBLKS: return (sysctl_int(oldp, oldlenp, newp, newlen, &doreallocblks)); case FFS_ASYNCFREE: return (sysctl_int(oldp, oldlenp, newp, newlen, &doasyncfree)); default: return (ENOTSUP); } /* NOTREACHED */ } /* * Write a superblock and associated information back to disk. */ int ffs_sbupdate(mp, waitfor) struct ufsmount *mp; int waitfor; { register struct fs *dfs, *fs = mp->um_fs; register struct buf *bp; int blks; void *space; int i, size, error, allerror = 0; int devBlockSize=0; #if REV_ENDIAN_FS int rev_endian=(mp->um_mountp->mnt_flag & MNT_REVEND); #endif /* REV_ENDIAN_FS */ /* * First write back the summary information. */ blks = howmany(fs->fs_cssize, fs->fs_fsize); space = fs->fs_csp; for (i = 0; i < blks; i += fs->fs_frag) { size = fs->fs_bsize; if (i + fs->fs_frag > blks) size = (blks - i) * fs->fs_fsize; bp = buf_getblk(mp->um_devvp, (daddr64_t)((unsigned)fsbtodb(fs, fs->fs_csaddr + i)), size, 0, 0, BLK_META); bcopy(space, (char *)buf_dataptr(bp), (u_int)size); #if REV_ENDIAN_FS if (rev_endian) { byte_swap_ints((int *)buf_dataptr(bp), size / sizeof(int)); } #endif /* REV_ENDIAN_FS */ space = (char *)space + size; if (waitfor != MNT_WAIT) buf_bawrite(bp); else if (error = (int)buf_bwrite(bp)) allerror = error; } /* * Now write back the superblock itself. If any errors occurred * up to this point, then fail so that the superblock avoids * being written out as clean. */ if (allerror) return (allerror); devBlockSize = vfs_devblocksize(mp->um_mountp); bp = buf_getblk(mp->um_devvp, (daddr64_t)((unsigned)(SBOFF/devBlockSize)), (int)fs->fs_sbsize, 0, 0, BLK_META); bcopy((caddr_t)fs, (char *)buf_dataptr(bp), (u_int)fs->fs_sbsize); /* Restore compatibility to old file systems. XXX */ dfs = (struct fs *)buf_dataptr(bp); /* XXX */ if (fs->fs_postblformat == FS_42POSTBLFMT) /* XXX */ dfs->fs_nrpos = -1; /* XXX */ #if REV_ENDIAN_FS /* * Swapping bytes here ; so that in case * of inode format < FS_44INODEFMT appropriate * fields get moved */ if (rev_endian) { byte_swap_sbout((struct fs *)buf_dataptr(bp)); } #endif /* REV_ENDIAN_FS */ if (fs->fs_inodefmt < FS_44INODEFMT) { /* XXX */ int32_t *lp, tmp; /* XXX */ /* XXX */ lp = (int32_t *)&dfs->fs_qbmask; /* XXX */ tmp = lp[4]; /* XXX */ for (i = 4; i > 0; i--) /* XXX */ lp[i] = lp[i-1]; /* XXX */ lp[0] = tmp; /* XXX */ } /* XXX */ #if REV_ENDIAN_FS /* Note that dfs is already swapped so swap the filesize * before writing */ if (rev_endian) { dfs->fs_maxfilesize = OSSwapInt64(mp->um_savedmaxfilesize); /* XXX */ } else { #endif /* REV_ENDIAN_FS */ dfs->fs_maxfilesize = mp->um_savedmaxfilesize; /* XXX */ #if REV_ENDIAN_FS } #endif /* REV_ENDIAN_FS */ if (waitfor != MNT_WAIT) buf_bawrite(bp); else if (error = (int)buf_bwrite(bp)) allerror = error; return (allerror); }