/* * Copyright (c) 2000-2002 Apple Computer, Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ /* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_balloc.c 8.8 (Berkeley) 6/16/95 */ #include #include #include #include #include #include #include #include #include #include #if REV_ENDIAN_FS #include #endif /* REV_ENDIAN_FS */ #include #include #include #include #include #include #if REV_ENDIAN_FS #include #include #endif /* REV_ENDIAN_FS */ /* * Balloc defines the structure of file system storage * by allocating the physical blocks on a device given * the inode and the logical block number in a file. */ ffs_balloc( register struct inode *ip, register ufs_daddr_t lbn, int size, kauth_cred_t cred, struct buf **bpp, int flags, int * blk_alloc) { register struct fs *fs; register ufs_daddr_t nb; struct buf *bp, *nbp; struct vnode *vp = ITOV(ip); struct indir indirs[NIADDR + 2]; ufs_daddr_t newb, *bap, pref; int deallocated, osize, nsize, num, i, error; ufs_daddr_t *allocib, *blkp, *allocblk, allociblk[NIADDR + 1]; int devBlockSize=0; int alloc_buffer = 1; struct mount *mp=vp->v_mount; #if REV_ENDIAN_FS int rev_endian=(mp->mnt_flag & MNT_REVEND); #endif /* REV_ENDIAN_FS */ *bpp = NULL; if (lbn < 0) return (EFBIG); fs = ip->i_fs; if (flags & B_NOBUFF) alloc_buffer = 0; if (blk_alloc) *blk_alloc = 0; /* * If the next write will extend the file into a new block, * and the file is currently composed of a fragment * this fragment has to be extended to be a full block. */ nb = lblkno(fs, ip->i_size); if (nb < NDADDR && nb < lbn) { /* the filesize prior to this write can fit in direct * blocks (ie. fragmentaion is possibly done) * we are now extending the file write beyond * the block which has end of file prior to this write */ osize = blksize(fs, ip, nb); /* osize gives disk allocated size in the last block. It is * either in fragments or a file system block size */ if (osize < fs->fs_bsize && osize > 0) { /* few fragments are already allocated,since the * current extends beyond this block * allocate the complete block as fragments are only * in last block */ error = ffs_realloccg(ip, nb, ffs_blkpref(ip, nb, (int)nb, &ip->i_db[0]), osize, (int)fs->fs_bsize, cred, &bp); if (error) return (error); /* adjust the inode size we just grew */ /* it is in nb+1 as nb starts from 0 */ ip->i_size = (nb + 1) * fs->fs_bsize; ubc_setsize(vp, (off_t)ip->i_size); ip->i_db[nb] = dbtofsb(fs, (ufs_daddr_t)buf_blkno(bp)); ip->i_flag |= IN_CHANGE | IN_UPDATE; if ((flags & B_SYNC) || (!alloc_buffer)) { if (!alloc_buffer) buf_setflags(bp, B_NOCACHE); buf_bwrite(bp); } else buf_bdwrite(bp); /* note that bp is already released here */ } } /* * The first NDADDR blocks are direct blocks */ if (lbn < NDADDR) { nb = ip->i_db[lbn]; if (nb != 0 && ip->i_size >= (lbn + 1) * fs->fs_bsize) { if (alloc_buffer) { error = (int)buf_bread(vp, (daddr64_t)((unsigned)lbn), fs->fs_bsize, NOCRED, &bp); if (error) { buf_brelse(bp); return (error); } *bpp = bp; } return (0); } if (nb != 0) { /* * Consider need to reallocate a fragment. */ osize = fragroundup(fs, blkoff(fs, ip->i_size)); nsize = fragroundup(fs, size); if (nsize <= osize) { if (alloc_buffer) { error = (int)buf_bread(vp, (daddr64_t)((unsigned)lbn), osize, NOCRED, &bp); if (error) { buf_brelse(bp); return (error); } ip->i_flag |= IN_CHANGE | IN_UPDATE; *bpp = bp; return (0); } else { ip->i_flag |= IN_CHANGE | IN_UPDATE; return (0); } } else { error = ffs_realloccg(ip, lbn, ffs_blkpref(ip, lbn, (int)lbn, &ip->i_db[0]), osize, nsize, cred, &bp); if (error) return (error); ip->i_db[lbn] = dbtofsb(fs, (ufs_daddr_t)buf_blkno(bp)); ip->i_flag |= IN_CHANGE | IN_UPDATE; /* adjust the inode size we just grew */ ip->i_size = (lbn * fs->fs_bsize) + size; ubc_setsize(vp, (off_t)ip->i_size); if (!alloc_buffer) { buf_setflags(bp, B_NOCACHE); if (flags & B_SYNC) buf_bwrite(bp); else buf_bdwrite(bp); } else *bpp = bp; return (0); } } else { if (ip->i_size < (lbn + 1) * fs->fs_bsize) nsize = fragroundup(fs, size); else nsize = fs->fs_bsize; error = ffs_alloc(ip, lbn, ffs_blkpref(ip, lbn, (int)lbn, &ip->i_db[0]), nsize, cred, &newb); if (error) return (error); if (alloc_buffer) { bp = buf_getblk(vp, (daddr64_t)((unsigned)lbn), nsize, 0, 0, BLK_WRITE); buf_setblkno(bp, (daddr64_t)((unsigned)fsbtodb(fs, newb))); if (flags & B_CLRBUF) buf_clear(bp); } ip->i_db[lbn] = newb; ip->i_flag |= IN_CHANGE | IN_UPDATE; if (blk_alloc) { *blk_alloc = nsize; } if (alloc_buffer) *bpp = bp; return (0); } } /* * Determine the number of levels of indirection. */ pref = 0; if (error = ufs_getlbns(vp, lbn, indirs, &num)) return(error); #if DIAGNOSTIC if (num < 1) panic ("ffs_balloc: ufs_bmaparray returned indirect block"); #endif /* * Fetch the first indirect block allocating if necessary. */ --num; nb = ip->i_ib[indirs[0].in_off]; allocib = NULL; allocblk = allociblk; if (nb == 0) { pref = ffs_blkpref(ip, lbn, 0, (ufs_daddr_t *)0); if (error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, cred, &newb)) return (error); nb = newb; *allocblk++ = nb; bp = buf_getblk(vp, (daddr64_t)((unsigned)(indirs[1].in_lbn)), fs->fs_bsize, 0, 0, BLK_META); buf_setblkno(bp, (daddr64_t)((unsigned)fsbtodb(fs, nb))); buf_clear(bp); /* * Write synchronously conditional on mount flags. */ if ((vp)->v_mount->mnt_flag & MNT_ASYNC) { error = 0; buf_bdwrite(bp); } else if ((error = buf_bwrite(bp)) != 0) { goto fail; } allocib = &ip->i_ib[indirs[0].in_off]; *allocib = nb; ip->i_flag |= IN_CHANGE | IN_UPDATE; } /* * Fetch through the indirect blocks, allocating as necessary. */ for (i = 1;;) { error = (int)buf_meta_bread(vp, (daddr64_t)((unsigned)(indirs[i].in_lbn)), (int)fs->fs_bsize, NOCRED, &bp); if (error) { buf_brelse(bp); goto fail; } bap = (ufs_daddr_t *)buf_dataptr(bp); #if REV_ENDIAN_FS if (rev_endian) nb = OSSwapInt32(bap[indirs[i].in_off]); else { #endif /* REV_ENDIAN_FS */ nb = bap[indirs[i].in_off]; #if REV_ENDIAN_FS } #endif /* REV_ENDIAN_FS */ if (i == num) break; i += 1; if (nb != 0) { buf_brelse(bp); continue; } if (pref == 0) pref = ffs_blkpref(ip, lbn, 0, (ufs_daddr_t *)0); if (error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, cred, &newb)) { buf_brelse(bp); goto fail; } nb = newb; *allocblk++ = nb; nbp = buf_getblk(vp, (daddr64_t)((unsigned)(indirs[i].in_lbn)), fs->fs_bsize, 0, 0, BLK_META); buf_setblkno(nbp, (daddr64_t)((unsigned)fsbtodb(fs, nb))); buf_clear(nbp); /* * Write synchronously conditional on mount flags. */ if ((vp)->v_mount->mnt_flag & MNT_ASYNC) { error = 0; buf_bdwrite(nbp); } else if (error = buf_bwrite(nbp)) { buf_brelse(bp); goto fail; } #if REV_ENDIAN_FS if (rev_endian) bap[indirs[i - 1].in_off] = OSSwapInt32(nb); else { #endif /* REV_ENDIAN_FS */ bap[indirs[i - 1].in_off] = nb; #if REV_ENDIAN_FS } #endif /* REV_ENDIAN_FS */ /* * If required, write synchronously, otherwise use * delayed write. */ if (flags & B_SYNC) { buf_bwrite(bp); } else { buf_bdwrite(bp); } } /* * Get the data block, allocating if necessary. */ if (nb == 0) { pref = ffs_blkpref(ip, lbn, indirs[i].in_off, &bap[0]); if (error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, cred, &newb)) { buf_brelse(bp); goto fail; } nb = newb; *allocblk++ = nb; #if REV_ENDIAN_FS if (rev_endian) bap[indirs[i].in_off] = OSSwapInt32(nb); else { #endif /* REV_ENDIAN_FS */ bap[indirs[i].in_off] = nb; #if REV_ENDIAN_FS } #endif /* REV_ENDIAN_FS */ /* * If required, write synchronously, otherwise use * delayed write. */ if ((flags & B_SYNC)) { buf_bwrite(bp); } else { buf_bdwrite(bp); } if(alloc_buffer ) { nbp = buf_getblk(vp, (daddr64_t)((unsigned)lbn), fs->fs_bsize, 0, 0, BLK_WRITE); buf_setblkno(nbp, (daddr64_t)((unsigned)fsbtodb(fs, nb))); if (flags & B_CLRBUF) buf_clear(nbp); } if (blk_alloc) { *blk_alloc = fs->fs_bsize; } if(alloc_buffer) *bpp = nbp; return (0); } buf_brelse(bp); if (alloc_buffer) { if (flags & B_CLRBUF) { error = (int)buf_bread(vp, (daddr64_t)((unsigned)lbn), (int)fs->fs_bsize, NOCRED, &nbp); if (error) { buf_brelse(nbp); goto fail; } } else { nbp = buf_getblk(vp, (daddr64_t)((unsigned)lbn), fs->fs_bsize, 0, 0, BLK_WRITE); buf_setblkno(nbp, (daddr64_t)((unsigned)fsbtodb(fs, nb))); } *bpp = nbp; } return (0); fail: /* * If we have failed part way through block allocation, we * have to deallocate any indirect blocks that we have allocated. */ for (deallocated = 0, blkp = allociblk; blkp < allocblk; blkp++) { ffs_blkfree(ip, *blkp, fs->fs_bsize); deallocated += fs->fs_bsize; } if (allocib != NULL) *allocib = 0; if (deallocated) { devBlockSize = vfs_devblocksize(mp); #if QUOTA /* * Restore user's disk quota because allocation failed. */ (void) chkdq(ip, (int64_t)-deallocated, cred, FORCE); #endif /* QUOTA */ ip->i_blocks -= btodb(deallocated, devBlockSize); ip->i_flag |= IN_CHANGE | IN_UPDATE; } return (error); } /* * ffs_blkalloc allocates a disk block for ffs_pageout(), as a consequence * it does no buf_breads (that could lead to deadblock as the page may be already * marked busy as it is being paged out. Also important to note that we are not * growing the file in pageouts. So ip->i_size cannot increase by this call * due to the way UBC works. * This code is derived from ffs_balloc and many cases of that are dealt * in ffs_balloc are not applicable here * Do not call with B_CLRBUF flags as this should only be called only * from pageouts */ ffs_blkalloc( struct inode *ip, ufs_daddr_t lbn, int size, kauth_cred_t cred, int flags) { register struct fs *fs; register ufs_daddr_t nb; struct buf *bp, *nbp; struct vnode *vp = ITOV(ip); struct indir indirs[NIADDR + 2]; ufs_daddr_t newb, *bap, pref; int deallocated, osize, nsize, num, i, error; ufs_daddr_t *allocib, *blkp, *allocblk, allociblk[NIADDR + 1]; int devBlockSize=0; struct mount *mp=vp->v_mount; #if REV_ENDIAN_FS int rev_endian=(mp->mnt_flag & MNT_REVEND); #endif /* REV_ENDIAN_FS */ fs = ip->i_fs; if(size > fs->fs_bsize) panic("ffs_blkalloc: too large for allocation"); /* * If the next write will extend the file into a new block, * and the file is currently composed of a fragment * this fragment has to be extended to be a full block. */ nb = lblkno(fs, ip->i_size); if (nb < NDADDR && nb < lbn) { panic("ffs_blkalloc():cannot extend file: i_size %d, lbn %d", ip->i_size, lbn); } /* * The first NDADDR blocks are direct blocks */ if (lbn < NDADDR) { nb = ip->i_db[lbn]; if (nb != 0 && ip->i_size >= (lbn + 1) * fs->fs_bsize) { /* TBD: trivial case; the block is already allocated */ return (0); } if (nb != 0) { /* * Consider need to reallocate a fragment. */ osize = fragroundup(fs, blkoff(fs, ip->i_size)); nsize = fragroundup(fs, size); if (nsize > osize) { panic("ffs_allocblk: trying to extend a fragment"); } return(0); } else { if (ip->i_size < (lbn + 1) * fs->fs_bsize) nsize = fragroundup(fs, size); else nsize = fs->fs_bsize; error = ffs_alloc(ip, lbn, ffs_blkpref(ip, lbn, (int)lbn, &ip->i_db[0]), nsize, cred, &newb); if (error) return (error); ip->i_db[lbn] = newb; ip->i_flag |= IN_CHANGE | IN_UPDATE; return (0); } } /* * Determine the number of levels of indirection. */ pref = 0; if (error = ufs_getlbns(vp, lbn, indirs, &num)) return(error); if(num == 0) { panic("ffs_blkalloc: file with direct blocks only"); } /* * Fetch the first indirect block allocating if necessary. */ --num; nb = ip->i_ib[indirs[0].in_off]; allocib = NULL; allocblk = allociblk; if (nb == 0) { pref = ffs_blkpref(ip, lbn, 0, (ufs_daddr_t *)0); if (error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, cred, &newb)) return (error); nb = newb; *allocblk++ = nb; bp = buf_getblk(vp, (daddr64_t)((unsigned)(indirs[1].in_lbn)), fs->fs_bsize, 0, 0, BLK_META); buf_setblkno(bp, (daddr64_t)((unsigned)fsbtodb(fs, nb))); buf_clear(bp); /* * Write synchronously conditional on mount flags. */ if ((vp)->v_mount->mnt_flag & MNT_ASYNC) { error = 0; buf_bdwrite(bp); } else if (error = buf_bwrite(bp)) { goto fail; } allocib = &ip->i_ib[indirs[0].in_off]; *allocib = nb; ip->i_flag |= IN_CHANGE | IN_UPDATE; } /* * Fetch through the indirect blocks, allocating as necessary. */ for (i = 1;;) { error = (int)buf_meta_bread(vp, (daddr64_t)((unsigned)(indirs[i].in_lbn)), (int)fs->fs_bsize, NOCRED, &bp); if (error) { buf_brelse(bp); goto fail; } bap = (ufs_daddr_t *)buf_dataptr(bp); #if REV_ENDIAN_FS if (rev_endian) nb = OSSwapInt32(bap[indirs[i].in_off]); else { #endif /* REV_ENDIAN_FS */ nb = bap[indirs[i].in_off]; #if REV_ENDIAN_FS } #endif /* REV_ENDIAN_FS */ if (i == num) break; i += 1; if (nb != 0) { buf_brelse(bp); continue; } if (pref == 0) pref = ffs_blkpref(ip, lbn, 0, (ufs_daddr_t *)0); if (error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, cred, &newb)) { buf_brelse(bp); goto fail; } nb = newb; *allocblk++ = nb; nbp = buf_getblk(vp, (daddr64_t)((unsigned)(indirs[i].in_lbn)), fs->fs_bsize, 0, 0, BLK_META); buf_setblkno(nbp, (daddr64_t)((unsigned)fsbtodb(fs, nb))); buf_clear(nbp); /* * Write synchronously conditional on mount flags. */ if ((vp)->v_mount->mnt_flag & MNT_ASYNC) { error = 0; buf_bdwrite(nbp); } else if (error = buf_bwrite(nbp)) { buf_brelse(bp); goto fail; } #if REV_ENDIAN_FS if (rev_endian) bap[indirs[i - 1].in_off] = OSSwapInt32(nb); else { #endif /* REV_ENDIAN_FS */ bap[indirs[i - 1].in_off] = nb; #if REV_ENDIAN_FS } #endif /* REV_ENDIAN_FS */ /* * If required, write synchronously, otherwise use * delayed write. */ if (flags & B_SYNC) { buf_bwrite(bp); } else { buf_bdwrite(bp); } } /* * Get the data block, allocating if necessary. */ if (nb == 0) { pref = ffs_blkpref(ip, lbn, indirs[i].in_off, &bap[0]); if (error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, cred, &newb)) { buf_brelse(bp); goto fail; } nb = newb; *allocblk++ = nb; #if REV_ENDIAN_FS if (rev_endian) bap[indirs[i].in_off] = OSSwapInt32(nb); else { #endif /* REV_ENDIAN_FS */ bap[indirs[i].in_off] = nb; #if REV_ENDIAN_FS } #endif /* REV_ENDIAN_FS */ /* * If required, write synchronously, otherwise use * delayed write. */ if (flags & B_SYNC) { buf_bwrite(bp); } else { buf_bdwrite(bp); } return (0); } buf_brelse(bp); return (0); fail: /* * If we have failed part way through block allocation, we * have to deallocate any indirect blocks that we have allocated. */ for (deallocated = 0, blkp = allociblk; blkp < allocblk; blkp++) { ffs_blkfree(ip, *blkp, fs->fs_bsize); deallocated += fs->fs_bsize; } if (allocib != NULL) *allocib = 0; if (deallocated) { devBlockSize = vfs_devblocksize(mp); #if QUOTA /* * Restore user's disk quota because allocation failed. */ (void) chkdq(ip, (int64_t)-deallocated, cred, FORCE); #endif /* QUOTA */ ip->i_blocks -= btodb(deallocated, devBlockSize); ip->i_flag |= IN_CHANGE | IN_UPDATE; } return (error); }