/* * Copyright (c) 1998-2007 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ /* * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 * $FreeBSD: src/sys/kern/uipc_socket.c,v 1.68.2.16 2001/06/14 20:46:06 ume Exp $ */ /* * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce * support for mandatory and extensible security protections. This notice * is included in support of clause 2.2 (b) of the Apple Public License, * Version 2.0. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if CONFIG_MACF #include #include #endif /* MAC */ /* how a timeval looks to a 64-bit process */ struct timeval64 { int64_t tv_sec; int32_t tv_usec; }; int so_cache_hw = 0; int so_cache_timeouts = 0; int so_cache_max_freed = 0; int cached_sock_count = 0; struct socket *socket_cache_head = 0; struct socket *socket_cache_tail = 0; u_long so_cache_time = 0; int so_cache_init_done = 0; struct zone *so_cache_zone; static lck_grp_t *so_cache_mtx_grp; static lck_attr_t *so_cache_mtx_attr; static lck_grp_attr_t *so_cache_mtx_grp_attr; lck_mtx_t *so_cache_mtx; #include static void filt_sordetach(struct knote *kn); static int filt_soread(struct knote *kn, long hint); static void filt_sowdetach(struct knote *kn); static int filt_sowrite(struct knote *kn, long hint); static int filt_solisten(struct knote *kn, long hint); static int sooptcopyin_timeval(struct sockopt *sopt, struct timeval * tv_p); static int sooptcopyout_timeval(struct sockopt *sopt, const struct timeval * tv_p); static struct filterops solisten_filtops = { 1, NULL, filt_sordetach, filt_solisten }; static struct filterops soread_filtops = { 1, NULL, filt_sordetach, filt_soread }; static struct filterops sowrite_filtops = { 1, NULL, filt_sowdetach, filt_sowrite }; #define EVEN_MORE_LOCKING_DEBUG 0 int socket_debug = 0; int socket_zone = M_SOCKET; so_gen_t so_gencnt; /* generation count for sockets */ MALLOC_DEFINE(M_SONAME, "soname", "socket name"); MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); #define DBG_LAYER_IN_BEG NETDBG_CODE(DBG_NETSOCK, 0) #define DBG_LAYER_IN_END NETDBG_CODE(DBG_NETSOCK, 2) #define DBG_LAYER_OUT_BEG NETDBG_CODE(DBG_NETSOCK, 1) #define DBG_LAYER_OUT_END NETDBG_CODE(DBG_NETSOCK, 3) #define DBG_FNC_SOSEND NETDBG_CODE(DBG_NETSOCK, (4 << 8) | 1) #define DBG_FNC_SORECEIVE NETDBG_CODE(DBG_NETSOCK, (8 << 8)) #define DBG_FNC_SOSHUTDOWN NETDBG_CODE(DBG_NETSOCK, (9 << 8)) #define MAX_SOOPTGETM_SIZE (128 * MCLBYTES) SYSCTL_DECL(_kern_ipc); int somaxconn = SOMAXCONN; SYSCTL_INT(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLFLAG_RW, &somaxconn, 0, ""); /* Should we get a maximum also ??? */ static int sosendmaxchain = 65536; static int sosendminchain = 16384; static int sorecvmincopy = 16384; SYSCTL_INT(_kern_ipc, OID_AUTO, sosendminchain, CTLFLAG_RW, &sosendminchain, 0, ""); SYSCTL_INT(_kern_ipc, OID_AUTO, sorecvmincopy, CTLFLAG_RW, &sorecvmincopy, 0, ""); /* * Set to enable jumbo clusters (if available) for large writes when * the socket is marked with SOF_MULTIPAGES; see below. */ int sosendjcl = 1; SYSCTL_INT(_kern_ipc, OID_AUTO, sosendjcl, CTLFLAG_RW, &sosendjcl, 0, ""); /* * Set this to ignore SOF_MULTIPAGES and use jumbo clusters for large * writes on the socket for all protocols on any network interfaces, * depending upon sosendjcl above. Be extra careful when setting this * to 1, because sending down packets that cross physical pages down to * broken drivers (those that falsely assume that the physical pages * are contiguous) might lead to system panics or silent data corruption. * When set to 0, the system will respect SOF_MULTIPAGES, which is set * only for TCP sockets whose outgoing interface is IFNET_MULTIPAGES * capable. Set this to 1 only for testing/debugging purposes. */ int sosendjcl_ignore_capab = 0; SYSCTL_INT(_kern_ipc, OID_AUTO, sosendjcl_ignore_capab, CTLFLAG_RW, &sosendjcl_ignore_capab, 0, ""); /* * Socket operation routines. * These routines are called by the routines in * sys_socket.c or from a system process, and * implement the semantics of socket operations by * switching out to the protocol specific routines. */ /* sys_generic.c */ extern void postevent(struct socket *, struct sockbuf *, int); extern void evsofree(struct socket *); /* TODO: these should be in header file */ extern int get_inpcb_str_size(void); extern int get_tcp_str_size(void); extern struct domain *pffinddomain(int); extern struct protosw *pffindprotonotype(int, int); extern int soclose_locked(struct socket *); extern int soo_kqfilter(struct fileproc *, struct knote *, struct proc *); #ifdef __APPLE__ vm_size_t so_cache_zone_element_size; static int sodelayed_copy(struct socket *, struct uio *, struct mbuf **, int *); static void cached_sock_alloc(struct socket **, int); static void cached_sock_free(struct socket *); static void so_cache_timer(void *); void soclose_wait_locked(struct socket *so); void socketinit(void) { vm_size_t str_size; if (so_cache_init_done) { printf("socketinit: already called...\n"); return; } PE_parse_boot_argn("socket_debug", &socket_debug, sizeof (socket_debug)); /* * allocate lock group attribute and group for socket cache mutex */ so_cache_mtx_grp_attr = lck_grp_attr_alloc_init(); so_cache_mtx_grp = lck_grp_alloc_init("so_cache", so_cache_mtx_grp_attr); /* * allocate the lock attribute for socket cache mutex */ so_cache_mtx_attr = lck_attr_alloc_init(); so_cache_init_done = 1; /* cached sockets mutex */ so_cache_mtx = lck_mtx_alloc_init(so_cache_mtx_grp, so_cache_mtx_attr); if (so_cache_mtx == NULL) return; /* we're hosed... */ str_size = (vm_size_t)(sizeof (struct socket) + 4 + get_inpcb_str_size() + 4 + get_tcp_str_size()); so_cache_zone = zinit(str_size, 120000*str_size, 8192, "socache zone"); #if TEMPDEBUG printf("cached_sock_alloc -- so_cache_zone size is %x\n", str_size); #endif timeout(so_cache_timer, NULL, (SO_CACHE_FLUSH_INTERVAL * hz)); so_cache_zone_element_size = str_size; sflt_init(); } static void cached_sock_alloc(struct socket **so, int waitok) { caddr_t temp; register u_long offset; lck_mtx_lock(so_cache_mtx); if (cached_sock_count) { cached_sock_count--; *so = socket_cache_head; if (*so == 0) panic("cached_sock_alloc: cached sock is null"); socket_cache_head = socket_cache_head->cache_next; if (socket_cache_head) socket_cache_head->cache_prev = 0; else socket_cache_tail = 0; lck_mtx_unlock(so_cache_mtx); temp = (*so)->so_saved_pcb; bzero((caddr_t)*so, sizeof (struct socket)); #if TEMPDEBUG kprintf("cached_sock_alloc - retreiving cached sock %p - " "count == %d\n", *so, cached_sock_count); #endif (*so)->so_saved_pcb = temp; (*so)->cached_in_sock_layer = 1; } else { #if TEMPDEBUG kprintf("Allocating cached sock %p from memory\n", *so); #endif lck_mtx_unlock(so_cache_mtx); if (waitok) *so = (struct socket *)zalloc(so_cache_zone); else *so = (struct socket *)zalloc_noblock(so_cache_zone); if (*so == 0) return; bzero((caddr_t)*so, sizeof (struct socket)); /* * Define offsets for extra structures into our single block of * memory. Align extra structures on longword boundaries. */ offset = (u_long) *so; offset += sizeof (struct socket); if (offset & 0x3) { offset += 4; offset &= 0xfffffffc; } (*so)->so_saved_pcb = (caddr_t)offset; offset += get_inpcb_str_size(); if (offset & 0x3) { offset += 4; offset &= 0xfffffffc; } ((struct inpcb *)(*so)->so_saved_pcb)->inp_saved_ppcb = (caddr_t)offset; #if TEMPDEBUG kprintf("Allocating cached socket - %p, pcb=%p tcpcb=%p\n", *so, (*so)->so_saved_pcb, ((struct inpcb *)(*so)->so_saved_pcb)->inp_saved_ppcb); #endif } (*so)->cached_in_sock_layer = 1; } static void cached_sock_free(struct socket *so) { lck_mtx_lock(so_cache_mtx); if (++cached_sock_count > MAX_CACHED_SOCKETS) { --cached_sock_count; lck_mtx_unlock(so_cache_mtx); #if TEMPDEBUG kprintf("Freeing overflowed cached socket %p\n", so); #endif zfree(so_cache_zone, so); } else { #if TEMPDEBUG kprintf("Freeing socket %p into cache\n", so); #endif if (so_cache_hw < cached_sock_count) so_cache_hw = cached_sock_count; so->cache_next = socket_cache_head; so->cache_prev = 0; if (socket_cache_head) socket_cache_head->cache_prev = so; else socket_cache_tail = so; so->cache_timestamp = so_cache_time; socket_cache_head = so; lck_mtx_unlock(so_cache_mtx); } #if TEMPDEBUG kprintf("Freed cached sock %p into cache - count is %d\n", so, cached_sock_count); #endif } static void so_cache_timer(__unused void *dummy) { register struct socket *p; register int n_freed = 0; lck_mtx_lock(so_cache_mtx); ++so_cache_time; while ((p = socket_cache_tail)) { if ((so_cache_time - p->cache_timestamp) < SO_CACHE_TIME_LIMIT) break; so_cache_timeouts++; if ((socket_cache_tail = p->cache_prev)) p->cache_prev->cache_next = 0; if (--cached_sock_count == 0) socket_cache_head = 0; zfree(so_cache_zone, p); if (++n_freed >= SO_CACHE_MAX_FREE_BATCH) { so_cache_max_freed++; break; } } lck_mtx_unlock(so_cache_mtx); timeout(so_cache_timer, NULL, (SO_CACHE_FLUSH_INTERVAL * hz)); } #endif /* __APPLE__ */ /* * Get a socket structure from our zone, and initialize it. * We don't implement `waitok' yet (see comments in uipc_domain.c). * Note that it would probably be better to allocate socket * and PCB at the same time, but I'm not convinced that all * the protocols can be easily modified to do this. */ struct socket * soalloc(int waitok, int dom, int type) { struct socket *so; if ((dom == PF_INET) && (type == SOCK_STREAM)) { cached_sock_alloc(&so, waitok); } else { MALLOC_ZONE(so, struct socket *, sizeof (*so), socket_zone, M_WAITOK); if (so != NULL) bzero(so, sizeof (*so)); } /* XXX race condition for reentrant kernel */ //###LD Atomic add for so_gencnt if (so != NULL) { so->so_gencnt = ++so_gencnt; so->so_zone = socket_zone; #if CONFIG_MACF_SOCKET /* Convert waitok to M_WAITOK/M_NOWAIT for MAC Framework. */ if (mac_socket_label_init(so, !waitok) != 0) { sodealloc(so); return (NULL); } #endif /* MAC_SOCKET */ } return (so); } /* * Returns: 0 Success * EAFNOSUPPORT * EPROTOTYPE * EPROTONOSUPPORT * ENOBUFS * :ENOBUFS[AF_UNIX] * :ENOBUFS[TCP] * :ENOMEM[TCP] * :EISCONN[TCP] * :??? [other protocol families, IPSEC] */ int socreate(int dom, struct socket **aso, int type, int proto) { struct proc *p = current_proc(); register struct protosw *prp; register struct socket *so; register int error = 0; #if TCPDEBUG extern int tcpconsdebug; #endif if (proto) prp = pffindproto(dom, proto, type); else prp = pffindtype(dom, type); if (prp == 0 || prp->pr_usrreqs->pru_attach == 0) { if (pffinddomain(dom) == NULL) { return (EAFNOSUPPORT); } if (proto != 0) { if (pffindprotonotype(dom, proto) != NULL) { return (EPROTOTYPE); } } return (EPROTONOSUPPORT); } if (prp->pr_type != type) return (EPROTOTYPE); so = soalloc(p != 0, dom, type); if (so == 0) return (ENOBUFS); TAILQ_INIT(&so->so_incomp); TAILQ_INIT(&so->so_comp); so->so_type = type; if (p != 0) { so->so_uid = kauth_cred_getuid(kauth_cred_get()); if (!suser(kauth_cred_get(), NULL)) so->so_state = SS_PRIV; } so->so_proto = prp; #ifdef __APPLE__ so->so_rcv.sb_flags |= SB_RECV; /* XXX */ so->so_rcv.sb_so = so->so_snd.sb_so = so; #endif so->next_lock_lr = 0; so->next_unlock_lr = 0; #if CONFIG_MACF_SOCKET mac_socket_label_associate(kauth_cred_get(), so); #endif /* MAC_SOCKET */ //### Attachement will create the per pcb lock if necessary and increase refcount /* * for creation, make sure it's done before * socket is inserted in lists */ so->so_usecount++; error = (*prp->pr_usrreqs->pru_attach)(so, proto, p); if (error) { /* * Warning: * If so_pcb is not zero, the socket will be leaked, * so protocol attachment handler must be coded carefuly */ so->so_state |= SS_NOFDREF; so->so_usecount--; sofreelastref(so, 1); /* will deallocate the socket */ return (error); } #ifdef __APPLE__ prp->pr_domain->dom_refs++; TAILQ_INIT(&so->so_evlist); /* Attach socket filters for this protocol */ sflt_initsock(so); #if TCPDEBUG if (tcpconsdebug == 2) so->so_options |= SO_DEBUG; #endif #endif *aso = so; return (0); } /* * Returns: 0 Success * :EINVAL Invalid argument [COMMON_START] * :EAFNOSUPPORT Address family not supported * :EADDRNOTAVAIL Address not available. * :EINVAL Invalid argument * :EAFNOSUPPORT Address family not supported [notdef] * :EACCES Permission denied * :EADDRINUSE Address in use * :EAGAIN Resource unavailable, try again * :EPERM Operation not permitted * :??? * :??? * * Notes: It's not possible to fully enumerate the return codes above, * since socket filter authors and protocol family authors may * not choose to limit their error returns to those listed, even * though this may result in some software operating incorrectly. * * The error codes which are enumerated above are those known to * be returned by the tcp_usr_bind function supplied. */ int sobind(struct socket *so, struct sockaddr *nam) { struct proc *p = current_proc(); int error = 0; struct socket_filter_entry *filter; int filtered = 0; socket_lock(so, 1); /* * If this is a bind request on a previously-accepted socket * that has been marked as inactive, reject it now before * we go any further. */ if (so->so_flags & SOF_DEFUNCT) { error = EINVAL; goto out; } /* Socket filter */ error = 0; for (filter = so->so_filt; filter && (error == 0); filter = filter->sfe_next_onsocket) { if (filter->sfe_filter->sf_filter.sf_bind) { if (filtered == 0) { filtered = 1; sflt_use(so); socket_unlock(so, 0); } error = filter->sfe_filter->sf_filter. sf_bind(filter->sfe_cookie, so, nam); } } if (filtered != 0) { socket_lock(so, 0); sflt_unuse(so); } /* End socket filter */ if (error == 0) error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, p); out: socket_unlock(so, 1); if (error == EJUSTRETURN) error = 0; return (error); } void sodealloc(struct socket *so) { so->so_gencnt = ++so_gencnt; #if CONFIG_MACF_SOCKET mac_socket_label_destroy(so); #endif /* MAC_SOCKET */ if (so->cached_in_sock_layer == 1) { cached_sock_free(so); } else { if (so->cached_in_sock_layer == -1) panic("sodealloc: double dealloc: so=%p\n", so); so->cached_in_sock_layer = -1; FREE_ZONE(so, sizeof (*so), so->so_zone); } } /* * Returns: 0 Success * EINVAL * EOPNOTSUPP * :EINVAL[AF_UNIX] * :EINVAL[TCP] * :EADDRNOTAVAIL[TCP] Address not available. * :EINVAL[TCP] Invalid argument * :EAFNOSUPPORT[TCP] Address family not supported [notdef] * :EACCES[TCP] Permission denied * :EADDRINUSE[TCP] Address in use * :EAGAIN[TCP] Resource unavailable, try again * :EPERM[TCP] Operation not permitted * :??? * * Notes: Other returns depend on the protocol family; all * returns depend on what the filter author causes * their filter to return. */ int solisten(struct socket *so, int backlog) { struct proc *p = current_proc(); int error = 0; struct socket_filter_entry *filter; int filtered = 0; socket_lock(so, 1); if (so->so_proto == NULL) { error = EINVAL; goto out; } if ((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0) { error = EOPNOTSUPP; goto out; } /* * If the listen request is made on a socket that is not fully * disconnected, or on a previously-accepted socket that has * been marked as inactive, reject the request now. */ if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING|SS_ISDISCONNECTING)) || (so->so_flags & SOF_DEFUNCT)) { error = EINVAL; goto out; } if ((so->so_restrictions & SO_RESTRICT_DENYIN) != 0) { error = EPERM; goto out; } error = 0; for (filter = so->so_filt; filter && (error == 0); filter = filter->sfe_next_onsocket) { if (filter->sfe_filter->sf_filter.sf_listen) { if (filtered == 0) { filtered = 1; sflt_use(so); socket_unlock(so, 0); } error = filter->sfe_filter->sf_filter. sf_listen(filter->sfe_cookie, so); } } if (filtered != 0) { socket_lock(so, 0); sflt_unuse(so); } if (error == 0) { error = (*so->so_proto->pr_usrreqs->pru_listen)(so, p); } if (error) { if (error == EJUSTRETURN) error = 0; goto out; } if (TAILQ_EMPTY(&so->so_comp)) so->so_options |= SO_ACCEPTCONN; /* * POSIX: The implementation may have an upper limit on the length of * the listen queue-either global or per accepting socket. If backlog * exceeds this limit, the length of the listen queue is set to the * limit. * * If listen() is called with a backlog argument value that is less * than 0, the function behaves as if it had been called with a backlog * argument value of 0. * * A backlog argument of 0 may allow the socket to accept connections, * in which case the length of the listen queue may be set to an * implementation-defined minimum value. */ if (backlog <= 0 || backlog > somaxconn) backlog = somaxconn; so->so_qlimit = backlog; out: socket_unlock(so, 1); return (error); } void sofreelastref(struct socket *so, int dealloc) { struct socket *head = so->so_head; /* Assume socket is locked */ /* Remove any filters - may be called more than once */ sflt_termsock(so); if ((!(so->so_flags & SOF_PCBCLEARING)) || ((so->so_state & SS_NOFDREF) == 0)) { #ifdef __APPLE__ selthreadclear(&so->so_snd.sb_sel); selthreadclear(&so->so_rcv.sb_sel); so->so_rcv.sb_flags &= ~SB_UPCALL; so->so_snd.sb_flags &= ~SB_UPCALL; #endif return; } if (head != NULL) { socket_lock(head, 1); if (so->so_state & SS_INCOMP) { TAILQ_REMOVE(&head->so_incomp, so, so_list); head->so_incqlen--; } else if (so->so_state & SS_COMP) { /* * We must not decommission a socket that's * on the accept(2) queue. If we do, then * accept(2) may hang after select(2) indicated * that the listening socket was ready. */ #ifdef __APPLE__ selthreadclear(&so->so_snd.sb_sel); selthreadclear(&so->so_rcv.sb_sel); so->so_rcv.sb_flags &= ~SB_UPCALL; so->so_snd.sb_flags &= ~SB_UPCALL; #endif socket_unlock(head, 1); return; } else { panic("sofree: not queued"); } head->so_qlen--; so->so_state &= ~SS_INCOMP; so->so_head = NULL; socket_unlock(head, 1); } #ifdef __APPLE__ selthreadclear(&so->so_snd.sb_sel); sbrelease(&so->so_snd); #endif sorflush(so); /* 3932268: disable upcall */ so->so_rcv.sb_flags &= ~SB_UPCALL; so->so_snd.sb_flags &= ~SB_UPCALL; if (dealloc) sodealloc(so); } void soclose_wait_locked(struct socket *so) { lck_mtx_t *mutex_held; if (so->so_proto->pr_getlock != NULL) mutex_held = (*so->so_proto->pr_getlock)(so, 0); else mutex_held = so->so_proto->pr_domain->dom_mtx; lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); /* * Double check here and return if there's no outstanding upcall; * otherwise proceed further only if SOF_UPCALLCLOSEWAIT is set. */ if (!(so->so_flags & SOF_UPCALLINUSE) || !(so->so_flags & SOF_UPCALLCLOSEWAIT)) return; so->so_flags |= SOF_CLOSEWAIT; (void) msleep((caddr_t)&so->so_upcall, mutex_held, (PZERO - 1), "soclose_wait_locked", NULL); lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); so->so_flags &= ~SOF_CLOSEWAIT; } /* * Close a socket on last file table reference removal. * Initiate disconnect if connected. * Free socket when disconnect complete. */ int soclose_locked(struct socket *so) { int error = 0; lck_mtx_t *mutex_held; struct timespec ts; if (so->so_usecount == 0) { panic("soclose: so=%p refcount=0\n", so); } sflt_notify(so, sock_evt_closing, NULL); if ((so->so_options & SO_ACCEPTCONN)) { struct socket *sp, *sonext; int socklock = 0; /* * We do not want new connection to be added * to the connection queues */ so->so_options &= ~SO_ACCEPTCONN; for (sp = TAILQ_FIRST(&so->so_incomp); sp != NULL; sp = sonext) { sonext = TAILQ_NEXT(sp, so_list); /* Radar 5350314 * skip sockets thrown away by tcpdropdropblreq * they will get cleanup by the garbage collection. * otherwise, remove the incomp socket from the queue * and let soabort trigger the appropriate cleanup. */ if (sp->so_flags & SOF_OVERFLOW) continue; if (so->so_proto->pr_getlock != NULL) { /* lock ordering for consistency with the rest of the stack, * we lock the socket first and then grabb the head. */ socket_unlock(so, 0); socket_lock(sp, 1); socket_lock(so, 0); socklock = 1; } TAILQ_REMOVE(&so->so_incomp, sp, so_list); so->so_incqlen--; if (sp->so_state & SS_INCOMP) { sp->so_state &= ~SS_INCOMP; sp->so_head = NULL; (void) soabort(sp); } if (socklock) socket_unlock(sp, 1); } while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { /* Dequeue from so_comp since sofree() won't do it */ TAILQ_REMOVE(&so->so_comp, sp, so_list); so->so_qlen--; if (so->so_proto->pr_getlock != NULL) { socket_unlock(so, 0); socket_lock(sp, 1); } if (sp->so_state & SS_COMP) { sp->so_state &= ~SS_COMP; sp->so_head = NULL; (void) soabort(sp); } if (so->so_proto->pr_getlock != NULL) { socket_unlock(sp, 1); socket_lock(so, 0); } } } if (so->so_pcb == 0) { /* 3915887: mark the socket as ready for dealloc */ so->so_flags |= SOF_PCBCLEARING; goto discard; } if (so->so_state & SS_ISCONNECTED) { if ((so->so_state & SS_ISDISCONNECTING) == 0) { error = sodisconnectlocked(so); if (error) goto drop; } if (so->so_options & SO_LINGER) { if ((so->so_state & SS_ISDISCONNECTING) && (so->so_state & SS_NBIO)) goto drop; if (so->so_proto->pr_getlock != NULL) mutex_held = (*so->so_proto->pr_getlock)(so, 0); else mutex_held = so->so_proto->pr_domain->dom_mtx; while (so->so_state & SS_ISCONNECTED) { ts.tv_sec = (so->so_linger/100); ts.tv_nsec = (so->so_linger % 100) * NSEC_PER_USEC * 1000 * 10; error = msleep((caddr_t)&so->so_timeo, mutex_held, PSOCK | PCATCH, "soclose", &ts); if (error) { /* * It's OK when the time fires, * don't report an error */ if (error == EWOULDBLOCK) error = 0; break; } } } } drop: if (so->so_usecount == 0) panic("soclose: usecount is zero so=%p\n", so); if (so->so_pcb && !(so->so_flags & SOF_PCBCLEARING)) { int error2 = (*so->so_proto->pr_usrreqs->pru_detach)(so); if (error == 0) error = error2; } if (so->so_usecount <= 0) panic("soclose: usecount is zero so=%p\n", so); discard: if (so->so_pcb && so->so_state & SS_NOFDREF) panic("soclose: NOFDREF"); so->so_state |= SS_NOFDREF; #ifdef __APPLE__ so->so_proto->pr_domain->dom_refs--; evsofree(so); #endif so->so_usecount--; sofree(so); return (error); } int soclose(struct socket *so) { int error = 0; socket_lock(so, 1); if (so->so_flags & SOF_UPCALLINUSE) soclose_wait_locked(so); if (so->so_retaincnt == 0) { error = soclose_locked(so); } else { /* * if the FD is going away, but socket is * retained in kernel remove its reference */ so->so_usecount--; if (so->so_usecount < 2) panic("soclose: retaincnt non null and so=%p " "usecount=%d\n", so, so->so_usecount); } socket_unlock(so, 1); return (error); } /* * Must be called at splnet... */ /* Should already be locked */ int soabort(struct socket *so) { int error; #ifdef MORE_LOCKING_DEBUG lck_mtx_t *mutex_held; if (so->so_proto->pr_getlock != NULL) mutex_held = (*so->so_proto->pr_getlock)(so, 0); else mutex_held = so->so_proto->pr_domain->dom_mtx; lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); #endif if ((so->so_flags & SOF_ABORTED) == 0) { so->so_flags |= SOF_ABORTED; error = (*so->so_proto->pr_usrreqs->pru_abort)(so); if (error) { sofree(so); return (error); } } return (0); } int soacceptlock(struct socket *so, struct sockaddr **nam, int dolock) { int error; if (dolock) socket_lock(so, 1); if ((so->so_state & SS_NOFDREF) == 0) panic("soaccept: !NOFDREF"); so->so_state &= ~SS_NOFDREF; error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); if (dolock) socket_unlock(so, 1); return (error); } int soaccept(struct socket *so, struct sockaddr **nam) { return (soacceptlock(so, nam, 1)); } int soacceptfilter(struct socket *so) { struct sockaddr *local = NULL, *remote = NULL; struct socket_filter_entry *filter; int error = 0, filtered = 0; struct socket *head = so->so_head; /* * There's no need to hold the lock; this socket * has not been made visible to the filter(s). */ if ((sock_getaddr(so, &remote, 1) != 0) || sock_getaddr(so, &local, 0) != 0) { so->so_state &= ~(SS_NOFDREF | SS_COMP); so->so_head = NULL; soclose(so); /* Out of resources; try it again next time */ error = ECONNABORTED; goto done; } /* * At this point, we have a reference on the listening socket * so we know it won't be going away. Do the same for the newly * accepted socket while we invoke the accept callback routine. */ socket_lock(so, 1); for (filter = so->so_filt; filter != NULL && error == 0; filter = filter->sfe_next_onsocket) { if (filter->sfe_filter->sf_filter.sf_accept != NULL) { if (!filtered) { filtered = 1; sflt_use(so); socket_unlock(so, 0); } error = filter->sfe_filter->sf_filter. sf_accept(filter->sfe_cookie, head, so, local, remote); } } if (filtered) { socket_lock(so, 0); sflt_unuse(so); } /* * If we get EJUSTRETURN from one of the filters, mark this socket * as inactive and return it anyway. This newly accepted socket * will be disconnected later before we hand it off to the caller. */ if (error == EJUSTRETURN) { error = 0; so->so_flags |= SOF_DEFUNCT; /* Prevent data from being appended to the socket buffers */ so->so_snd.sb_flags |= SB_DROP; so->so_rcv.sb_flags |= SB_DROP; } if (error != 0) { /* * This may seem like a duplication to the above error * handling part when we return ECONNABORTED, except * the following is done while holding the lock since * the socket has been exposed to the filter(s) earlier. */ so->so_state &= ~(SS_NOFDREF | SS_COMP); so->so_head = NULL; socket_unlock(so, 1); soclose(so); /* Propagate socket filter's error code to the caller */ } else { socket_unlock(so, 1); } done: /* Callee checks for NULL pointer */ sock_freeaddr(remote); sock_freeaddr(local); return (error); } /* * Returns: 0 Success * EOPNOTSUPP Operation not supported on socket * EISCONN Socket is connected * :EADDRNOTAVAIL Address not available. * :EINVAL Invalid argument * :EAFNOSUPPORT Address family not supported [notdef] * :EACCES Permission denied * :EADDRINUSE Address in use * :EAGAIN Resource unavailable, try again * :EPERM Operation not permitted * :??? [anything a filter writer might set] */ int soconnectlock(struct socket *so, struct sockaddr *nam, int dolock) { int error; struct proc *p = current_proc(); if (dolock) socket_lock(so, 1); /* * If this is a listening socket or if this is a previously-accepted * socket that has been marked as inactive, reject the connect request. */ if ((so->so_options & SO_ACCEPTCONN) || (so->so_flags & SOF_DEFUNCT)) { if (dolock) socket_unlock(so, 1); return (EOPNOTSUPP); } if ((so->so_restrictions & SO_RESTRICT_DENYOUT) != 0) { if (dolock) socket_unlock(so, 1); return (EPERM); } /* * If protocol is connection-based, can only connect once. * Otherwise, if connected, try to disconnect first. * This allows user to disconnect by connecting to, e.g., * a null address. */ if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && ((so->so_proto->pr_flags & PR_CONNREQUIRED) || (error = sodisconnectlocked(so)))) { error = EISCONN; } else { /* * Run connect filter before calling protocol: * - non-blocking connect returns before completion; */ struct socket_filter_entry *filter; int filtered = 0; error = 0; for (filter = so->so_filt; filter && (error == 0); filter = filter->sfe_next_onsocket) { if (filter->sfe_filter->sf_filter.sf_connect_out) { if (filtered == 0) { filtered = 1; sflt_use(so); socket_unlock(so, 0); } error = filter->sfe_filter->sf_filter. sf_connect_out(filter->sfe_cookie, so, nam); } } if (filtered != 0) { socket_lock(so, 0); sflt_unuse(so); } if (error) { if (error == EJUSTRETURN) error = 0; if (dolock) socket_unlock(so, 1); return (error); } error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, p); } if (dolock) socket_unlock(so, 1); return (error); } int soconnect(struct socket *so, struct sockaddr *nam) { return (soconnectlock(so, nam, 1)); } /* * Returns: 0 Success * :EINVAL[AF_UNIX] * :EPROTOTYPE[AF_UNIX] * :??? [other protocol families] * * Notes: is not supported by [TCP]. */ int soconnect2(struct socket *so1, struct socket *so2) { int error; socket_lock(so1, 1); if (so2->so_proto->pr_lock) socket_lock(so2, 1); error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); socket_unlock(so1, 1); if (so2->so_proto->pr_lock) socket_unlock(so2, 1); return (error); } int sodisconnectlocked(struct socket *so) { int error; if ((so->so_state & SS_ISCONNECTED) == 0) { error = ENOTCONN; goto bad; } if (so->so_state & SS_ISDISCONNECTING) { error = EALREADY; goto bad; } error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); if (error == 0) { sflt_notify(so, sock_evt_disconnected, NULL); } bad: return (error); } /* Locking version */ int sodisconnect(struct socket *so) { int error; socket_lock(so, 1); error = sodisconnectlocked(so); socket_unlock(so, 1); return (error); } #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_DONTWAIT : M_WAIT) /* * sosendcheck will lock the socket buffer if it isn't locked and * verify that there is space for the data being inserted. * * Returns: 0 Success * EPIPE * sblock:EWOULDBLOCK * sblock:EINTR * sbwait:EBADF * sbwait:EINTR * [so_error]:??? */ static int sosendcheck(struct socket *so, struct sockaddr *addr, long resid, long clen, long atomic, int flags, int *sblocked) { int error = 0; long space; int assumelock = 0; restart: if (*sblocked == 0) { if ((so->so_snd.sb_flags & SB_LOCK) != 0 && so->so_send_filt_thread != 0 && so->so_send_filt_thread == current_thread()) { /* * We're being called recursively from a filter, * allow this to continue. Radar 4150520. * Don't set sblocked because we don't want * to perform an unlock later. */ assumelock = 1; } else { error = sblock(&so->so_snd, SBLOCKWAIT(flags)); if (error) { return (error); } *sblocked = 1; } } /* * If a send attempt is made on a previously-accepted socket * that has been marked as inactive (disconnected), reject * the request. */ if (so->so_flags & SOF_DEFUNCT) return (ENOTCONN); if (so->so_state & SS_CANTSENDMORE) return (EPIPE); if (so->so_error) { error = so->so_error; so->so_error = 0; return (error); } if ((so->so_state & SS_ISCONNECTED) == 0) { if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { if ((so->so_state & SS_ISCONFIRMING) == 0 && !(resid == 0 && clen != 0)) return (ENOTCONN); } else if (addr == 0 && !(flags&MSG_HOLD)) { return ((so->so_proto->pr_flags & PR_CONNREQUIRED) ? ENOTCONN : EDESTADDRREQ); } } space = sbspace(&so->so_snd); if (flags & MSG_OOB) space += 1024; if ((atomic && resid > so->so_snd.sb_hiwat) || clen > so->so_snd.sb_hiwat) return (EMSGSIZE); if (space < resid + clen && (atomic || space < (long)so->so_snd.sb_lowat || space < clen)) { if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO) || assumelock) { return (EWOULDBLOCK); } sbunlock(&so->so_snd, 1); error = sbwait(&so->so_snd); if (error) { return (error); } goto restart; } return (0); } /* * Send on a socket. * If send must go all at once and message is larger than * send buffering, then hard error. * Lock against other senders. * If must go all at once and not enough room now, then * inform user that this would block and do nothing. * Otherwise, if nonblocking, send as much as possible. * The data to be sent is described by "uio" if nonzero, * otherwise by the mbuf chain "top" (which must be null * if uio is not). Data provided in mbuf chain must be small * enough to send all at once. * * Returns nonzero on error, timeout or signal; callers * must check for short counts if EINTR/ERESTART are returned. * Data and control buffers are freed on return. * Experiment: * MSG_HOLD: go thru most of sosend(), but just enqueue the mbuf * MSG_SEND: go thru as for MSG_HOLD on current fragment, then * point at the mbuf chain being constructed and go from there. * * Returns: 0 Success * EOPNOTSUPP * EINVAL * ENOBUFS * uiomove:EFAULT * sosendcheck:EPIPE * sosendcheck:EWOULDBLOCK * sosendcheck:EINTR * sosendcheck:EBADF * sosendcheck:EINTR * sosendcheck:??? [value from so_error] * :ECONNRESET[TCP] * :EINVAL[TCP] * :ENOBUFS[TCP] * :EADDRINUSE[TCP] * :EADDRNOTAVAIL[TCP] * :EAFNOSUPPORT[TCP] * :EACCES[TCP] * :EAGAIN[TCP] * :EPERM[TCP] * :EMSGSIZE[TCP] * :EHOSTUNREACH[TCP] * :ENETUNREACH[TCP] * :ENETDOWN[TCP] * :ENOMEM[TCP] * :ENOBUFS[TCP] * :???[TCP] [ignorable: mostly IPSEC/firewall/DLIL] * :EINVAL[AF_UNIX] * :EOPNOTSUPP[AF_UNIX] * :EPIPE[AF_UNIX] * :ENOTCONN[AF_UNIX] * :EISCONN[AF_UNIX] * :???[AF_UNIX] [whatever a filter author chooses] * :??? [whatever a filter author chooses] * * Notes: Other returns depend on the protocol family; all * returns depend on what the filter author causes * their filter to return. */ int sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags) { struct mbuf **mp; register struct mbuf *m, *freelist = NULL; register long space, len, resid; int clen = 0, error, dontroute, mlen, sendflags; int atomic = sosendallatonce(so) || top; int sblocked = 0; struct proc *p = current_proc(); if (uio) { // LP64todo - fix this! resid = uio_resid(uio); } else { resid = top->m_pkthdr.len; } KERNEL_DEBUG((DBG_FNC_SOSEND | DBG_FUNC_START), so, resid, so->so_snd.sb_cc, so->so_snd.sb_lowat, so->so_snd.sb_hiwat); socket_lock(so, 1); if (so->so_type != SOCK_STREAM && (flags & MSG_OOB) != 0) { error = EOPNOTSUPP; socket_unlock(so, 1); goto out; } /* * In theory resid should be unsigned. * However, space must be signed, as it might be less than 0 * if we over-committed, and we must use a signed comparison * of space and resid. On the other hand, a negative resid * causes us to loop sending 0-length segments to the protocol. * * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM * type sockets since that's an error. */ if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { error = EINVAL; socket_unlock(so, 1); goto out; } dontroute = (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && (so->so_proto->pr_flags & PR_ATOMIC); if (p) OSIncrementAtomic(&p->p_stats->p_ru.ru_msgsnd); if (control) clen = control->m_len; do { error = sosendcheck(so, addr, resid, clen, atomic, flags, &sblocked); if (error) { goto release; } mp = ⊤ space = sbspace(&so->so_snd) - clen + ((flags & MSG_OOB) ? 1024 : 0); do { struct socket_filter_entry *filter; int filtered; boolean_t recursive; if (uio == NULL) { /* * Data is prepackaged in "top". */ resid = 0; if (flags & MSG_EOR) top->m_flags |= M_EOR; } else { int chainlength; int bytes_to_copy; boolean_t jumbocl; bytes_to_copy = min(resid, space); if (sosendminchain > 0) { chainlength = 0; } else { chainlength = sosendmaxchain; } /* * Attempt to use larger than system page-size * clusters for large writes only if there is * a jumbo cluster pool and if the socket is * marked accordingly. */ jumbocl = sosendjcl && njcl > 0 && ((so->so_flags & SOF_MULTIPAGES) || sosendjcl_ignore_capab); socket_unlock(so, 0); do { int num_needed; int hdrs_needed = (top == 0) ? 1 : 0; /* * try to maintain a local cache of mbuf * clusters needed to complete this * write the list is further limited to * the number that are currently needed * to fill the socket this mechanism * allows a large number of mbufs/ * clusters to be grabbed under a single * mbuf lock... if we can't get any * clusters, than fall back to trying * for mbufs if we fail early (or * miscalcluate the number needed) make * sure to release any clusters we * haven't yet consumed. */ if (freelist == NULL && bytes_to_copy > NBPG && jumbocl) { num_needed = bytes_to_copy / M16KCLBYTES; if ((bytes_to_copy - (num_needed * M16KCLBYTES)) >= MINCLSIZE) num_needed++; freelist = m_getpackets_internal( (unsigned int *)&num_needed, hdrs_needed, M_WAIT, 0, M16KCLBYTES); /* * Fall back to 4K cluster size * if allocation failed */ } if (freelist == NULL && bytes_to_copy > MCLBYTES) { num_needed = bytes_to_copy / NBPG; if ((bytes_to_copy - (num_needed * NBPG)) >= MINCLSIZE) num_needed++; freelist = m_getpackets_internal( (unsigned int *)&num_needed, hdrs_needed, M_WAIT, 0, NBPG); /* * Fall back to cluster size * if allocation failed */ } if (freelist == NULL && bytes_to_copy > MINCLSIZE) { num_needed = bytes_to_copy / MCLBYTES; if ((bytes_to_copy - (num_needed * MCLBYTES)) >= MINCLSIZE) num_needed++; freelist = m_getpackets_internal( (unsigned int *)&num_needed, hdrs_needed, M_WAIT, 0, MCLBYTES); /* * Fall back to a single mbuf * if allocation failed */ } if (freelist == NULL) { if (top == 0) MGETHDR(freelist, M_WAIT, MT_DATA); else MGET(freelist, M_WAIT, MT_DATA); if (freelist == NULL) { error = ENOBUFS; socket_lock(so, 0); goto release; } /* * For datagram protocols, * leave room for protocol * headers in first mbuf. */ if (atomic && top == 0 && bytes_to_copy < MHLEN) { MH_ALIGN(freelist, bytes_to_copy); } } m = freelist; freelist = m->m_next; m->m_next = NULL; if ((m->m_flags & M_EXT)) mlen = m->m_ext.ext_size; else if ((m->m_flags & M_PKTHDR)) mlen = MHLEN - m_leadingspace(m); else mlen = MLEN; len = min(mlen, bytes_to_copy); chainlength += len; space -= len; error = uiomove(mtod(m, caddr_t), (int)len, uio); // LP64todo - fix this! resid = uio_resid(uio); m->m_len = len; *mp = m; top->m_pkthdr.len += len; if (error) break; mp = &m->m_next; if (resid <= 0) { if (flags & MSG_EOR) top->m_flags |= M_EOR; break; } bytes_to_copy = min(resid, space); } while (space > 0 && (chainlength < sosendmaxchain || atomic || resid < MINCLSIZE)); socket_lock(so, 0); if (error) goto release; } if (flags & (MSG_HOLD|MSG_SEND)) { /* Enqueue for later, go away if HOLD */ register struct mbuf *mb1; if (so->so_temp && (flags & MSG_FLUSH)) { m_freem(so->so_temp); so->so_temp = NULL; } if (so->so_temp) so->so_tail->m_next = top; else so->so_temp = top; mb1 = top; while (mb1->m_next) mb1 = mb1->m_next; so->so_tail = mb1; if (flags & MSG_HOLD) { top = NULL; goto release; } top = so->so_temp; } if (dontroute) so->so_options |= SO_DONTROUTE; /* Compute flags here, for pru_send and NKEs */ sendflags = (flags & MSG_OOB) ? PRUS_OOB : /* * If the user set MSG_EOF, the protocol * understands this flag and nothing left to * send then use PRU_SEND_EOF instead of PRU_SEND. */ ((flags & MSG_EOF) && (so->so_proto->pr_flags & PR_IMPLOPCL) && (resid <= 0)) ? PRUS_EOF : /* If there is more to send set PRUS_MORETOCOME */ (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; /* * Socket filter processing */ recursive = (so->so_send_filt_thread != NULL); filtered = 0; error = 0; for (filter = so->so_filt; filter && (error == 0); filter = filter->sfe_next_onsocket) { if (filter->sfe_filter->sf_filter.sf_data_out) { int so_flags = 0; if (filtered == 0) { filtered = 1; so->so_send_filt_thread = current_thread(); sflt_use(so); socket_unlock(so, 0); so_flags = (sendflags & MSG_OOB) ? sock_data_filt_flag_oob : 0; } error = filter->sfe_filter->sf_filter. sf_data_out(filter->sfe_cookie, so, addr, &top, &control, so_flags); } } if (filtered) { /* * At this point, we've run at least one * filter. The socket is unlocked as is * the socket buffer. Clear the recorded * filter thread only when we are outside * of a filter's context. This allows for * a filter to issue multiple inject calls * from its sf_data_out callback routine. */ socket_lock(so, 0); sflt_unuse(so); if (!recursive) so->so_send_filt_thread = 0; if (error) { if (error == EJUSTRETURN) { error = 0; clen = 0; control = 0; top = 0; } goto release; } } /* * End Socket filter processing */ if (error == EJUSTRETURN) { /* A socket filter handled this data */ error = 0; } else { error = (*so->so_proto->pr_usrreqs->pru_send) (so, sendflags, top, addr, control, p); } #ifdef __APPLE__ if (flags & MSG_SEND) so->so_temp = NULL; #endif if (dontroute) so->so_options &= ~SO_DONTROUTE; clen = 0; control = 0; top = 0; mp = ⊤ if (error) goto release; } while (resid && space > 0); } while (resid); release: if (sblocked) sbunlock(&so->so_snd, 0); /* will unlock socket */ else socket_unlock(so, 1); out: if (top) m_freem(top); if (control) m_freem(control); if (freelist) m_freem_list(freelist); KERNEL_DEBUG(DBG_FNC_SOSEND | DBG_FUNC_END, so, resid, so->so_snd.sb_cc, space, error); return (error); } /* * Implement receive operations on a socket. * We depend on the way that records are added to the sockbuf * by sbappend*. In particular, each record (mbufs linked through m_next) * must begin with an address if the protocol so specifies, * followed by an optional mbuf or mbufs containing ancillary data, * and then zero or more mbufs of data. * In order to avoid blocking network interrupts for the entire time here, * we splx() while doing the actual copy to user space. * Although the sockbuf is locked, new data may still be appended, * and thus we must maintain consistency of the sockbuf during that time. * * The caller may receive the data as a single mbuf chain by supplying * an mbuf **mp0 for use in returning the chain. The uio is then used * only for the count in uio_resid. * * Returns: 0 Success * ENOBUFS * ENOTCONN * EWOULDBLOCK * uiomove:EFAULT * sblock:EWOULDBLOCK * sblock:EINTR * sbwait:EBADF * sbwait:EINTR * sodelayed_copy:EFAULT * :EINVAL[TCP] * :EWOULDBLOCK[TCP] * :??? * dom_externalize>:EMSGSIZE[AF_UNIX] * dom_externalize>:ENOBUFS[AF_UNIX] * dom_externalize>:??? * * Notes: Additional return values from calls through and * dom_externalize> depend on protocols other than * TCP or AF_UNIX, which are documented above. */ int soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { register struct mbuf *m, **mp, *ml = NULL; register int flags, len, error, offset; struct protosw *pr = so->so_proto; struct mbuf *nextrecord; int moff, type = 0; // LP64todo - fix this! int orig_resid = uio_resid(uio); struct mbuf *free_list; int delayed_copy_len; int can_delay; int need_event; struct proc *p = current_proc(); // LP64todo - fix this! KERNEL_DEBUG(DBG_FNC_SORECEIVE | DBG_FUNC_START, so, uio_resid(uio), so->so_rcv.sb_cc, so->so_rcv.sb_lowat, so->so_rcv.sb_hiwat); socket_lock(so, 1); #ifdef MORE_LOCKING_DEBUG if (so->so_usecount == 1) panic("soreceive: so=%x no other reference on socket\n", so); #endif mp = mp0; if (psa) *psa = 0; if (controlp) *controlp = 0; if (flagsp) flags = *flagsp &~ MSG_EOR; else flags = 0; /* * If a recv attempt is made on a previously-accepted socket * that has been marked as inactive (disconnected), reject * the request. */ if (so->so_flags & SOF_DEFUNCT) { struct sockbuf *sb = &so->so_rcv; /* * This socket should have been disconnected and flushed * prior to being returned from accept; there should be * no data on its receive list, so panic otherwise. */ sb_empty_assert(sb, __func__); socket_unlock(so, 1); return (ENOTCONN); } /* * When SO_WANTOOBFLAG is set we try to get out-of-band data * regardless of the flags argument. Here is the case were * out-of-band data is not inline. */ if ((flags & MSG_OOB) || ((so->so_options & SO_WANTOOBFLAG) != 0 && (so->so_options & SO_OOBINLINE) == 0 && (so->so_oobmark || (so->so_state & SS_RCVATMARK)))) { m = m_get(M_WAIT, MT_DATA); if (m == NULL) { socket_unlock(so, 1); KERNEL_DEBUG(DBG_FNC_SORECEIVE | DBG_FUNC_END, ENOBUFS, 0, 0, 0, 0); return (ENOBUFS); } error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); if (error) goto bad; socket_unlock(so, 0); do { // LP64todo - fix this! error = uiomove(mtod(m, caddr_t), (int)min(uio_resid(uio), m->m_len), uio); m = m_free(m); } while (uio_resid(uio) && error == 0 && m); socket_lock(so, 0); bad: if (m) m_freem(m); #ifdef __APPLE__ if ((so->so_options & SO_WANTOOBFLAG) != 0) { if (error == EWOULDBLOCK || error == EINVAL) { /* * Let's try to get normal data: * EWOULDBLOCK: out-of-band data not * receive yet. EINVAL: out-of-band data * already read. */ error = 0; goto nooob; } else if (error == 0 && flagsp) { *flagsp |= MSG_OOB; } } socket_unlock(so, 1); KERNEL_DEBUG(DBG_FNC_SORECEIVE | DBG_FUNC_END, error, 0, 0, 0, 0); #endif return (error); } nooob: if (mp) *mp = (struct mbuf *)0; if (so->so_state & SS_ISCONFIRMING && uio_resid(uio)) (*pr->pr_usrreqs->pru_rcvd)(so, 0); free_list = (struct mbuf *)0; delayed_copy_len = 0; restart: #ifdef MORE_LOCKING_DEBUG if (so->so_usecount <= 1) printf("soreceive: sblock so=%p ref=%d on socket\n", so, so->so_usecount); #endif /* * See if the socket has been closed (SS_NOFDREF|SS_CANTRCVMORE) * and if so just return to the caller. This could happen when * soreceive() is called by a socket upcall function during the * time the socket is freed. The socket buffer would have been * locked across the upcall, therefore we cannot put this thread * to sleep (else we will deadlock) or return EWOULDBLOCK (else * we may livelock), because the lock on the socket buffer will * only be released when the upcall routine returns to its caller. * Because the socket has been officially closed, there can be * no further read on it. */ if ((so->so_state & (SS_NOFDREF | SS_CANTRCVMORE)) == (SS_NOFDREF | SS_CANTRCVMORE)) { socket_unlock(so, 1); return (0); } error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); if (error) { socket_unlock(so, 1); KERNEL_DEBUG(DBG_FNC_SORECEIVE | DBG_FUNC_END, error, 0, 0, 0, 0); return (error); } m = so->so_rcv.sb_mb; /* * If we have less data than requested, block awaiting more * (subject to any timeout) if: * 1. the current count is less than the low water mark, or * 2. MSG_WAITALL is set, and it is possible to do the entire * receive operation at once if we block (resid <= hiwat). * 3. MSG_DONTWAIT is not set * If MSG_WAITALL is set but resid is larger than the receive buffer, * we have to do the receive in sections, and thus risk returning * a short count if a timeout or signal occurs after we start. */ if (m == 0 || (((flags & MSG_DONTWAIT) == 0 && so->so_rcv.sb_cc < uio_resid(uio)) && (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || ((flags & MSG_WAITALL) && uio_resid(uio) <= so->so_rcv.sb_hiwat)) && m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) { /* * Panic if we notice inconsistencies in the socket's * receive list; both sb_mb and sb_cc should correctly * reflect the contents of the list, otherwise we may * end up with false positives during select() or poll() * which could put the application in a bad state. */ if (m == NULL && so->so_rcv.sb_cc != 0) panic("soreceive corrupted so_rcv: m %p cc %lu", m, so->so_rcv.sb_cc); if (so->so_error) { if (m) goto dontblock; error = so->so_error; if ((flags & MSG_PEEK) == 0) so->so_error = 0; goto release; } if (so->so_state & SS_CANTRCVMORE) { if (m) goto dontblock; else goto release; } for (; m; m = m->m_next) if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { m = so->so_rcv.sb_mb; goto dontblock; } if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && (so->so_proto->pr_flags & PR_CONNREQUIRED)) { error = ENOTCONN; goto release; } if (uio_resid(uio) == 0) goto release; if ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO))) { error = EWOULDBLOCK; goto release; } SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); sbunlock(&so->so_rcv, 1); #if EVEN_MORE_LOCKING_DEBUG if (socket_debug) printf("Waiting for socket data\n"); #endif error = sbwait(&so->so_rcv); #if EVEN_MORE_LOCKING_DEBUG if (socket_debug) printf("SORECEIVE - sbwait returned %d\n", error); #endif if (so->so_usecount < 1) panic("soreceive: after 2nd sblock so=%p ref=%d on " "socket\n", so, so->so_usecount); if (error) { socket_unlock(so, 1); KERNEL_DEBUG(DBG_FNC_SORECEIVE | DBG_FUNC_END, error, 0, 0, 0, 0); return (error); } goto restart; } dontblock: #ifndef __APPLE__ if (uio->uio_procp) uio->uio_procp->p_stats->p_ru.ru_msgrcv++; #else /* __APPLE__ */ /* * 2207985 * This should be uio->uio-procp; however, some callers of this * function use auto variables with stack garbage, and fail to * fill out the uio structure properly. */ if (p) OSIncrementAtomic(&p->p_stats->p_ru.ru_msgrcv); #endif /* __APPLE__ */ SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); nextrecord = m->m_nextpkt; if ((pr->pr_flags & PR_ADDR) && m->m_type == MT_SONAME) { KASSERT(m->m_type == MT_SONAME, ("receive 1a")); #if CONFIG_MACF_SOCKET_SUBSET /* * Call the MAC framework for policy checking if we're in * the user process context and the socket isn't connected. */ if (p != kernproc && !(so->so_state & SS_ISCONNECTED)) { struct mbuf *m0 = m; /* * Dequeue this record (temporarily) from the receive * list since we're about to drop the socket's lock * where a new record may arrive and be appended to * the list. Upon MAC policy failure, the record * will be freed. Otherwise, we'll add it back to * the head of the list. We cannot rely on SB_LOCK * because append operation uses the socket's lock. */ do { m->m_nextpkt = NULL; sbfree(&so->so_rcv, m); m = m->m_next; } while (m != NULL); m = m0; so->so_rcv.sb_mb = nextrecord; SB_EMPTY_FIXUP(&so->so_rcv); SBLASTRECORDCHK(&so->so_rcv, "soreceive 1a"); SBLASTMBUFCHK(&so->so_rcv, "soreceive 1a"); socket_unlock(so, 0); if (mac_socket_check_received(proc_ucred(p), so, mtod(m, struct sockaddr *)) != 0) { /* * MAC policy failure; free this record and * process the next record (or block until * one is available). We have adjusted sb_cc * and sb_mbcnt above so there is no need to * call sbfree() again. */ do { m = m_free(m); } while (m != NULL); /* * Clear SB_LOCK but don't unlock the socket. * Process the next record or wait for one. */ socket_lock(so, 0); sbunlock(&so->so_rcv, 1); goto restart; } socket_lock(so, 0); /* * Re-adjust the socket receive list and re-enqueue * the record in front of any packets which may have * been appended while we dropped the lock. */ for (m = m0; m->m_next != NULL; m = m->m_next) sballoc(&so->so_rcv, m); sballoc(&so->so_rcv, m); if (so->so_rcv.sb_mb == NULL) { so->so_rcv.sb_lastrecord = m0; so->so_rcv.sb_mbtail = m; } m = m0; nextrecord = m->m_nextpkt = so->so_rcv.sb_mb; so->so_rcv.sb_mb = m; SBLASTRECORDCHK(&so->so_rcv, "soreceive 1b"); SBLASTMBUFCHK(&so->so_rcv, "soreceive 1b"); } #endif /* CONFIG_MACF_SOCKET_SUBSET */ orig_resid = 0; if (psa) { *psa = dup_sockaddr(mtod(m, struct sockaddr *), mp0 == 0); if ((*psa == 0) && (flags & MSG_NEEDSA)) { error = EWOULDBLOCK; goto release; } } if (flags & MSG_PEEK) { m = m->m_next; } else { sbfree(&so->so_rcv, m); if (m->m_next == 0 && so->so_rcv.sb_cc != 0) panic("soreceive: about to create invalid " "socketbuf"); MFREE(m, so->so_rcv.sb_mb); m = so->so_rcv.sb_mb; if (m != NULL) { m->m_nextpkt = nextrecord; } else { so->so_rcv.sb_mb = nextrecord; SB_EMPTY_FIXUP(&so->so_rcv); } } } /* * Process one or more MT_CONTROL mbufs present before any data mbufs * in the first mbuf chain on the socket buffer. If MSG_PEEK, we * just copy the data; if !MSG_PEEK, we call into the protocol to * perform externalization. */ if (m != NULL && m->m_type == MT_CONTROL) { struct mbuf *cm = NULL, *cmn; struct mbuf **cme = &cm; struct sockbuf *sb_rcv = &so->so_rcv; /* * Externalizing the control messages would require us to * drop the socket's lock below. Once we re-acquire the * lock, the mbuf chain might change. In order to preserve * consistency, we unlink all control messages from the * first mbuf chain in one shot and link them separately * onto a different chain. */ do { if (flags & MSG_PEEK) { if (controlp != NULL) { *controlp = m_copy(m, 0, m->m_len); controlp = &(*controlp)->m_next; } m = m->m_next; } else { m->m_nextpkt = NULL; sbfree(sb_rcv, m); sb_rcv->sb_mb = m->m_next; m->m_next = NULL; *cme = m; cme = &(*cme)->m_next; m = sb_rcv->sb_mb; } } while (m != NULL && m->m_type == MT_CONTROL); if (!(flags & MSG_PEEK)) { if (sb_rcv->sb_mb != NULL) { sb_rcv->sb_mb->m_nextpkt = nextrecord; } else { sb_rcv->sb_mb = nextrecord; SB_EMPTY_FIXUP(sb_rcv); } if (nextrecord == NULL) sb_rcv->sb_lastrecord = m; } SBLASTRECORDCHK(&so->so_rcv, "soreceive ctl"); SBLASTMBUFCHK(&so->so_rcv, "soreceive ctl"); while (cm != NULL) { int cmsg_type; cmn = cm->m_next; cm->m_next = NULL; cmsg_type = mtod(cm, struct cmsghdr *)->cmsg_type; /* * Call the protocol to externalize SCM_RIGHTS message * and return the modified message to the caller upon * success. Otherwise, all other control messages are * returned unmodified to the caller. Note that we * only get into this loop if MSG_PEEK is not set. */ if (pr->pr_domain->dom_externalize != NULL && cmsg_type == SCM_RIGHTS) { /* * Release socket lock: see 3903171. This * would also allow more records to be appended * to the socket buffer. We still have SB_LOCK * set on it, so we can be sure that the head * of the mbuf chain won't change. */ socket_unlock(so, 0); error = (*pr->pr_domain->dom_externalize)(cm); socket_lock(so, 0); } else { error = 0; } if (controlp != NULL && error == 0) { *controlp = cm; controlp = &(*controlp)->m_next; orig_resid = 0; } else { (void) m_free(cm); } cm = cmn; } orig_resid = 0; if (sb_rcv->sb_mb != NULL) nextrecord = sb_rcv->sb_mb->m_nextpkt; else nextrecord = NULL; } if (m != NULL) { if (!(flags & MSG_PEEK)) { /* * We get here because m points to an mbuf following * any MT_SONAME or MT_CONTROL mbufs which have been * processed above. In any case, m should be pointing * to the head of the mbuf chain, and the nextrecord * should be either NULL or equal to m->m_nextpkt. * See comments above about SB_LOCK. */ if (m != so->so_rcv.sb_mb || m->m_nextpkt != nextrecord) panic("soreceive: post-control !sync so=%p " "m=%p nextrecord=%p\n", so, m, nextrecord); if (nextrecord == NULL) so->so_rcv.sb_lastrecord = m; } type = m->m_type; if (type == MT_OOBDATA) flags |= MSG_OOB; } else { if (!(flags & MSG_PEEK)) { so->so_rcv.sb_mb = nextrecord; SB_EMPTY_FIXUP(&so->so_rcv); } } SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); moff = 0; offset = 0; if (!(flags & MSG_PEEK) && uio_resid(uio) > sorecvmincopy) can_delay = 1; else can_delay = 0; need_event = 0; while (m && (uio_resid(uio) - delayed_copy_len) > 0 && error == 0) { if (m->m_type == MT_OOBDATA) { if (type != MT_OOBDATA) break; } else if (type == MT_OOBDATA) { break; } /* * Make sure to allways set MSG_OOB event when getting * out of band data inline. */ if ((so->so_options & SO_WANTOOBFLAG) != 0 && (so->so_options & SO_OOBINLINE) != 0 && (so->so_state & SS_RCVATMARK) != 0) { flags |= MSG_OOB; } so->so_state &= ~SS_RCVATMARK; // LP64todo - fix this! len = uio_resid(uio) - delayed_copy_len; if (so->so_oobmark && len > so->so_oobmark - offset) len = so->so_oobmark - offset; if (len > m->m_len - moff) len = m->m_len - moff; /* * If mp is set, just pass back the mbufs. * Otherwise copy them out via the uio, then free. * Sockbuf must be consistent here (points to current mbuf, * it points to next record) when we drop priority; * we must note any additions to the sockbuf when we * block interrupts again. */ if (mp == 0) { SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); if (can_delay && len == m->m_len) { /* * only delay the copy if we're consuming the * mbuf and we're NOT in MSG_PEEK mode * and we have enough data to make it worthwile * to drop and retake the lock... can_delay * reflects the state of the 2 latter * constraints moff should always be zero * in these cases */ delayed_copy_len += len; } else { if (delayed_copy_len) { error = sodelayed_copy(so, uio, &free_list, &delayed_copy_len); if (error) { goto release; } /* * can only get here if MSG_PEEK is not * set therefore, m should point at the * head of the rcv queue; if it doesn't, * it means something drastically * changed while we were out from behind * the lock in sodelayed_copy. perhaps * a RST on the stream. in any event, * the stream has been interrupted. it's * probably best just to return whatever * data we've moved and let the caller * sort it out... */ if (m != so->so_rcv.sb_mb) { break; } } socket_unlock(so, 0); error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio); socket_lock(so, 0); if (error) goto release; } } else { uio_setresid(uio, (uio_resid(uio) - len)); } if (len == m->m_len - moff) { if (m->m_flags & M_EOR) flags |= MSG_EOR; if (flags & MSG_PEEK) { m = m->m_next; moff = 0; } else { nextrecord = m->m_nextpkt; sbfree(&so->so_rcv, m); m->m_nextpkt = NULL; if (mp) { *mp = m; mp = &m->m_next; so->so_rcv.sb_mb = m = m->m_next; *mp = (struct mbuf *)0; } else { if (free_list == NULL) free_list = m; else ml->m_next = m; ml = m; so->so_rcv.sb_mb = m = m->m_next; ml->m_next = 0; } if (m != NULL) { m->m_nextpkt = nextrecord; if (nextrecord == NULL) so->so_rcv.sb_lastrecord = m; } else { so->so_rcv.sb_mb = nextrecord; SB_EMPTY_FIXUP(&so->so_rcv); } SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); } } else { if (flags & MSG_PEEK) { moff += len; } else { if (mp) *mp = m_copym(m, 0, len, M_WAIT); m->m_data += len; m->m_len -= len; so->so_rcv.sb_cc -= len; } } if (so->so_oobmark) { if ((flags & MSG_PEEK) == 0) { so->so_oobmark -= len; if (so->so_oobmark == 0) { so->so_state |= SS_RCVATMARK; /* * delay posting the actual event until * after any delayed copy processing * has finished */ need_event = 1; break; } } else { offset += len; if (offset == so->so_oobmark) break; } } if (flags & MSG_EOR) break; /* * If the MSG_WAITALL or MSG_WAITSTREAM flag is set * (for non-atomic socket), we must not quit until * "uio->uio_resid == 0" or an error termination. * If a signal/timeout occurs, return with a short * count but without error. Keep sockbuf locked * against other readers. */ while (flags & (MSG_WAITALL|MSG_WAITSTREAM) && m == 0 && (uio_resid(uio) - delayed_copy_len) > 0 && !sosendallatonce(so) && !nextrecord) { if (so->so_error || so->so_state & SS_CANTRCVMORE) goto release; /* * Depending on the protocol (e.g. TCP), the following * might cause the socket lock to be dropped and later * be reacquired, and more data could have arrived and * have been appended to the receive socket buffer by * the time it returns. Therefore, we only sleep in * sbwait() below if and only if the socket buffer is * empty, in order to avoid a false sleep. */ if (pr->pr_flags & PR_WANTRCVD && so->so_pcb && (((struct inpcb *)so->so_pcb)->inp_state != INPCB_STATE_DEAD)) (*pr->pr_usrreqs->pru_rcvd)(so, flags); SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); if (so->so_rcv.sb_mb == NULL && sbwait(&so->so_rcv)) { error = 0; goto release; } /* * have to wait until after we get back from the sbwait * to do the copy because we will drop the lock if we * have enough data that has been delayed... by dropping * the lock we open up a window allowing the netisr * thread to process the incoming packets and to change * the state of this socket... we're issuing the sbwait * because the socket is empty and we're expecting the * netisr thread to wake us up when more packets arrive; * if we allow that processing to happen and then sbwait * we could stall forever with packets sitting in the * socket if no further packets arrive from the remote * side. * * we want to copy before we've collected all the data * to satisfy this request to allow the copy to overlap * the incoming packet processing on an MP system */ if (delayed_copy_len > sorecvmincopy && (delayed_copy_len > (so->so_rcv.sb_hiwat / 2))) { error = sodelayed_copy(so, uio, &free_list, &delayed_copy_len); if (error) goto release; } m = so->so_rcv.sb_mb; if (m) { nextrecord = m->m_nextpkt; } } } #ifdef MORE_LOCKING_DEBUG if (so->so_usecount <= 1) panic("soreceive: after big while so=%p ref=%d on socket\n", so, so->so_usecount); #endif if (m && pr->pr_flags & PR_ATOMIC) { #ifdef __APPLE__ if (so->so_options & SO_DONTTRUNC) { flags |= MSG_RCVMORE; } else { #endif flags |= MSG_TRUNC; if ((flags & MSG_PEEK) == 0) (void) sbdroprecord(&so->so_rcv); #ifdef __APPLE__ } #endif } /* * pru_rcvd below (for TCP) may cause more data to be received * if the socket lock is dropped prior to sending the ACK; some * legacy OpenTransport applications don't handle this well * (if it receives less data than requested while MSG_HAVEMORE * is set), and so we set the flag now based on what we know * prior to calling pru_rcvd. */ if ((so->so_options & SO_WANTMORE) && so->so_rcv.sb_cc > 0) flags |= MSG_HAVEMORE; if ((flags & MSG_PEEK) == 0) { if (m == 0) { so->so_rcv.sb_mb = nextrecord; /* * First part is an inline SB_EMPTY_FIXUP(). Second * part makes sure sb_lastrecord is up-to-date if * there is still data in the socket buffer. */ if (so->so_rcv.sb_mb == NULL) { so->so_rcv.sb_mbtail = NULL; so->so_rcv.sb_lastrecord = NULL; } else if (nextrecord->m_nextpkt == NULL) { so->so_rcv.sb_lastrecord = nextrecord; } } SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) (*pr->pr_usrreqs->pru_rcvd)(so, flags); } #ifdef __APPLE__ if (delayed_copy_len) { error = sodelayed_copy(so, uio, &free_list, &delayed_copy_len); if (error) goto release; } if (free_list) { m_freem_list((struct mbuf *)free_list); free_list = (struct mbuf *)0; } if (need_event) postevent(so, 0, EV_OOB); #endif if (orig_resid == uio_resid(uio) && orig_resid && (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { sbunlock(&so->so_rcv, 1); goto restart; } if (flagsp) *flagsp |= flags; release: #ifdef MORE_LOCKING_DEBUG if (so->so_usecount <= 1) panic("soreceive: release so=%p ref=%d on socket\n", so, so->so_usecount); #endif if (delayed_copy_len) { error = sodelayed_copy(so, uio, &free_list, &delayed_copy_len); } if (free_list) { m_freem_list((struct mbuf *)free_list); } sbunlock(&so->so_rcv, 0); /* will unlock socket */ // LP64todo - fix this! KERNEL_DEBUG(DBG_FNC_SORECEIVE | DBG_FUNC_END, so, uio_resid(uio), so->so_rcv.sb_cc, 0, error); return (error); } /* * Returns: 0 Success * uiomove:EFAULT */ static int sodelayed_copy(struct socket *so, struct uio *uio, struct mbuf **free_list, int *resid) { int error = 0; struct mbuf *m; m = *free_list; socket_unlock(so, 0); while (m && error == 0) { error = uiomove(mtod(m, caddr_t), (int)m->m_len, uio); m = m->m_next; } m_freem_list(*free_list); *free_list = (struct mbuf *)NULL; *resid = 0; socket_lock(so, 0); return (error); } /* * Returns: 0 Success * EINVAL * ENOTCONN * :EINVAL * :EADDRNOTAVAIL[TCP] * :ENOBUFS[TCP] * :EMSGSIZE[TCP] * :EHOSTUNREACH[TCP] * :ENETUNREACH[TCP] * :ENETDOWN[TCP] * :ENOMEM[TCP] * :EACCES[TCP] * :EMSGSIZE[TCP] * :ENOBUFS[TCP] * :???[TCP] [ignorable: mostly IPSEC/firewall/DLIL] * :??? [other protocol families] */ int soshutdown(struct socket *so, int how) { int error; switch (how) { case SHUT_RD: case SHUT_WR: case SHUT_RDWR: socket_lock(so, 1); if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING|SS_ISDISCONNECTING)) == 0) { error = ENOTCONN; } else { error = soshutdownlock(so, how); } socket_unlock(so, 1); break; default: error = EINVAL; break; } return (error); } int soshutdownlock(struct socket *so, int how) { struct protosw *pr = so->so_proto; int error = 0; sflt_notify(so, sock_evt_shutdown, &how); if (how != SHUT_WR) { if ((so->so_state & SS_CANTRCVMORE) != 0) { /* read already shut down */ error = ENOTCONN; goto done; } sorflush(so); postevent(so, 0, EV_RCLOSED); } if (how != SHUT_RD) { if ((so->so_state & SS_CANTSENDMORE) != 0) { /* write already shut down */ error = ENOTCONN; goto done; } error = (*pr->pr_usrreqs->pru_shutdown)(so); postevent(so, 0, EV_WCLOSED); } done: KERNEL_DEBUG(DBG_FNC_SOSHUTDOWN | DBG_FUNC_END, 0, 0, 0, 0, 0); return (error); } void sorflush(struct socket *so) { register struct sockbuf *sb = &so->so_rcv; register struct protosw *pr = so->so_proto; struct sockbuf asb; #ifdef MORE_LOCKING_DEBUG lck_mtx_t *mutex_held; if (so->so_proto->pr_getlock != NULL) mutex_held = (*so->so_proto->pr_getlock)(so, 0); else mutex_held = so->so_proto->pr_domain->dom_mtx; lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); #endif sflt_notify(so, sock_evt_flush_read, NULL); sb->sb_flags |= SB_NOINTR; (void) sblock(sb, M_WAIT); socantrcvmore(so); sbunlock(sb, 1); #ifdef __APPLE__ selthreadclear(&sb->sb_sel); #endif asb = *sb; bzero((caddr_t)sb, sizeof (*sb)); sb->sb_so = so; /* reestablish link to socket */ if (asb.sb_flags & SB_KNOTE) { sb->sb_sel.si_note = asb.sb_sel.si_note; sb->sb_flags = SB_KNOTE; } if (asb.sb_flags & SB_DROP) sb->sb_flags |= SB_DROP; if (asb.sb_flags & SB_UNIX) sb->sb_flags |= SB_UNIX; if ((pr->pr_flags & PR_RIGHTS) && pr->pr_domain->dom_dispose) { boolean_t unp = (pr->pr_domain->dom_dispose == unp_dispose); /* * Currently AF_UNIX domain uses a global domain mutex; * unp_dispose() may end up calling soclose() on another * AF_UNIX socket and therefore the lock must not be held * across the call. */ if (unp) socket_unlock(so, 0); (*pr->pr_domain->dom_dispose)(asb.sb_mb); if (unp) socket_lock(so, 0); } sbrelease(&asb); } /* * Perhaps this routine, and sooptcopyout(), below, ought to come in * an additional variant to handle the case where the option value needs * to be some kind of integer, but not a specific size. * In addition to their use here, these functions are also called by the * protocol-level pr_ctloutput() routines. * * Returns: 0 Success * EINVAL * copyin:EFAULT */ int sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) { size_t valsize; /* * If the user gives us more than we wanted, we ignore it, * but if we don't get the minimum length the caller * wants, we return EINVAL. On success, sopt->sopt_valsize * is set to however much we actually retrieved. */ if ((valsize = sopt->sopt_valsize) < minlen) return (EINVAL); if (valsize > len) sopt->sopt_valsize = valsize = len; if (sopt->sopt_p != 0) return (copyin(sopt->sopt_val, buf, valsize)); bcopy(CAST_DOWN(caddr_t, sopt->sopt_val), buf, valsize); return (0); } /* * sooptcopyin_timeval * Copy in a timeval value into tv_p, and take into account whether the * the calling process is 64-bit or 32-bit. Moved the sanity checking * code here so that we can verify the 64-bit tv_sec value before we lose * the top 32-bits assigning tv64.tv_sec to tv_p->tv_sec. */ static int sooptcopyin_timeval(struct sockopt *sopt, struct timeval * tv_p) { int error; if (proc_is64bit(sopt->sopt_p)) { struct timeval64 tv64; if (sopt->sopt_valsize < sizeof(tv64)) { return (EINVAL); } sopt->sopt_valsize = sizeof(tv64); error = copyin(sopt->sopt_val, &tv64, sizeof(tv64)); if (error != 0) { return (error); } if (tv64.tv_sec < 0 || tv64.tv_sec > LONG_MAX || tv64.tv_usec < 0 || tv64.tv_usec >= 1000000) { return (EDOM); } tv_p->tv_sec = tv64.tv_sec; tv_p->tv_usec = tv64.tv_usec; } else { if (sopt->sopt_valsize < sizeof(*tv_p)) { return (EINVAL); } sopt->sopt_valsize = sizeof(*tv_p); if (sopt->sopt_p != 0) { error = copyin(sopt->sopt_val, tv_p, sizeof(*tv_p)); if (error != 0) { return (error); } } else { bcopy(CAST_DOWN(caddr_t, sopt->sopt_val), tv_p, sizeof(*tv_p)); } if (tv_p->tv_sec < 0 || tv_p->tv_sec > LONG_MAX || tv_p->tv_usec < 0 || tv_p->tv_usec >= 1000000) { return (EDOM); } } return (0); } /* * Returns: 0 Success * EINVAL * ENOPROTOOPT * ENOBUFS * EDOM * sooptcopyin:EINVAL * sooptcopyin:EFAULT * sooptcopyin_timeval:EINVAL * sooptcopyin_timeval:EFAULT * sooptcopyin_timeval:EDOM * :EOPNOTSUPP[AF_UNIX] * :???w * sflt_attach_private:??? [whatever a filter author chooses] * :??? [whatever a filter author chooses] * * Notes: Other returns depend on the protocol family; all * returns depend on what the filter author causes * their filter to return. */ int sosetopt(struct socket *so, struct sockopt *sopt) { int error, optval; struct linger l; struct timeval tv; struct socket_filter_entry *filter; int filtered = 0; #if CONFIG_MACF_SOCKET struct mac extmac; #endif /* MAC_SOCKET */ socket_lock(so, 1); if ((so->so_state & (SS_CANTRCVMORE | SS_CANTSENDMORE)) == (SS_CANTRCVMORE | SS_CANTSENDMORE)) { /* the socket has been shutdown, no more sockopt's */ error = EINVAL; goto bad; } if (sopt->sopt_dir != SOPT_SET) { sopt->sopt_dir = SOPT_SET; } error = 0; for (filter = so->so_filt; filter && (error == 0); filter = filter->sfe_next_onsocket) { if (filter->sfe_filter->sf_filter.sf_setoption) { if (filtered == 0) { filtered = 1; sflt_use(so); socket_unlock(so, 0); } error = filter->sfe_filter->sf_filter. sf_setoption(filter->sfe_cookie, so, sopt); } } if (filtered != 0) { socket_lock(so, 0); sflt_unuse(so); if (error) { if (error == EJUSTRETURN) error = 0; goto bad; } } error = 0; if (sopt->sopt_level != SOL_SOCKET) { if (so->so_proto && so->so_proto->pr_ctloutput) { error = (*so->so_proto->pr_ctloutput)(so, sopt); socket_unlock(so, 1); return (error); } error = ENOPROTOOPT; } else { switch (sopt->sopt_name) { case SO_LINGER: case SO_LINGER_SEC: error = sooptcopyin(sopt, &l, sizeof (l), sizeof (l)); if (error) goto bad; so->so_linger = (sopt->sopt_name == SO_LINGER) ? l.l_linger : l.l_linger * hz; if (l.l_onoff) so->so_options |= SO_LINGER; else so->so_options &= ~SO_LINGER; break; case SO_DEBUG: case SO_KEEPALIVE: case SO_DONTROUTE: case SO_USELOOPBACK: case SO_BROADCAST: case SO_REUSEADDR: case SO_REUSEPORT: case SO_OOBINLINE: case SO_TIMESTAMP: #ifdef __APPLE__ case SO_DONTTRUNC: case SO_WANTMORE: case SO_WANTOOBFLAG: #endif error = sooptcopyin(sopt, &optval, sizeof (optval), sizeof (optval)); if (error) goto bad; if (optval) so->so_options |= sopt->sopt_name; else so->so_options &= ~sopt->sopt_name; break; case SO_SNDBUF: case SO_RCVBUF: case SO_SNDLOWAT: case SO_RCVLOWAT: error = sooptcopyin(sopt, &optval, sizeof (optval), sizeof (optval)); if (error) goto bad; /* * Values < 1 make no sense for any of these * options, so disallow them. */ if (optval < 1) { error = EINVAL; goto bad; } switch (sopt->sopt_name) { case SO_SNDBUF: case SO_RCVBUF: if (sbreserve(sopt->sopt_name == SO_SNDBUF ? &so->so_snd : &so->so_rcv, (u_long) optval) == 0) { error = ENOBUFS; goto bad; } if (sopt->sopt_name == SO_SNDBUF) so->so_snd.sb_flags |= SB_USRSIZE; else so->so_rcv.sb_flags |= SB_USRSIZE; break; /* * Make sure the low-water is never greater than * the high-water. */ case SO_SNDLOWAT: so->so_snd.sb_lowat = (optval > so->so_snd.sb_hiwat) ? so->so_snd.sb_hiwat : optval; break; case SO_RCVLOWAT: so->so_rcv.sb_lowat = (optval > so->so_rcv.sb_hiwat) ? so->so_rcv.sb_hiwat : optval; break; } break; case SO_SNDTIMEO: case SO_RCVTIMEO: error = sooptcopyin_timeval(sopt, &tv); if (error) goto bad; switch (sopt->sopt_name) { case SO_SNDTIMEO: so->so_snd.sb_timeo = tv; break; case SO_RCVTIMEO: so->so_rcv.sb_timeo = tv; break; } break; case SO_NKE: { struct so_nke nke; error = sooptcopyin(sopt, &nke, sizeof (nke), sizeof (nke)); if (error) goto bad; error = sflt_attach_private(so, NULL, nke.nke_handle, 1); break; } case SO_NOSIGPIPE: error = sooptcopyin(sopt, &optval, sizeof (optval), sizeof (optval)); if (error) goto bad; if (optval) so->so_flags |= SOF_NOSIGPIPE; else so->so_flags &= ~SOF_NOSIGPIPE; break; case SO_NOADDRERR: error = sooptcopyin(sopt, &optval, sizeof (optval), sizeof (optval)); if (error) goto bad; if (optval) so->so_flags |= SOF_NOADDRAVAIL; else so->so_flags &= ~SOF_NOADDRAVAIL; break; case SO_REUSESHAREUID: error = sooptcopyin(sopt, &optval, sizeof (optval), sizeof (optval)); if (error) goto bad; if (optval) so->so_flags |= SOF_REUSESHAREUID; else so->so_flags &= ~SOF_REUSESHAREUID; break; #ifdef __APPLE_API_PRIVATE case SO_NOTIFYCONFLICT: if (kauth_cred_issuser(kauth_cred_get()) == 0) { error = EPERM; goto bad; } error = sooptcopyin(sopt, &optval, sizeof (optval), sizeof (optval)); if (error) goto bad; if (optval) so->so_flags |= SOF_NOTIFYCONFLICT; else so->so_flags &= ~SOF_NOTIFYCONFLICT; break; #endif case SO_RESTRICTIONS: if (kauth_cred_issuser(kauth_cred_get()) == 0) { error = EPERM; goto bad; } error = sooptcopyin(sopt, &optval, sizeof (optval), sizeof (optval)); if (error) goto bad; so->so_restrictions = (optval & (SO_RESTRICT_DENYIN | SO_RESTRICT_DENYOUT | SO_RESTRICT_DENYSET)); break; case SO_LABEL: #if CONFIG_MACF_SOCKET if ((error = sooptcopyin(sopt, &extmac, sizeof (extmac), sizeof (extmac))) != 0) goto bad; error = mac_setsockopt_label(proc_ucred(sopt->sopt_p), so, &extmac); #else error = EOPNOTSUPP; #endif /* MAC_SOCKET */ break; #ifdef __APPLE_API_PRIVATE case SO_UPCALLCLOSEWAIT: error = sooptcopyin(sopt, &optval, sizeof (optval), sizeof (optval)); if (error) goto bad; if (optval) so->so_flags |= SOF_UPCALLCLOSEWAIT; else so->so_flags &= ~SOF_UPCALLCLOSEWAIT; break; #endif default: error = ENOPROTOOPT; break; } if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) { (void) ((*so->so_proto->pr_ctloutput)(so, sopt)); } } bad: socket_unlock(so, 1); return (error); } /* Helper routines for getsockopt */ int sooptcopyout(struct sockopt *sopt, void *buf, size_t len) { int error; size_t valsize; error = 0; /* * Documented get behavior is that we always return a value, * possibly truncated to fit in the user's buffer. * Traditional behavior is that we always tell the user * precisely how much we copied, rather than something useful * like the total amount we had available for her. * Note that this interface is not idempotent; the entire answer must * generated ahead of time. */ valsize = min(len, sopt->sopt_valsize); sopt->sopt_valsize = valsize; if (sopt->sopt_val != USER_ADDR_NULL) { if (sopt->sopt_p != 0) error = copyout(buf, sopt->sopt_val, valsize); else bcopy(buf, CAST_DOWN(caddr_t, sopt->sopt_val), valsize); } return (error); } static int sooptcopyout_timeval(struct sockopt *sopt, const struct timeval * tv_p) { int error; size_t len; struct timeval64 tv64; const void * val; size_t valsize; error = 0; if (proc_is64bit(sopt->sopt_p)) { len = sizeof(struct timeval64); tv64.tv_sec = tv_p->tv_sec; tv64.tv_usec = tv_p->tv_usec; val = &tv64; } else { len = sizeof(struct timeval); val = tv_p; } valsize = min(len, sopt->sopt_valsize); sopt->sopt_valsize = valsize; if (sopt->sopt_val != USER_ADDR_NULL) { if (sopt->sopt_p != 0) error = copyout(val, sopt->sopt_val, valsize); else bcopy(val, CAST_DOWN(caddr_t, sopt->sopt_val), valsize); } return (error); } /* * Return: 0 Success * ENOPROTOOPT * :EOPNOTSUPP[AF_UNIX] * :??? * :??? */ int sogetopt(struct socket *so, struct sockopt *sopt) { int error, optval; struct linger l; struct timeval tv; struct socket_filter_entry *filter; int filtered = 0; #if CONFIG_MACF_SOCKET struct mac extmac; #endif /* MAC_SOCKET */ if (sopt->sopt_dir != SOPT_GET) { sopt->sopt_dir = SOPT_GET; } socket_lock(so, 1); error = 0; for (filter = so->so_filt; filter && (error == 0); filter = filter->sfe_next_onsocket) { if (filter->sfe_filter->sf_filter.sf_getoption) { if (filtered == 0) { filtered = 1; sflt_use(so); socket_unlock(so, 0); } error = filter->sfe_filter->sf_filter. sf_getoption(filter->sfe_cookie, so, sopt); } } if (filtered != 0) { socket_lock(so, 0); sflt_unuse(so); if (error) { if (error == EJUSTRETURN) error = 0; socket_unlock(so, 1); return (error); } } error = 0; if (sopt->sopt_level != SOL_SOCKET) { if (so->so_proto && so->so_proto->pr_ctloutput) { error = (*so->so_proto->pr_ctloutput)(so, sopt); socket_unlock(so, 1); return (error); } else { socket_unlock(so, 1); return (ENOPROTOOPT); } } else { switch (sopt->sopt_name) { case SO_LINGER: case SO_LINGER_SEC: l.l_onoff = so->so_options & SO_LINGER; l.l_linger = (sopt->sopt_name == SO_LINGER) ? so->so_linger : so->so_linger / hz; error = sooptcopyout(sopt, &l, sizeof (l)); break; case SO_USELOOPBACK: case SO_DONTROUTE: case SO_DEBUG: case SO_KEEPALIVE: case SO_REUSEADDR: case SO_REUSEPORT: case SO_BROADCAST: case SO_OOBINLINE: case SO_TIMESTAMP: #ifdef __APPLE__ case SO_DONTTRUNC: case SO_WANTMORE: case SO_WANTOOBFLAG: #endif optval = so->so_options & sopt->sopt_name; integer: error = sooptcopyout(sopt, &optval, sizeof (optval)); break; case SO_TYPE: optval = so->so_type; goto integer; #ifdef __APPLE__ case SO_NREAD: if (so->so_proto->pr_flags & PR_ATOMIC) { int pkt_total; struct mbuf *m1; pkt_total = 0; m1 = so->so_rcv.sb_mb; while (m1) { if (m1->m_type == MT_DATA || m1->m_type == MT_HEADER || m1->m_type == MT_OOBDATA) pkt_total += m1->m_len; m1 = m1->m_next; } optval = pkt_total; } else { optval = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; } goto integer; case SO_NWRITE: optval = so->so_snd.sb_cc; goto integer; #endif case SO_ERROR: optval = so->so_error; so->so_error = 0; goto integer; case SO_SNDBUF: optval = so->so_snd.sb_hiwat; goto integer; case SO_RCVBUF: optval = so->so_rcv.sb_hiwat; goto integer; case SO_SNDLOWAT: optval = so->so_snd.sb_lowat; goto integer; case SO_RCVLOWAT: optval = so->so_rcv.sb_lowat; goto integer; case SO_SNDTIMEO: case SO_RCVTIMEO: tv = (sopt->sopt_name == SO_SNDTIMEO ? so->so_snd.sb_timeo : so->so_rcv.sb_timeo); error = sooptcopyout_timeval(sopt, &tv); break; case SO_NOSIGPIPE: optval = (so->so_flags & SOF_NOSIGPIPE); goto integer; case SO_NOADDRERR: optval = (so->so_flags & SOF_NOADDRAVAIL); goto integer; case SO_REUSESHAREUID: optval = (so->so_flags & SOF_REUSESHAREUID); goto integer; #ifdef __APPLE_API_PRIVATE case SO_NOTIFYCONFLICT: optval = (so->so_flags & SOF_NOTIFYCONFLICT); goto integer; #endif case SO_RESTRICTIONS: optval = so->so_restrictions & (SO_RESTRICT_DENYIN | SO_RESTRICT_DENYOUT | SO_RESTRICT_DENYSET); goto integer; case SO_LABEL: #if CONFIG_MACF_SOCKET if ((error = sooptcopyin(sopt, &extmac, sizeof (extmac), sizeof (extmac))) != 0 || (error = mac_socket_label_get(proc_ucred( sopt->sopt_p), so, &extmac)) != 0) break; error = sooptcopyout(sopt, &extmac, sizeof (extmac)); #else error = EOPNOTSUPP; #endif /* MAC_SOCKET */ break; case SO_PEERLABEL: #if CONFIG_MACF_SOCKET if ((error = sooptcopyin(sopt, &extmac, sizeof (extmac), sizeof (extmac))) != 0 || (error = mac_socketpeer_label_get(proc_ucred( sopt->sopt_p), so, &extmac)) != 0) break; error = sooptcopyout(sopt, &extmac, sizeof (extmac)); #else error = EOPNOTSUPP; #endif /* MAC_SOCKET */ break; #ifdef __APPLE_API_PRIVATE case SO_UPCALLCLOSEWAIT: optval = (so->so_flags & SOF_UPCALLCLOSEWAIT); goto integer; #endif default: error = ENOPROTOOPT; break; } socket_unlock(so, 1); return (error); } } /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ int soopt_getm(struct sockopt *sopt, struct mbuf **mp) { struct mbuf *m, *m_prev; int sopt_size = sopt->sopt_valsize; if (sopt_size > MAX_SOOPTGETM_SIZE) return (EMSGSIZE); MGET(m, sopt->sopt_p ? M_WAIT : M_DONTWAIT, MT_DATA); if (m == 0) return (ENOBUFS); if (sopt_size > MLEN) { MCLGET(m, sopt->sopt_p ? M_WAIT : M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_free(m); return (ENOBUFS); } m->m_len = min(MCLBYTES, sopt_size); } else { m->m_len = min(MLEN, sopt_size); } sopt_size -= m->m_len; *mp = m; m_prev = m; while (sopt_size) { MGET(m, sopt->sopt_p ? M_WAIT : M_DONTWAIT, MT_DATA); if (m == 0) { m_freem(*mp); return (ENOBUFS); } if (sopt_size > MLEN) { MCLGET(m, sopt->sopt_p ? M_WAIT : M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(*mp); return (ENOBUFS); } m->m_len = min(MCLBYTES, sopt_size); } else { m->m_len = min(MLEN, sopt_size); } sopt_size -= m->m_len; m_prev->m_next = m; m_prev = m; } return (0); } /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ int soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) { struct mbuf *m0 = m; if (sopt->sopt_val == USER_ADDR_NULL) return (0); while (m != NULL && sopt->sopt_valsize >= m->m_len) { if (sopt->sopt_p != NULL) { int error; error = copyin(sopt->sopt_val, mtod(m, char *), m->m_len); if (error != 0) { m_freem(m0); return (error); } } else { bcopy(CAST_DOWN(caddr_t, sopt->sopt_val), mtod(m, char *), m->m_len); } sopt->sopt_valsize -= m->m_len; sopt->sopt_val += m->m_len; m = m->m_next; } if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ panic("soopt_mcopyin"); return (0); } /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ int soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) { struct mbuf *m0 = m; size_t valsize = 0; if (sopt->sopt_val == USER_ADDR_NULL) return (0); while (m != NULL && sopt->sopt_valsize >= m->m_len) { if (sopt->sopt_p != NULL) { int error; error = copyout(mtod(m, char *), sopt->sopt_val, m->m_len); if (error != 0) { m_freem(m0); return (error); } } else { bcopy(mtod(m, char *), CAST_DOWN(caddr_t, sopt->sopt_val), m->m_len); } sopt->sopt_valsize -= m->m_len; sopt->sopt_val += m->m_len; valsize += m->m_len; m = m->m_next; } if (m != NULL) { /* enough soopt buffer should be given from user-land */ m_freem(m0); return (EINVAL); } sopt->sopt_valsize = valsize; return (0); } void sohasoutofband(struct socket *so) { if (so->so_pgid < 0) gsignal(-so->so_pgid, SIGURG); else if (so->so_pgid > 0) proc_signal(so->so_pgid, SIGURG); selwakeup(&so->so_rcv.sb_sel); } int sopoll(struct socket *so, int events, __unused kauth_cred_t cred, void * wql) { struct proc *p = current_proc(); int revents = 0; socket_lock(so, 1); if (events & (POLLIN | POLLRDNORM)) if (soreadable(so)) revents |= events & (POLLIN | POLLRDNORM); if (events & (POLLOUT | POLLWRNORM)) if (sowriteable(so)) revents |= events & (POLLOUT | POLLWRNORM); if (events & (POLLPRI | POLLRDBAND)) if (so->so_oobmark || (so->so_state & SS_RCVATMARK)) revents |= events & (POLLPRI | POLLRDBAND); if (revents == 0) { if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { /* * Darwin sets the flag first, * BSD calls selrecord first */ so->so_rcv.sb_flags |= SB_SEL; selrecord(p, &so->so_rcv.sb_sel, wql); } if (events & (POLLOUT | POLLWRNORM)) { /* * Darwin sets the flag first, * BSD calls selrecord first */ so->so_snd.sb_flags |= SB_SEL; selrecord(p, &so->so_snd.sb_sel, wql); } } socket_unlock(so, 1); return (revents); } int soo_kqfilter(__unused struct fileproc *fp, struct knote *kn, __unused struct proc *p) { struct socket *so = (struct socket *)kn->kn_fp->f_fglob->fg_data; struct sockbuf *sb; socket_lock(so, 1); #if CONFIG_MACF_SOCKET if (mac_socket_check_kqfilter(proc_ucred(p), kn, so) != 0) { socket_unlock(so, 1); return (1); } #endif /* MAC_SOCKET */ switch (kn->kn_filter) { case EVFILT_READ: if (so->so_options & SO_ACCEPTCONN) kn->kn_fop = &solisten_filtops; else kn->kn_fop = &soread_filtops; sb = &so->so_rcv; break; case EVFILT_WRITE: kn->kn_fop = &sowrite_filtops; sb = &so->so_snd; break; default: socket_unlock(so, 1); return (1); } if (KNOTE_ATTACH(&sb->sb_sel.si_note, kn)) sb->sb_flags |= SB_KNOTE; socket_unlock(so, 1); return (0); } static void filt_sordetach(struct knote *kn) { struct socket *so = (struct socket *)kn->kn_fp->f_fglob->fg_data; socket_lock(so, 1); if (so->so_rcv.sb_flags & SB_KNOTE) if (KNOTE_DETACH(&so->so_rcv.sb_sel.si_note, kn)) so->so_rcv.sb_flags &= ~SB_KNOTE; socket_unlock(so, 1); } /*ARGSUSED*/ static int filt_soread(struct knote *kn, long hint) { struct socket *so = (struct socket *)kn->kn_fp->f_fglob->fg_data; if ((hint & SO_FILT_HINT_LOCKED) == 0) socket_lock(so, 1); kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; if (so->so_oobmark) { if (kn->kn_flags & EV_OOBAND) { kn->kn_data -= so->so_oobmark; if ((hint & SO_FILT_HINT_LOCKED) == 0) socket_unlock(so, 1); return (1); } kn->kn_data = so->so_oobmark; kn->kn_flags |= EV_OOBAND; } else { if (so->so_state & SS_CANTRCVMORE) { kn->kn_flags |= EV_EOF; kn->kn_fflags = so->so_error; if ((hint & SO_FILT_HINT_LOCKED) == 0) socket_unlock(so, 1); return (1); } } if (so->so_state & SS_RCVATMARK) { if (kn->kn_flags & EV_OOBAND) { if ((hint & SO_FILT_HINT_LOCKED) == 0) socket_unlock(so, 1); return (1); } kn->kn_flags |= EV_OOBAND; } else if (kn->kn_flags & EV_OOBAND) { kn->kn_data = 0; if ((hint & SO_FILT_HINT_LOCKED) == 0) socket_unlock(so, 1); return (0); } if (so->so_error) { /* temporary udp error */ if ((hint & SO_FILT_HINT_LOCKED) == 0) socket_unlock(so, 1); return (1); } if ((hint & SO_FILT_HINT_LOCKED) == 0) socket_unlock(so, 1); return ((kn->kn_flags & EV_OOBAND) || kn->kn_data >= ((kn->kn_sfflags & NOTE_LOWAT) ? kn->kn_sdata : so->so_rcv.sb_lowat)); } static void filt_sowdetach(struct knote *kn) { struct socket *so = (struct socket *)kn->kn_fp->f_fglob->fg_data; socket_lock(so, 1); if (so->so_snd.sb_flags & SB_KNOTE) if (KNOTE_DETACH(&so->so_snd.sb_sel.si_note, kn)) so->so_snd.sb_flags &= ~SB_KNOTE; socket_unlock(so, 1); } /*ARGSUSED*/ static int filt_sowrite(struct knote *kn, long hint) { struct socket *so = (struct socket *)kn->kn_fp->f_fglob->fg_data; if ((hint & SO_FILT_HINT_LOCKED) == 0) socket_lock(so, 1); kn->kn_data = sbspace(&so->so_snd); if (so->so_state & SS_CANTSENDMORE) { kn->kn_flags |= EV_EOF; kn->kn_fflags = so->so_error; if ((hint & SO_FILT_HINT_LOCKED) == 0) socket_unlock(so, 1); return (1); } if (so->so_error) { /* temporary udp error */ if ((hint & SO_FILT_HINT_LOCKED) == 0) socket_unlock(so, 1); return (1); } if (((so->so_state & SS_ISCONNECTED) == 0) && (so->so_proto->pr_flags & PR_CONNREQUIRED)) { if ((hint & SO_FILT_HINT_LOCKED) == 0) socket_unlock(so, 1); return (0); } if ((hint & SO_FILT_HINT_LOCKED) == 0) socket_unlock(so, 1); if (kn->kn_sfflags & NOTE_LOWAT) return (kn->kn_data >= kn->kn_sdata); return (kn->kn_data >= so->so_snd.sb_lowat); } /*ARGSUSED*/ static int filt_solisten(struct knote *kn, long hint) { struct socket *so = (struct socket *)kn->kn_fp->f_fglob->fg_data; int isempty; if ((hint & SO_FILT_HINT_LOCKED) == 0) socket_lock(so, 1); kn->kn_data = so->so_qlen; isempty = ! TAILQ_EMPTY(&so->so_comp); if ((hint & SO_FILT_HINT_LOCKED) == 0) socket_unlock(so, 1); return (isempty); } int socket_lock(struct socket *so, int refcount) { int error = 0, lr_saved; lr_saved = (unsigned int) __builtin_return_address(0); if (so->so_proto->pr_lock) { error = (*so->so_proto->pr_lock)(so, refcount, lr_saved); } else { #ifdef MORE_LOCKING_DEBUG lck_mtx_assert(so->so_proto->pr_domain->dom_mtx, LCK_MTX_ASSERT_NOTOWNED); #endif lck_mtx_lock(so->so_proto->pr_domain->dom_mtx); if (refcount) so->so_usecount++; so->lock_lr[so->next_lock_lr] = (u_int32_t)lr_saved; so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX; } return (error); } int socket_unlock(struct socket *so, int refcount) { int error = 0, lr_saved; lck_mtx_t *mutex_held; lr_saved = (unsigned int) __builtin_return_address(0); if (so->so_proto == NULL) panic("socket_unlock null so_proto so=%p\n", so); if (so && so->so_proto->pr_unlock) { error = (*so->so_proto->pr_unlock)(so, refcount, lr_saved); } else { mutex_held = so->so_proto->pr_domain->dom_mtx; #ifdef MORE_LOCKING_DEBUG lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); #endif so->unlock_lr[so->next_unlock_lr] = (u_int32_t)lr_saved; so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX; if (refcount) { if (so->so_usecount <= 0) panic("socket_unlock: bad refcount so=%p " "value=%d\n", so, so->so_usecount); so->so_usecount--; if (so->so_usecount == 0) { sofreelastref(so, 1); } } lck_mtx_unlock(mutex_held); } return (error); } /* Called with socket locked, will unlock socket */ void sofree(struct socket *so) { lck_mtx_t *mutex_held; if (so->so_proto->pr_getlock != NULL) mutex_held = (*so->so_proto->pr_getlock)(so, 0); else mutex_held = so->so_proto->pr_domain->dom_mtx; lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); sofreelastref(so, 0); } void soreference(struct socket *so) { socket_lock(so, 1); /* locks & take one reference on socket */ socket_unlock(so, 0); /* unlock only */ } void sodereference(struct socket *so) { socket_lock(so, 0); socket_unlock(so, 1); } /* * Set or clear SOF_MULTIPAGES on the socket to enable or disable the * possibility of using jumbo clusters. Caller must ensure to hold * the socket lock. */ void somultipages(struct socket *so, boolean_t set) { if (set) so->so_flags |= SOF_MULTIPAGES; else so->so_flags &= ~SOF_MULTIPAGES; }