/* * Copyright (c) 2000-2007 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ /* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 */ /* * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce * support for mandatory and extensible security protections. This notice * is included in support of clause 2.2 (b) of the Apple Public License, * Version 2.0. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #if CONFIG_MACF #include #endif #define HZ 100 /* XXX */ /* simple lock used to access timezone, tz structure */ lck_spin_t * tz_slock; lck_grp_t * tz_slock_grp; lck_attr_t * tz_slock_attr; lck_grp_attr_t *tz_slock_grp_attr; static void setthetime( struct timeval *tv); void time_zone_slock_init(void) __attribute__((section("__TEXT, initcode"))); /* * Time of day and interval timer support. * * These routines provide the kernel entry points to get and set * the time-of-day and per-process interval timers. Subroutines * here provide support for adding and subtracting timeval structures * and decrementing interval timers, optionally reloading the interval * timers when they expire. */ /* ARGSUSED */ int gettimeofday( __unused struct proc *p, struct gettimeofday_args *uap, register_t *retval) { int error = 0; struct timezone ltz; /* local copy */ if (uap->tp) clock_gettimeofday((uint32_t *)&retval[0], (uint32_t *)&retval[1]); if (uap->tzp) { lck_spin_lock(tz_slock); ltz = tz; lck_spin_unlock(tz_slock); error = copyout((caddr_t)<z, CAST_USER_ADDR_T(uap->tzp), sizeof (tz)); } return (error); } /* * XXX Y2038 bug because of setthetime() argument */ /* ARGSUSED */ int settimeofday(__unused struct proc *p, struct settimeofday_args *uap, __unused register_t *retval) { struct timeval atv; struct timezone atz; int error; #if CONFIG_MACF error = mac_system_check_settime(kauth_cred_get()); if (error) return (error); #endif #ifndef CONFIG_EMBEDDED if ((error = suser(kauth_cred_get(), &p->p_acflag))) return (error); #endif /* Verify all parameters before changing time */ if (uap->tv) { if (IS_64BIT_PROCESS(p)) { struct user_timeval user_atv; error = copyin(uap->tv, &user_atv, sizeof(struct user_timeval)); atv.tv_sec = user_atv.tv_sec; atv.tv_usec = user_atv.tv_usec; } else { error = copyin(uap->tv, &atv, sizeof(struct timeval)); } if (error) return (error); } if (uap->tzp && (error = copyin(uap->tzp, (caddr_t)&atz, sizeof(atz)))) return (error); if (uap->tv) { timevalfix(&atv); if (atv.tv_sec < 0 || (atv.tv_sec == 0 && atv.tv_usec < 0)) return (EPERM); setthetime(&atv); } if (uap->tzp) { lck_spin_lock(tz_slock); tz = atz; lck_spin_unlock(tz_slock); } return (0); } static void setthetime( struct timeval *tv) { clock_set_calendar_microtime(tv->tv_sec, tv->tv_usec); } /* * XXX Y2038 bug because of clock_adjtime() first argument */ /* ARGSUSED */ int adjtime(struct proc *p, struct adjtime_args *uap, __unused register_t *retval) { struct timeval atv; int error; #if CONFIG_MACF error = mac_system_check_settime(kauth_cred_get()); if (error) return (error); #endif if ((error = suser(kauth_cred_get(), &p->p_acflag))) return (error); if (IS_64BIT_PROCESS(p)) { struct user_timeval user_atv; error = copyin(uap->delta, &user_atv, sizeof(struct user_timeval)); atv.tv_sec = user_atv.tv_sec; atv.tv_usec = user_atv.tv_usec; } else { error = copyin(uap->delta, &atv, sizeof(struct timeval)); } if (error) return (error); /* * Compute the total correction and the rate at which to apply it. */ clock_adjtime((int32_t *)&atv.tv_sec, &atv.tv_usec); if (uap->olddelta) { if (IS_64BIT_PROCESS(p)) { struct user_timeval user_atv; user_atv.tv_sec = atv.tv_sec; user_atv.tv_usec = atv.tv_usec; error = copyout(&user_atv, uap->olddelta, sizeof(struct user_timeval)); } else { error = copyout(&atv, uap->olddelta, sizeof(struct timeval)); } } return (0); } /* * Verify the calendar value. If negative, * reset to zero (the epoch). */ void inittodr( __unused time_t base) { struct timeval tv; /* * Assertion: * The calendar has already been * set up from the platform clock. * * The value returned by microtime() * is gotten from the calendar. */ microtime(&tv); if (tv.tv_sec < 0 || tv.tv_usec < 0) { printf ("WARNING: preposterous time in Real Time Clock"); tv.tv_sec = 0; /* the UNIX epoch */ tv.tv_usec = 0; setthetime(&tv); printf(" -- CHECK AND RESET THE DATE!\n"); } } time_t boottime_sec(void) { uint32_t sec, nanosec; clock_get_boottime_nanotime(&sec, &nanosec); return (sec); } uint64_t tvtoabstime(struct timeval *tvp); /* * Get value of an interval timer. The process virtual and * profiling virtual time timers are kept internally in the * way they are specified externally: in time until they expire. * * The real time interval timer expiration time (p_rtime) * is kept as an absolute time rather than as a delta, so that * it is easy to keep periodic real-time signals from drifting. * * The real time timer is processed by a callout routine. * Since a callout may be delayed in real time due to * other processing in the system, it is possible for the real * time callout routine (realitexpire, given below), to be delayed * in real time past when it is supposed to occur. It does not * suffice, therefore, to reload the real time .it_value from the * real time .it_interval. Rather, we compute the next time in * absolute time when the timer should go off. * * Returns: 0 Success * EINVAL Invalid argument * copyout:EFAULT Bad address */ /* ARGSUSED */ int getitimer(struct proc *p, struct getitimer_args *uap, __unused register_t *retval) { struct itimerval aitv; if (uap->which > ITIMER_PROF) return(EINVAL); proc_spinlock(p); switch (uap->which) { case ITIMER_REAL: /* * If time for real time timer has passed return 0, * else return difference between current time and * time for the timer to go off. */ aitv = p->p_realtimer; if (timerisset(&p->p_rtime)) { struct timeval now; microuptime(&now); if (timercmp(&p->p_rtime, &now, <)) timerclear(&aitv.it_value); else { aitv.it_value = p->p_rtime; timevalsub(&aitv.it_value, &now); } } else timerclear(&aitv.it_value); break; case ITIMER_VIRTUAL: aitv = p->p_vtimer_user; break; case ITIMER_PROF: aitv = p->p_vtimer_prof; break; } proc_spinunlock(p); if (IS_64BIT_PROCESS(p)) { struct user_itimerval user_itv; user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec; user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec; user_itv.it_value.tv_sec = aitv.it_value.tv_sec; user_itv.it_value.tv_usec = aitv.it_value.tv_usec; return (copyout((caddr_t)&user_itv, uap->itv, sizeof (struct user_itimerval))); } else { return (copyout((caddr_t)&aitv, uap->itv, sizeof (struct itimerval))); } } /* * Returns: 0 Success * EINVAL Invalid argument * copyin:EFAULT Bad address * getitimer:EINVAL Invalid argument * getitimer:EFAULT Bad address */ /* ARGSUSED */ int setitimer(struct proc *p, struct setitimer_args *uap, register_t *retval) { struct itimerval aitv; user_addr_t itvp; int error; if (uap->which > ITIMER_PROF) return (EINVAL); if ((itvp = uap->itv)) { if (IS_64BIT_PROCESS(p)) { struct user_itimerval user_itv; if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof (struct user_itimerval)))) return (error); aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec; aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec; aitv.it_value.tv_sec = user_itv.it_value.tv_sec; aitv.it_value.tv_usec = user_itv.it_value.tv_usec; } else { if ((error = copyin(itvp, (caddr_t)&aitv, sizeof (struct itimerval)))) return (error); } } if ((uap->itv = uap->oitv) && (error = getitimer(p, (struct getitimer_args *)uap, retval))) return (error); if (itvp == 0) return (0); if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval)) return (EINVAL); switch (uap->which) { case ITIMER_REAL: proc_spinlock(p); if (timerisset(&aitv.it_value)) { microuptime(&p->p_rtime); timevaladd(&p->p_rtime, &aitv.it_value); p->p_realtimer = aitv; if (!thread_call_enter_delayed(p->p_rcall, tvtoabstime(&p->p_rtime))) p->p_ractive++; } else { timerclear(&p->p_rtime); p->p_realtimer = aitv; if (thread_call_cancel(p->p_rcall)) p->p_ractive--; } proc_spinunlock(p); break; case ITIMER_VIRTUAL: if (timerisset(&aitv.it_value)) task_vtimer_set(p->task, TASK_VTIMER_USER); else task_vtimer_clear(p->task, TASK_VTIMER_USER); proc_spinlock(p); p->p_vtimer_user = aitv; proc_spinunlock(p); break; case ITIMER_PROF: if (timerisset(&aitv.it_value)) task_vtimer_set(p->task, TASK_VTIMER_PROF); else task_vtimer_clear(p->task, TASK_VTIMER_PROF); proc_spinlock(p); p->p_vtimer_prof = aitv; proc_spinunlock(p); break; } return (0); } /* * Real interval timer expired: * send process whose timer expired an alarm signal. * If time is not set up to reload, then just return. * Else compute next time timer should go off which is > current time. * This is where delay in processing this timeout causes multiple * SIGALRM calls to be compressed into one. */ void realitexpire( struct proc *p) { struct proc *r; struct timeval t; r = proc_find(p->p_pid); proc_spinlock(p); if (--p->p_ractive > 0 || r != p) { proc_spinunlock(p); if (r != NULL) proc_rele(r); return; } if (!timerisset(&p->p_realtimer.it_interval)) { timerclear(&p->p_rtime); proc_spinunlock(p); psignal(p, SIGALRM); proc_rele(p); return; } microuptime(&t); timevaladd(&p->p_rtime, &p->p_realtimer.it_interval); if (timercmp(&p->p_rtime, &t, <=)) { if ((p->p_rtime.tv_sec + 2) >= t.tv_sec) { for (;;) { timevaladd(&p->p_rtime, &p->p_realtimer.it_interval); if (timercmp(&p->p_rtime, &t, >)) break; } } else { p->p_rtime = p->p_realtimer.it_interval; timevaladd(&p->p_rtime, &t); } } if (!thread_call_enter_delayed(p->p_rcall, tvtoabstime(&p->p_rtime))) p->p_ractive++; proc_spinunlock(p); psignal(p, SIGALRM); proc_rele(p); } /* * Check that a proposed value to load into the .it_value or * .it_interval part of an interval timer is acceptable. */ int itimerfix( struct timeval *tv) { if (tv->tv_sec < 0 || tv->tv_sec > 100000000 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) return (EINVAL); return (0); } /* * Decrement an interval timer by a specified number * of microseconds, which must be less than a second, * i.e. < 1000000. If the timer expires, then reload * it. In this case, carry over (usec - old value) to * reduce the value reloaded into the timer so that * the timer does not drift. This routine assumes * that it is called in a context where the timers * on which it is operating cannot change in value. */ int itimerdecr(proc_t p, struct itimerval *itp, int usec) { proc_spinlock(p); if (itp->it_value.tv_usec < usec) { if (itp->it_value.tv_sec == 0) { /* expired, and already in next interval */ usec -= itp->it_value.tv_usec; goto expire; } itp->it_value.tv_usec += 1000000; itp->it_value.tv_sec--; } itp->it_value.tv_usec -= usec; usec = 0; if (timerisset(&itp->it_value)) { proc_spinunlock(p); return (1); } /* expired, exactly at end of interval */ expire: if (timerisset(&itp->it_interval)) { itp->it_value = itp->it_interval; if (itp->it_value.tv_sec > 0) { itp->it_value.tv_usec -= usec; if (itp->it_value.tv_usec < 0) { itp->it_value.tv_usec += 1000000; itp->it_value.tv_sec--; } } } else itp->it_value.tv_usec = 0; /* sec is already 0 */ proc_spinunlock(p); return (0); } /* * Add and subtract routines for timevals. * N.B.: subtract routine doesn't deal with * results which are before the beginning, * it just gets very confused in this case. * Caveat emptor. */ void timevaladd( struct timeval *t1, struct timeval *t2) { t1->tv_sec += t2->tv_sec; t1->tv_usec += t2->tv_usec; timevalfix(t1); } void timevalsub( struct timeval *t1, struct timeval *t2) { t1->tv_sec -= t2->tv_sec; t1->tv_usec -= t2->tv_usec; timevalfix(t1); } void timevalfix( struct timeval *t1) { if (t1->tv_usec < 0) { t1->tv_sec--; t1->tv_usec += 1000000; } if (t1->tv_usec >= 1000000) { t1->tv_sec++; t1->tv_usec -= 1000000; } } /* * Return the best possible estimate of the time in the timeval * to which tvp points. */ void microtime( struct timeval *tvp) { clock_get_calendar_microtime((uint32_t *)&tvp->tv_sec, (uint32_t *)&tvp->tv_usec); } void microuptime( struct timeval *tvp) { clock_get_system_microtime((uint32_t *)&tvp->tv_sec, (uint32_t *)&tvp->tv_usec); } /* * Ditto for timespec. */ void nanotime( struct timespec *tsp) { clock_get_calendar_nanotime((uint32_t *)&tsp->tv_sec, (uint32_t *)&tsp->tv_nsec); } void nanouptime( struct timespec *tsp) { clock_get_system_nanotime((uint32_t *)&tsp->tv_sec, (uint32_t *)&tsp->tv_nsec); } uint64_t tvtoabstime( struct timeval *tvp) { uint64_t result, usresult; clock_interval_to_absolutetime_interval( tvp->tv_sec, NSEC_PER_SEC, &result); clock_interval_to_absolutetime_interval( tvp->tv_usec, NSEC_PER_USEC, &usresult); return (result + usresult); } void time_zone_slock_init(void) { /* allocate lock group attribute and group */ tz_slock_grp_attr = lck_grp_attr_alloc_init(); tz_slock_grp = lck_grp_alloc_init("tzlock", tz_slock_grp_attr); /* Allocate lock attribute */ tz_slock_attr = lck_attr_alloc_init(); /* Allocate the spin lock */ tz_slock = lck_spin_alloc_init(tz_slock_grp, tz_slock_attr); }