/* * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ /* * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_subr.c 8.3 (Berkeley) 1/21/94 */ #include #include #include #include #include #include #include #include #include #include #define DBG_UIO_COPYOUT 16 #define DBG_UIO_COPYIN 17 #if DEBUG #include static uint32_t uio_t_count = 0; #endif /* DEBUG */ /* * Returns: 0 Success * uiomove64:EFAULT * * Notes: The first argument should be a caddr_t, but const poisoning * for typedef'ed types doesn't work in gcc. */ int uiomove(const char * cp, int n, uio_t uio) { return uiomove64((const addr64_t)((const unsigned int)cp), n, uio); } /* * Returns: 0 Success * EFAULT * copyout:EFAULT * copyin:EFAULT * copywithin:EFAULT * copypv:EFAULT */ // LP64todo - fix this! 'n' should be int64_t? int uiomove64(const addr64_t c_cp, int n, struct uio *uio) { addr64_t cp = c_cp; #if LP64KERN uint64_t acnt; #else u_int acnt; #endif int error = 0; #if DIAGNOSTIC if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE) panic("uiomove: mode"); #endif #if LP64_DEBUG if (IS_VALID_UIO_SEGFLG(uio->uio_segflg) == 0) { panic("%s :%d - invalid uio_segflg\n", __FILE__, __LINE__); } #endif /* LP64_DEBUG */ while (n > 0 && uio_resid(uio)) { acnt = uio_iov_len(uio); if (acnt == 0) { uio_next_iov(uio); uio->uio_iovcnt--; continue; } if (n > 0 && acnt > (uint64_t)n) acnt = n; switch (uio->uio_segflg) { case UIO_USERSPACE64: case UIO_USERISPACE64: // LP64 - 3rd argument in debug code is 64 bit, expected to be 32 bit if (uio->uio_rw == UIO_READ) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYOUT)) | DBG_FUNC_START, (int)cp, (int)uio->uio_iovs.iov64p->iov_base, acnt, 0,0); error = copyout( CAST_DOWN(caddr_t, cp), uio->uio_iovs.iov64p->iov_base, acnt ); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYOUT)) | DBG_FUNC_END, (int)cp, (int)uio->uio_iovs.iov64p->iov_base, acnt, 0,0); } else { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYIN)) | DBG_FUNC_START, (int)uio->uio_iovs.iov64p->iov_base, (int)cp, acnt, 0,0); error = copyin(uio->uio_iovs.iov64p->iov_base, CAST_DOWN(caddr_t, cp), acnt); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYIN)) | DBG_FUNC_END, (int)uio->uio_iovs.iov64p->iov_base, (int)cp, acnt, 0,0); } if (error) return (error); break; case UIO_USERSPACE32: case UIO_USERISPACE32: case UIO_USERSPACE: case UIO_USERISPACE: if (uio->uio_rw == UIO_READ) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYOUT)) | DBG_FUNC_START, (int)cp, (int)uio->uio_iovs.iov32p->iov_base, acnt, 0,0); error = copyout( CAST_DOWN(caddr_t, cp), CAST_USER_ADDR_T(uio->uio_iovs.iov32p->iov_base), acnt ); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYOUT)) | DBG_FUNC_END, (int)cp, (int)uio->uio_iovs.iov32p->iov_base, acnt, 0,0); } else { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYIN)) | DBG_FUNC_START, (int)uio->uio_iovs.iov32p->iov_base, (int)cp, acnt, 0,0); error = copyin(CAST_USER_ADDR_T(uio->uio_iovs.iov32p->iov_base), CAST_DOWN(caddr_t, cp), acnt); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYIN)) | DBG_FUNC_END, (int)uio->uio_iovs.iov32p->iov_base, (int)cp, acnt, 0,0); } if (error) return (error); break; case UIO_SYSSPACE32: case UIO_SYSSPACE: if (uio->uio_rw == UIO_READ) error = copywithin(CAST_DOWN(caddr_t, cp), (caddr_t)uio->uio_iovs.iov32p->iov_base, acnt); else error = copywithin((caddr_t)uio->uio_iovs.iov32p->iov_base, CAST_DOWN(caddr_t, cp), acnt); break; case UIO_PHYS_USERSPACE64: if (uio->uio_rw == UIO_READ) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYOUT)) | DBG_FUNC_START, (int)cp, (int)uio->uio_iovs.iov64p->iov_base, acnt, 1,0); error = copypv((addr64_t)cp, uio->uio_iovs.iov64p->iov_base, acnt, cppvPsrc | cppvNoRefSrc); if (error) /* Copy physical to virtual */ error = EFAULT; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYOUT)) | DBG_FUNC_END, (int)cp, (int)uio->uio_iovs.iov64p->iov_base, acnt, 1,0); } else { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYIN)) | DBG_FUNC_START, (int)uio->uio_iovs.iov64p->iov_base, (int)cp, acnt, 1,0); error = copypv(uio->uio_iovs.iov64p->iov_base, (addr64_t)cp, acnt, cppvPsnk | cppvNoRefSrc | cppvNoModSnk); if (error) /* Copy virtual to physical */ error = EFAULT; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYIN)) | DBG_FUNC_END, (int)uio->uio_iovs.iov64p->iov_base, (int)cp, acnt, 1,0); } if (error) return (error); break; case UIO_PHYS_USERSPACE32: case UIO_PHYS_USERSPACE: if (uio->uio_rw == UIO_READ) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYOUT)) | DBG_FUNC_START, (int)cp, (int)uio->uio_iovs.iov32p->iov_base, acnt, 1,0); error = copypv((addr64_t)cp, (addr64_t)uio->uio_iovs.iov32p->iov_base, acnt, cppvPsrc | cppvNoRefSrc); if (error) /* Copy physical to virtual */ error = EFAULT; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYOUT)) | DBG_FUNC_END, (int)cp, (int)uio->uio_iovs.iov32p->iov_base, acnt, 1,0); } else { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYIN)) | DBG_FUNC_START, (int)uio->uio_iovs.iov32p->iov_base, (int)cp, acnt, 1,0); error = copypv((addr64_t)uio->uio_iovs.iov32p->iov_base, (addr64_t)cp, acnt, cppvPsnk | cppvNoRefSrc | cppvNoModSnk); if (error) /* Copy virtual to physical */ error = EFAULT; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYIN)) | DBG_FUNC_END, (int)uio->uio_iovs.iov32p->iov_base, (int)cp, acnt, 1,0); } if (error) return (error); break; case UIO_PHYS_SYSSPACE32: case UIO_PHYS_SYSSPACE: if (uio->uio_rw == UIO_READ) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYOUT)) | DBG_FUNC_START, (int)cp, (int)uio->uio_iovs.iov32p->iov_base, acnt, 2,0); error = copypv((addr64_t)cp, uio->uio_iovs.iov32p->iov_base, acnt, cppvKmap | cppvPsrc | cppvNoRefSrc); if (error) /* Copy physical to virtual */ error = EFAULT; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYOUT)) | DBG_FUNC_END, (int)cp, (int)uio->uio_iovs.iov32p->iov_base, acnt, 2,0); } else { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYIN)) | DBG_FUNC_START, (int)uio->uio_iovs.iov32p->iov_base, (int)cp, acnt, 2,0); error = copypv(uio->uio_iovs.iov32p->iov_base, (addr64_t)cp, acnt, cppvKmap | cppvPsnk | cppvNoRefSrc | cppvNoModSnk); if (error) /* Copy virtual to physical */ error = EFAULT; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYIN)) | DBG_FUNC_END, (int)uio->uio_iovs.iov32p->iov_base, (int)cp, acnt, 2,0); } if (error) return (error); break; default: break; } uio_iov_base_add(uio, acnt); #if LP64KERN uio_iov_len_add(uio, -((int64_t)acnt)); uio_setresid(uio, (uio_resid(uio) - ((int64_t)acnt))); #else uio_iov_len_add(uio, -((int)acnt)); uio_setresid(uio, (uio_resid(uio) - ((int)acnt))); #endif uio->uio_offset += acnt; cp += acnt; n -= acnt; } return (error); } /* * Give next character to user as result of read. */ int ureadc(int c, struct uio *uio) { if (uio_resid(uio) <= 0) panic("ureadc: non-positive resid"); again: if (uio->uio_iovcnt == 0) panic("ureadc: non-positive iovcnt"); if (uio_iov_len(uio) <= 0) { uio->uio_iovcnt--; uio_next_iov(uio); goto again; } switch (uio->uio_segflg) { case UIO_USERSPACE32: case UIO_USERSPACE: if (subyte(CAST_USER_ADDR_T(uio->uio_iovs.iov32p->iov_base), c) < 0) return (EFAULT); break; case UIO_USERSPACE64: if (subyte((user_addr_t)uio->uio_iovs.iov64p->iov_base, c) < 0) return (EFAULT); break; case UIO_SYSSPACE32: case UIO_SYSSPACE: *((caddr_t)uio->uio_iovs.iov32p->iov_base) = c; break; case UIO_USERISPACE32: case UIO_USERISPACE: if (suibyte(CAST_USER_ADDR_T(uio->uio_iovs.iov32p->iov_base), c) < 0) return (EFAULT); break; default: break; } uio_iov_base_add(uio, 1); uio_iov_len_add(uio, -1); uio_setresid(uio, (uio_resid(uio) - 1)); uio->uio_offset++; return (0); } #if defined(vax) || defined(ppc) /* unused except by ct.c, other oddities XXX */ /* * Get next character written in by user from uio. */ int uwritec(uio_t uio) { int c = 0; if (uio_resid(uio) <= 0) return (-1); again: if (uio->uio_iovcnt <= 0) panic("uwritec: non-positive iovcnt"); if (uio_iov_len(uio) == 0) { uio_next_iov(uio); if (--uio->uio_iovcnt == 0) return (-1); goto again; } switch (uio->uio_segflg) { case UIO_USERSPACE32: case UIO_USERSPACE: c = fubyte(CAST_USER_ADDR_T(uio->uio_iovs.iov32p->iov_base)); break; case UIO_USERSPACE64: c = fubyte((user_addr_t)uio->uio_iovs.iov64p->iov_base); break; case UIO_SYSSPACE32: case UIO_SYSSPACE: c = *((caddr_t)uio->uio_iovs.iov32p->iov_base) & 0377; break; case UIO_USERISPACE32: case UIO_USERISPACE: c = fuibyte(CAST_USER_ADDR_T(uio->uio_iovs.iov32p->iov_base)); break; default: c = 0; /* avoid uninitialized variable warning */ panic("uwritec: bogus uio_segflg"); break; } if (c < 0) return (-1); uio_iov_base_add(uio, 1); uio_iov_len_add(uio, -1); uio_setresid(uio, (uio_resid(uio) - 1)); uio->uio_offset++; return (c); } #endif /* vax || ppc */ /* * General routine to allocate a hash table. */ void * hashinit(int elements, int type, u_long *hashmask) { long hashsize; LIST_HEAD(generic, generic) *hashtbl; int i; if (elements <= 0) panic("hashinit: bad cnt"); for (hashsize = 1; hashsize <= elements; hashsize <<= 1) continue; hashsize >>= 1; MALLOC(hashtbl, struct generic *, (u_long)hashsize * sizeof(*hashtbl), type, M_WAITOK|M_ZERO); if (hashtbl != NULL) { for (i = 0; i < hashsize; i++) LIST_INIT(&hashtbl[i]); *hashmask = hashsize - 1; } return (hashtbl); } /* * uio_resid - return the residual IO value for the given uio_t */ user_ssize_t uio_resid( uio_t a_uio ) { #if DEBUG if (a_uio == NULL) { printf("%s :%d - invalid uio_t\n", __FILE__, __LINE__); } /* if (IS_VALID_UIO_SEGFLG(a_uio->uio_segflg) == 0) { */ /* panic("%s :%d - invalid uio_segflg\n", __FILE__, __LINE__); */ /* } */ #endif /* DEBUG */ /* return 0 if there are no active iovecs */ if (a_uio == NULL) { return( 0 ); } if (UIO_IS_64_BIT_SPACE(a_uio)) { #if 1 // LP64todo - remove this temp workaround once we go live with uio KPI return( (user_ssize_t)a_uio->uio_resid ); #else return( a_uio->uio_resid_64 ); #endif } return( (user_ssize_t)a_uio->uio_resid ); } /* * uio_setresid - set the residual IO value for the given uio_t */ void uio_setresid( uio_t a_uio, user_ssize_t a_value ) { #if DEBUG if (a_uio == NULL) { panic("%s :%d - invalid uio_t\n", __FILE__, __LINE__); } /* if (IS_VALID_UIO_SEGFLG(a_uio->uio_segflg) == 0) { */ /* panic("%s :%d - invalid uio_segflg\n", __FILE__, __LINE__); */ /* } */ #endif /* DEBUG */ if (a_uio == NULL) { return; } if (UIO_IS_64_BIT_SPACE(a_uio)) { #if 1 // LP64todo - remove this temp workaround once we go live with uio KPI a_uio->uio_resid = (int)a_value; #else a_uio->uio_resid_64 = a_value; #endif } else { a_uio->uio_resid = (int)a_value; } return; } /* * uio_curriovbase - return the base address of the current iovec associated * with the given uio_t. May return 0. */ user_addr_t uio_curriovbase( uio_t a_uio ) { #if LP64_DEBUG if (a_uio == NULL) { panic("%s :%d - invalid uio_t\n", __FILE__, __LINE__); } #endif /* LP64_DEBUG */ if (a_uio == NULL || a_uio->uio_iovcnt < 1) { return(0); } if (UIO_IS_64_BIT_SPACE(a_uio)) { return(a_uio->uio_iovs.uiovp->iov_base); } return((user_addr_t)((uintptr_t)a_uio->uio_iovs.kiovp->iov_base)); } /* * uio_curriovlen - return the length value of the current iovec associated * with the given uio_t. */ user_size_t uio_curriovlen( uio_t a_uio ) { #if LP64_DEBUG if (a_uio == NULL) { panic("%s :%d - invalid uio_t\n", __FILE__, __LINE__); } #endif /* LP64_DEBUG */ if (a_uio == NULL || a_uio->uio_iovcnt < 1) { return(0); } if (UIO_IS_64_BIT_SPACE(a_uio)) { return(a_uio->uio_iovs.uiovp->iov_len); } return((user_size_t)a_uio->uio_iovs.kiovp->iov_len); } /* * uio_setcurriovlen - set the length value of the current iovec associated * with the given uio_t. */ __private_extern__ void uio_setcurriovlen( uio_t a_uio, user_size_t a_value ) { #if LP64_DEBUG if (a_uio == NULL) { panic("%s :%d - invalid uio_t\n", __FILE__, __LINE__); } #endif /* LP64_DEBUG */ if (a_uio == NULL) { return; } if (UIO_IS_64_BIT_SPACE(a_uio)) { a_uio->uio_iovs.uiovp->iov_len = a_value; } else { #if LP64_DEBUG if (a_value > 0xFFFFFFFFull) { panic("%s :%d - invalid a_value\n", __FILE__, __LINE__); } #endif /* LP64_DEBUG */ a_uio->uio_iovs.kiovp->iov_len = (size_t)a_value; } return; } /* * uio_iovcnt - return count of active iovecs for the given uio_t */ int uio_iovcnt( uio_t a_uio ) { #if LP64_DEBUG if (a_uio == NULL) { panic("%s :%d - invalid uio_t\n", __FILE__, __LINE__); } #endif /* LP64_DEBUG */ if (a_uio == NULL) { return(0); } return( a_uio->uio_iovcnt ); } /* * uio_offset - return the current offset value for the given uio_t */ off_t uio_offset( uio_t a_uio ) { #if LP64_DEBUG if (a_uio == NULL) { panic("%s :%d - invalid uio_t\n", __FILE__, __LINE__); } #endif /* LP64_DEBUG */ if (a_uio == NULL) { return(0); } return( a_uio->uio_offset ); } /* * uio_setoffset - set the current offset value for the given uio_t */ void uio_setoffset( uio_t a_uio, off_t a_offset ) { #if LP64_DEBUG if (a_uio == NULL) { panic("%s :%d - invalid uio_t\n", __FILE__, __LINE__); } #endif /* LP64_DEBUG */ if (a_uio == NULL) { return; } a_uio->uio_offset = a_offset; return; } /* * uio_rw - return the read / write flag for the given uio_t */ int uio_rw( uio_t a_uio ) { #if LP64_DEBUG if (a_uio == NULL) { panic("%s :%d - invalid uio_t\n", __FILE__, __LINE__); } #endif /* LP64_DEBUG */ if (a_uio == NULL) { return(-1); } return( a_uio->uio_rw ); } /* * uio_setrw - set the read / write flag for the given uio_t */ void uio_setrw( uio_t a_uio, int a_value ) { if (a_uio == NULL) { #if LP64_DEBUG panic("%s :%d - invalid uio_t\n", __FILE__, __LINE__); #endif /* LP64_DEBUG */ return; } #if LP64_DEBUG if (!(a_value == UIO_READ || a_value == UIO_WRITE)) { panic("%s :%d - invalid a_value\n", __FILE__, __LINE__); } #endif /* LP64_DEBUG */ if (a_value == UIO_READ || a_value == UIO_WRITE) { a_uio->uio_rw = a_value; } return; } /* * uio_isuserspace - return non zero value if the address space * flag is for a user address space (could be 32 or 64 bit). */ int uio_isuserspace( uio_t a_uio ) { if (a_uio == NULL) { #if LP64_DEBUG panic("%s :%d - invalid uio_t\n", __FILE__, __LINE__); #endif /* LP64_DEBUG */ return(0); } if (UIO_SEG_IS_USER_SPACE(a_uio->uio_segflg)) { return( 1 ); } return( 0 ); } /* * uio_create - create an uio_t. * Space is allocated to hold up to a_iovcount number of iovecs. The uio_t * is not fully initialized until all iovecs are added using uio_addiov calls. * a_iovcount is the maximum number of iovecs you may add. */ uio_t uio_create( int a_iovcount, /* number of iovecs */ off_t a_offset, /* current offset */ int a_spacetype, /* type of address space */ int a_iodirection ) /* read or write flag */ { void * my_buf_p; int my_size; uio_t my_uio; my_size = UIO_SIZEOF(a_iovcount); my_buf_p = kalloc(my_size); my_uio = uio_createwithbuffer( a_iovcount, a_offset, a_spacetype, a_iodirection, my_buf_p, my_size ); if (my_uio != 0) { /* leave a note that we allocated this uio_t */ my_uio->uio_flags |= UIO_FLAGS_WE_ALLOCED; #if DEBUG (void)hw_atomic_add(&uio_t_count, 1); #endif } return( my_uio ); } /* * uio_createwithbuffer - create an uio_t. * Create a uio_t using the given buffer. The uio_t * is not fully initialized until all iovecs are added using uio_addiov calls. * a_iovcount is the maximum number of iovecs you may add. * This call may fail if the given buffer is not large enough. */ __private_extern__ uio_t uio_createwithbuffer( int a_iovcount, /* number of iovecs */ off_t a_offset, /* current offset */ int a_spacetype, /* type of address space */ int a_iodirection, /* read or write flag */ void *a_buf_p, /* pointer to a uio_t buffer */ int a_buffer_size ) /* size of uio_t buffer */ { uio_t my_uio = (uio_t) a_buf_p; int my_size; my_size = sizeof(struct uio) + (sizeof(struct user_iovec) * a_iovcount); if (a_buffer_size < my_size) { #if DEBUG panic("%s :%d - a_buffer_size is too small\n", __FILE__, __LINE__); #endif /* DEBUG */ return( NULL ); } my_size = a_buffer_size; #if DEBUG if (my_uio == 0) { panic("%s :%d - could not allocate uio_t\n", __FILE__, __LINE__); } if (!IS_VALID_UIO_SEGFLG(a_spacetype)) { panic("%s :%d - invalid address space type\n", __FILE__, __LINE__); } if (!(a_iodirection == UIO_READ || a_iodirection == UIO_WRITE)) { panic("%s :%d - invalid IO direction flag\n", __FILE__, __LINE__); } if (a_iovcount > UIO_MAXIOV) { panic("%s :%d - invalid a_iovcount\n", __FILE__, __LINE__); } #endif /* DEBUG */ bzero(my_uio, my_size); my_uio->uio_size = my_size; /* we use uio_segflg to indicate if the uio_t is the new format or */ /* old (pre LP64 support) legacy format */ switch (a_spacetype) { case UIO_USERSPACE: my_uio->uio_segflg = UIO_USERSPACE32; case UIO_SYSSPACE: my_uio->uio_segflg = UIO_SYSSPACE32; case UIO_PHYS_USERSPACE: my_uio->uio_segflg = UIO_PHYS_USERSPACE32; case UIO_PHYS_SYSSPACE: my_uio->uio_segflg = UIO_PHYS_SYSSPACE32; default: my_uio->uio_segflg = a_spacetype; break; } if (a_iovcount > 0) { my_uio->uio_iovs.uiovp = (struct user_iovec *) (((uint8_t *)my_uio) + sizeof(struct uio)); } else { my_uio->uio_iovs.uiovp = NULL; } my_uio->uio_max_iovs = a_iovcount; my_uio->uio_offset = a_offset; my_uio->uio_rw = a_iodirection; my_uio->uio_flags = UIO_FLAGS_INITED; return( my_uio ); } /* * uio_spacetype - return the address space type for the given uio_t */ int uio_spacetype( uio_t a_uio ) { if (a_uio == NULL) { #if LP64_DEBUG panic("%s :%d - invalid uio_t\n", __FILE__, __LINE__); #endif /* LP64_DEBUG */ return(-1); } return( a_uio->uio_segflg ); } /* * uio_iovsaddr - get the address of the iovec array for the given uio_t. * This returns the location of the iovecs within the uio. * NOTE - for compatibility mode we just return the current value in uio_iovs * which will increase as the IO is completed and is NOT embedded within the * uio, it is a seperate array of one or more iovecs. */ struct user_iovec * uio_iovsaddr( uio_t a_uio ) { struct user_iovec * my_addr; if (a_uio == NULL) { return(NULL); } if (a_uio->uio_segflg == UIO_USERSPACE || a_uio->uio_segflg == UIO_SYSSPACE) { /* we need this for compatibility mode. */ my_addr = (struct user_iovec *) a_uio->uio_iovs.iovp; } else { my_addr = (struct user_iovec *) (((uint8_t *)a_uio) + sizeof(struct uio)); } return(my_addr); } /* * uio_reset - reset an uio_t. * Reset the given uio_t to initial values. The uio_t is not fully initialized * until all iovecs are added using uio_addiov calls. * The a_iovcount value passed in the uio_create is the maximum number of * iovecs you may add. */ void uio_reset( uio_t a_uio, off_t a_offset, /* current offset */ int a_spacetype, /* type of address space */ int a_iodirection ) /* read or write flag */ { vm_size_t my_size; int my_max_iovs; u_int32_t my_old_flags; #if LP64_DEBUG if (a_uio == NULL) { panic("%s :%d - could not allocate uio_t\n", __FILE__, __LINE__); } if (!IS_VALID_UIO_SEGFLG(a_spacetype)) { panic("%s :%d - invalid address space type\n", __FILE__, __LINE__); } if (!(a_iodirection == UIO_READ || a_iodirection == UIO_WRITE)) { panic("%s :%d - invalid IO direction flag\n", __FILE__, __LINE__); } #endif /* LP64_DEBUG */ if (a_uio == NULL) { return; } my_size = a_uio->uio_size; my_old_flags = a_uio->uio_flags; my_max_iovs = a_uio->uio_max_iovs; bzero(a_uio, my_size); a_uio->uio_size = my_size; a_uio->uio_segflg = a_spacetype; if (my_max_iovs > 0) { a_uio->uio_iovs.uiovp = (struct user_iovec *) (((uint8_t *)a_uio) + sizeof(struct uio)); } else { a_uio->uio_iovs.uiovp = NULL; } a_uio->uio_max_iovs = my_max_iovs; a_uio->uio_offset = a_offset; a_uio->uio_rw = a_iodirection; a_uio->uio_flags = my_old_flags; return; } /* * uio_free - free a uio_t allocated via uio_init. this also frees all * associated iovecs. */ void uio_free( uio_t a_uio ) { #if DEBUG if (a_uio == NULL) { panic("%s :%d - passing NULL uio_t\n", __FILE__, __LINE__); } #endif /* LP64_DEBUG */ if (a_uio != NULL && (a_uio->uio_flags & UIO_FLAGS_WE_ALLOCED) != 0) { #if DEBUG if (hw_atomic_sub(&uio_t_count, 1) == UINT_MAX) panic("%s :%d - uio_t_count underflow\n", __FILE__, __LINE__); #endif kfree(a_uio, a_uio->uio_size); } } /* * uio_addiov - add an iovec to the given uio_t. You may call this up to * the a_iovcount number that was passed to uio_create. This call will * increment the residual IO count as iovecs are added to the uio_t. * returns 0 if add was successful else non zero. */ int uio_addiov( uio_t a_uio, user_addr_t a_baseaddr, user_size_t a_length ) { int i; if (a_uio == NULL) { #if DEBUG panic("%s :%d - invalid uio_t\n", __FILE__, __LINE__); #endif /* LP64_DEBUG */ return(-1); } if (UIO_IS_64_BIT_SPACE(a_uio)) { for ( i = 0; i < a_uio->uio_max_iovs; i++ ) { if (a_uio->uio_iovs.uiovp[i].iov_len == 0 && a_uio->uio_iovs.uiovp[i].iov_base == 0) { a_uio->uio_iovs.uiovp[i].iov_len = a_length; a_uio->uio_iovs.uiovp[i].iov_base = a_baseaddr; a_uio->uio_iovcnt++; #if 1 // LP64todo - remove this temp workaround once we go live with uio KPI a_uio->uio_resid += a_length; #else a_uio->uio_resid_64 += a_length; #endif return( 0 ); } } } else { for ( i = 0; i < a_uio->uio_max_iovs; i++ ) { if (a_uio->uio_iovs.kiovp[i].iov_len == 0 && a_uio->uio_iovs.kiovp[i].iov_base == 0) { a_uio->uio_iovs.kiovp[i].iov_len = (u_int32_t)a_length; a_uio->uio_iovs.kiovp[i].iov_base = (u_int32_t)((uintptr_t)a_baseaddr); a_uio->uio_iovcnt++; a_uio->uio_resid += a_length; return( 0 ); } } } return( -1 ); } /* * uio_getiov - get iovec data associated with the given uio_t. Use * a_index to iterate over each iovec (0 to (uio_iovcnt(uio_t) - 1)). * a_baseaddr_p and a_length_p may be NULL. * returns -1 when a_index is >= uio_t.uio_iovcnt or invalid uio_t. * returns 0 when data is returned. */ int uio_getiov( uio_t a_uio, int a_index, user_addr_t * a_baseaddr_p, user_size_t * a_length_p ) { if (a_uio == NULL) { #if DEBUG panic("%s :%d - invalid uio_t\n", __FILE__, __LINE__); #endif /* DEBUG */ return(-1); } if ( a_index < 0 || a_index >= a_uio->uio_iovcnt) { return(-1); } if (UIO_IS_64_BIT_SPACE(a_uio)) { if (a_baseaddr_p != NULL) { *a_baseaddr_p = a_uio->uio_iovs.uiovp[a_index].iov_base; } if (a_length_p != NULL) { *a_length_p = a_uio->uio_iovs.uiovp[a_index].iov_len; } } else { if (a_baseaddr_p != NULL) { *a_baseaddr_p = a_uio->uio_iovs.kiovp[a_index].iov_base; } if (a_length_p != NULL) { *a_length_p = a_uio->uio_iovs.kiovp[a_index].iov_len; } } return( 0 ); } /* * uio_calculateresid - runs through all iovecs associated with this * uio_t and calculates (and sets) the residual IO count. */ __private_extern__ void uio_calculateresid( uio_t a_uio ) { int i; if (a_uio == NULL) { #if LP64_DEBUG panic("%s :%d - invalid uio_t\n", __FILE__, __LINE__); #endif /* LP64_DEBUG */ return; } a_uio->uio_iovcnt = a_uio->uio_max_iovs; if (UIO_IS_64_BIT_SPACE(a_uio)) { #if 1 // LP64todo - remove this temp workaround once we go live with uio KPI a_uio->uio_resid = 0; #else a_uio->uio_resid_64 = 0; #endif for ( i = 0; i < a_uio->uio_max_iovs; i++ ) { if (a_uio->uio_iovs.uiovp[i].iov_len != 0 && a_uio->uio_iovs.uiovp[i].iov_base != 0) { #if 1 // LP64todo - remove this temp workaround once we go live with uio KPI a_uio->uio_resid += a_uio->uio_iovs.uiovp[i].iov_len; #else a_uio->uio_resid_64 += a_uio->uio_iovs.uiovp[i].iov_len; #endif } } /* position to first non zero length iovec (4235922) */ while (a_uio->uio_iovcnt > 0 && a_uio->uio_iovs.uiovp->iov_len == 0) { a_uio->uio_iovcnt--; if (a_uio->uio_iovcnt > 0) { a_uio->uio_iovs.uiovp++; } } } else { a_uio->uio_resid = 0; for ( i = 0; i < a_uio->uio_max_iovs; i++ ) { if (a_uio->uio_iovs.kiovp[i].iov_len != 0 && a_uio->uio_iovs.kiovp[i].iov_base != 0) { a_uio->uio_resid += a_uio->uio_iovs.kiovp[i].iov_len; } } /* position to first non zero length iovec (4235922) */ while (a_uio->uio_iovcnt > 0 && a_uio->uio_iovs.kiovp->iov_len == 0) { a_uio->uio_iovcnt--; if (a_uio->uio_iovcnt > 0) { a_uio->uio_iovs.kiovp++; } } } return; } /* * uio_update - update the given uio_t for a_count of completed IO. * This call decrements the current iovec length and residual IO value * and increments the current iovec base address and offset value. * If the current iovec length is 0 then advance to the next * iovec (if any). * If the a_count passed in is 0, than only do the advancement * over any 0 length iovec's. */ void uio_update( uio_t a_uio, user_size_t a_count ) { #if LP64_DEBUG if (a_uio == NULL) { panic("%s :%d - invalid uio_t\n", __FILE__, __LINE__); } if (UIO_IS_32_BIT_SPACE(a_uio) && a_count > 0xFFFFFFFFull) { panic("%s :%d - invalid count value \n", __FILE__, __LINE__); } #endif /* LP64_DEBUG */ if (a_uio == NULL || a_uio->uio_iovcnt < 1) { return; } if (UIO_IS_64_BIT_SPACE(a_uio)) { /* * if a_count == 0, then we are asking to skip over * any empty iovs */ if (a_count) { if (a_count > a_uio->uio_iovs.uiovp->iov_len) { a_uio->uio_iovs.uiovp->iov_base += a_uio->uio_iovs.uiovp->iov_len; a_uio->uio_iovs.uiovp->iov_len = 0; } else { a_uio->uio_iovs.uiovp->iov_base += a_count; a_uio->uio_iovs.uiovp->iov_len -= a_count; } #if 1 // LP64todo - remove this temp workaround once we go live with uio KPI if (a_uio->uio_resid < 0) { a_uio->uio_resid = 0; } if (a_count > (user_size_t)a_uio->uio_resid) { a_uio->uio_offset += a_uio->uio_resid; a_uio->uio_resid = 0; } else { a_uio->uio_offset += a_count; a_uio->uio_resid -= a_count; } #else if (a_uio->uio_resid_64 < 0) { a_uio->uio_resid_64 = 0; } if (a_count > (user_size_t)a_uio->uio_resid_64) { a_uio->uio_offset += a_uio->uio_resid_64; a_uio->uio_resid_64 = 0; } else { a_uio->uio_offset += a_count; a_uio->uio_resid_64 -= a_count; } #endif // LP64todo } /* * advance to next iovec if current one is totally consumed */ while (a_uio->uio_iovcnt > 0 && a_uio->uio_iovs.uiovp->iov_len == 0) { a_uio->uio_iovcnt--; if (a_uio->uio_iovcnt > 0) { a_uio->uio_iovs.uiovp++; } } } else { /* * if a_count == 0, then we are asking to skip over * any empty iovs */ if (a_count) { if (a_count > a_uio->uio_iovs.kiovp->iov_len) { a_uio->uio_iovs.kiovp->iov_base += a_uio->uio_iovs.kiovp->iov_len; a_uio->uio_iovs.kiovp->iov_len = 0; } else { a_uio->uio_iovs.kiovp->iov_base += a_count; a_uio->uio_iovs.kiovp->iov_len -= a_count; } if (a_uio->uio_resid < 0) { a_uio->uio_resid = 0; } if (a_count > (user_size_t)a_uio->uio_resid) { a_uio->uio_offset += a_uio->uio_resid; a_uio->uio_resid = 0; } else { a_uio->uio_offset += a_count; a_uio->uio_resid -= a_count; } } /* * advance to next iovec if current one is totally consumed */ while (a_uio->uio_iovcnt > 0 && a_uio->uio_iovs.kiovp->iov_len == 0) { a_uio->uio_iovcnt--; if (a_uio->uio_iovcnt > 0) { a_uio->uio_iovs.kiovp++; } } } return; } /* * uio_duplicate - allocate a new uio and make a copy of the given uio_t. * may return NULL. */ uio_t uio_duplicate( uio_t a_uio ) { uio_t my_uio; int i; if (a_uio == NULL) { return(NULL); } my_uio = (uio_t) kalloc(a_uio->uio_size); if (my_uio == 0) { panic("%s :%d - allocation failed\n", __FILE__, __LINE__); } bcopy((void *)a_uio, (void *)my_uio, a_uio->uio_size); /* need to set our iovec pointer to point to first active iovec */ if (my_uio->uio_max_iovs > 0) { my_uio->uio_iovs.uiovp = (struct user_iovec *) (((uint8_t *)my_uio) + sizeof(struct uio)); /* advance to first nonzero iovec */ if (my_uio->uio_iovcnt > 0) { for ( i = 0; i < my_uio->uio_max_iovs; i++ ) { if (UIO_IS_64_BIT_SPACE(a_uio)) { if (my_uio->uio_iovs.uiovp->iov_len != 0) { break; } my_uio->uio_iovs.uiovp++; } else { if (my_uio->uio_iovs.kiovp->iov_len != 0) { break; } my_uio->uio_iovs.kiovp++; } } } } my_uio->uio_flags = UIO_FLAGS_WE_ALLOCED | UIO_FLAGS_INITED; return(my_uio); }