/* * Copyright (c) 2000-2007 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */ /*- * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 */ /* * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce * support for mandatory and extensible security protections. This notice * is included in support of clause 2.2 (b) of the Apple Public License, * Version 2.0. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for thread_policy_set( ) */ #include #include #include #include /* for absolutetime_to_microtime() */ #include /* for TRAFFIC_MGT_SO_BACKGROUND */ #include /* for struct socket */ #include int donice(struct proc *curp, struct proc *chgp, int n); int dosetrlimit(struct proc *p, u_int which, struct rlimit *limp); static int do_background_thread(struct proc *curp, int priority); rlim_t maxdmap = MAXDSIZ; /* XXX */ rlim_t maxsmap = MAXSSIZ - PAGE_SIZE; /* XXX */ /* * Limits on the number of open files per process, and the number * of child processes per process. * * Note: would be in kern/subr_param.c in FreeBSD. */ int maxfilesperproc = OPEN_MAX; /* per-proc open files limit */ SYSCTL_INT( _kern, KERN_MAXPROCPERUID, maxprocperuid, CTLFLAG_RW, &maxprocperuid, 0, "Maximum processes allowed per userid" ); SYSCTL_INT( _kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW, &maxfilesperproc, 0, "Maximum files allowed open per process" ); /* Args and fn for proc_iteration callback used in setpriority */ struct puser_nice_args { proc_t curp; int prio; id_t who; int * foundp; int * errorp; }; static int puser_donice_callback(proc_t p, void * arg); /* Args and fn for proc_iteration callback used in setpriority */ struct ppgrp_nice_args { proc_t curp; int prio; int * foundp; int * errorp; }; static int ppgrp_donice_callback(proc_t p, void * arg); /* * Resource controls and accounting. */ int getpriority(struct proc *curp, struct getpriority_args *uap, register_t *retval) { struct proc *p; int low = PRIO_MAX + 1; kauth_cred_t my_cred; /* would also test (uap->who < 0), but id_t is unsigned */ if (uap->who > 0x7fffffff) return (EINVAL); switch (uap->which) { case PRIO_PROCESS: if (uap->who == 0) { p = curp; low = p->p_nice; } else { p = proc_find(uap->who); if (p == 0) break; low = p->p_nice; proc_rele(p); } break; case PRIO_PGRP: { struct pgrp *pg = PGRP_NULL; if (uap->who == 0) { /* returns the pgrp to ref */ pg = proc_pgrp(curp); } else if ((pg = pgfind(uap->who)) == PGRP_NULL) { break; } /* No need for iteration as it is a simple scan */ pgrp_lock(pg); for (p = pg->pg_members.lh_first; p != 0; p = p->p_pglist.le_next) { if (p->p_nice < low) low = p->p_nice; } pgrp_unlock(pg); pg_rele(pg); break; } case PRIO_USER: if (uap->who == 0) uap->who = kauth_cred_getuid(kauth_cred_get()); proc_list_lock(); for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) { my_cred = kauth_cred_proc_ref(p); if (kauth_cred_getuid(my_cred) == uap->who && p->p_nice < low) low = p->p_nice; kauth_cred_unref(&my_cred); } proc_list_unlock(); break; case PRIO_DARWIN_THREAD: { thread_t thread; struct uthread *ut; /* we currently only support the current thread */ if (uap->who != 0) { return (EINVAL); } thread = current_thread(); ut = get_bsdthread_info(thread); low = 0; if ( (ut->uu_flag & UT_BACKGROUND) != 0 ) { low = 1; } break; } default: return (EINVAL); } if (low == PRIO_MAX + 1) return (ESRCH); *retval = low; return (0); } /* call back function used for proc iteration in PRIO_USER */ static int puser_donice_callback(proc_t p, void * arg) { int error, n; struct puser_nice_args * pun = (struct puser_nice_args *)arg; kauth_cred_t my_cred; my_cred = kauth_cred_proc_ref(p); if (kauth_cred_getuid(my_cred) == pun->who) { error = donice(pun->curp, p, pun->prio); if (pun->errorp != NULL) *pun->errorp = error; if (pun->foundp != NULL) { n = *pun->foundp; *pun->foundp = n+1; } } kauth_cred_unref(&my_cred); return(PROC_RETURNED); } /* call back function used for proc iteration in PRIO_PGRP */ static int ppgrp_donice_callback(proc_t p, void * arg) { int error; struct ppgrp_nice_args * pun = (struct ppgrp_nice_args *)arg; int n; error = donice(pun->curp, p, pun->prio); if (pun->errorp != NULL) *pun->errorp = error; if (pun->foundp!= NULL) { n = *pun->foundp; *pun->foundp = n+1; } return(PROC_RETURNED); } /* * Returns: 0 Success * EINVAL * ESRCH * donice:EPERM * donice:EACCES */ /* ARGSUSED */ int setpriority(struct proc *curp, struct setpriority_args *uap, __unused register_t *retval) { struct proc *p; int found = 0, error = 0; int refheld = 0; AUDIT_ARG(cmd, uap->which); AUDIT_ARG(owner, uap->who, 0); AUDIT_ARG(value, uap->prio); /* would also test (uap->who < 0), but id_t is unsigned */ if (uap->who > 0x7fffffff) return (EINVAL); switch (uap->which) { case PRIO_PROCESS: if (uap->who == 0) p = curp; else { p = proc_find(uap->who); if (p == 0) break; refheld = 1; } error = donice(curp, p, uap->prio); found++; if (refheld != 0) proc_rele(p); break; case PRIO_PGRP: { struct pgrp *pg = PGRP_NULL; struct ppgrp_nice_args ppgrp; if (uap->who == 0) { pg = proc_pgrp(curp); } else if ((pg = pgfind(uap->who)) == PGRP_NULL) break; ppgrp.curp = curp; ppgrp.prio = uap->prio; ppgrp.foundp = &found; ppgrp.errorp = &error; /* PGRP_DROPREF drops the reference on process group */ pgrp_iterate(pg, PGRP_DROPREF, ppgrp_donice_callback, (void *)&ppgrp, NULL, NULL); break; } case PRIO_USER: { struct puser_nice_args punice; if (uap->who == 0) uap->who = kauth_cred_getuid(kauth_cred_get()); punice.curp = curp; punice.prio = uap->prio; punice.who = uap->who; punice.foundp = &found; error = 0; punice.errorp = &error; proc_iterate(PROC_ALLPROCLIST, puser_donice_callback, (void *)&punice, NULL, NULL); break; } case PRIO_DARWIN_THREAD: { /* we currently only support the current thread */ if (uap->who != 0) { return (EINVAL); } error = do_background_thread(curp, uap->prio); found++; break; } default: return (EINVAL); } if (found == 0) return (ESRCH); return (error); } /* * Returns: 0 Success * EPERM * EACCES * mac_check_proc_sched:??? */ int donice(struct proc *curp, struct proc *chgp, int n) { int error = 0; kauth_cred_t ucred; kauth_cred_t my_cred; ucred = kauth_cred_proc_ref(curp); my_cred = kauth_cred_proc_ref(chgp); if (suser(ucred, NULL) && ucred->cr_ruid && kauth_cred_getuid(ucred) != kauth_cred_getuid(my_cred) && ucred->cr_ruid != kauth_cred_getuid(my_cred)) { error = EPERM; goto out; } if (n > PRIO_MAX) n = PRIO_MAX; if (n < PRIO_MIN) n = PRIO_MIN; if (n < chgp->p_nice && suser(ucred, &curp->p_acflag)) { error = EACCES; goto out; } #if CONFIG_MACF error = mac_proc_check_sched(curp, chgp); if (error) goto out; #endif proc_lock(chgp); chgp->p_nice = n; proc_unlock(chgp); (void)resetpriority(chgp); out: kauth_cred_unref(&ucred); kauth_cred_unref(&my_cred); return (error); } /* * do_background_thread * Returns: 0 Success * XXX - todo - does this need a MACF hook? */ static int do_background_thread(struct proc *curp, int priority) { int i; thread_t thread; struct uthread *ut; thread_precedence_policy_data_t policy; struct filedesc *fdp; struct fileproc *fp; thread = current_thread(); ut = get_bsdthread_info(thread); if ( (priority & PRIO_DARWIN_BG) == 0 ) { /* turn off backgrounding of thread */ if ( (ut->uu_flag & UT_BACKGROUND) == 0 ) { /* already off */ return(0); } /* clear background bit in thread and disable disk IO throttle */ ut->uu_flag &= ~UT_BACKGROUND; ut->uu_iopol_disk = IOPOL_NORMAL; /* reset thread priority (we did not save previous value) */ policy.importance = 0; thread_policy_set( thread, THREAD_PRECEDENCE_POLICY, (thread_policy_t)&policy, THREAD_PRECEDENCE_POLICY_COUNT ); /* disable networking IO throttle. * NOTE - It is a known limitation of the current design that we * could potentially clear TRAFFIC_MGT_SO_BACKGROUND bit for * sockets created by other threads within this process. */ proc_fdlock(curp); fdp = curp->p_fd; for ( i = 0; i < fdp->fd_nfiles; i++ ) { struct socket *sockp; fp = fdp->fd_ofiles[ i ]; if ( fp == NULL || (fdp->fd_ofileflags[ i ] & UF_RESERVED) != 0 || fp->f_fglob->fg_type != DTYPE_SOCKET ) { continue; } sockp = (struct socket *)fp->f_fglob->fg_data; if ( sockp->so_background_thread != thread ) { continue; } sockp->so_traffic_mgt_flags &= ~TRAFFIC_MGT_SO_BACKGROUND; sockp->so_background_thread = NULL; } proc_fdunlock(curp); return(0); } /* background this thread */ if ( (ut->uu_flag & UT_BACKGROUND) != 0 ) { /* already backgrounded */ return(0); } /* tag thread as background and throttle disk IO */ ut->uu_flag |= UT_BACKGROUND; ut->uu_iopol_disk = IOPOL_THROTTLE; policy.importance = INT_MIN; thread_policy_set( thread, THREAD_PRECEDENCE_POLICY, (thread_policy_t)&policy, THREAD_PRECEDENCE_POLICY_COUNT ); /* throttle networking IO happens in socket( ) syscall. * If UT_BACKGROUND is set in the current thread then * TRAFFIC_MGT_SO_BACKGROUND socket option is set. */ return(0); } /* * Returns: 0 Success * copyin:EFAULT * dosetrlimit: */ /* ARGSUSED */ int setrlimit(struct proc *p, struct setrlimit_args *uap, __unused register_t *retval) { struct rlimit alim; int error; if ((error = copyin(uap->rlp, (caddr_t)&alim, sizeof (struct rlimit)))) return (error); return (dosetrlimit(p, uap->which, &alim)); } /* * Returns: 0 Success * EINVAL * ENOMEM Cannot copy limit structure * suser:EPERM * * Notes: EINVAL is returned both for invalid arguments, and in the * case that the current usage (e.g. RLIMIT_STACK) is already * in excess of the requested limit. */ int dosetrlimit(struct proc *p, u_int which, struct rlimit *limp) { struct rlimit *alimp; int error; kern_return_t kr; int posix = (which & _RLIMIT_POSIX_FLAG) ? 1 : 0; /* Mask out POSIX flag, saved above */ which &= ~_RLIMIT_POSIX_FLAG; if (which >= RLIM_NLIMITS) return (EINVAL); alimp = &p->p_rlimit[which]; if (limp->rlim_cur > limp->rlim_max) return EINVAL; if (limp->rlim_cur > alimp->rlim_max || limp->rlim_max > alimp->rlim_max) if ((error = suser(kauth_cred_get(), &p->p_acflag))) { return (error); } proc_limitblock(p); if ((error = proc_limitreplace(p)) != 0) { proc_limitunblock(p); return(error); } alimp = &p->p_rlimit[which]; switch (which) { case RLIMIT_CPU: if (limp->rlim_cur == RLIM_INFINITY) { task_vtimer_clear(p->task, TASK_VTIMER_RLIM); timerclear(&p->p_rlim_cpu); } else { task_absolutetime_info_data_t tinfo; mach_msg_type_number_t count; struct timeval ttv, tv; count = TASK_ABSOLUTETIME_INFO_COUNT; task_info(p->task, TASK_ABSOLUTETIME_INFO, (task_info_t)&tinfo, &count); absolutetime_to_microtime(tinfo.total_user + tinfo.total_system, (uint32_t *) &ttv.tv_sec, (uint32_t *) &ttv.tv_usec); tv.tv_sec = (limp->rlim_cur > __INT_MAX__ ? __INT_MAX__ : limp->rlim_cur); tv.tv_usec = 0; timersub(&tv, &ttv, &p->p_rlim_cpu); timerclear(&tv); if (timercmp(&p->p_rlim_cpu, &tv, >)) task_vtimer_set(p->task, TASK_VTIMER_RLIM); else { task_vtimer_clear(p->task, TASK_VTIMER_RLIM); timerclear(&p->p_rlim_cpu); psignal(p, SIGXCPU); } } break; case RLIMIT_DATA: if (limp->rlim_cur > maxdmap) limp->rlim_cur = maxdmap; if (limp->rlim_max > maxdmap) limp->rlim_max = maxdmap; break; case RLIMIT_STACK: /* Disallow illegal stack size instead of clipping */ if (limp->rlim_cur > maxsmap || limp->rlim_max > maxsmap) { if (posix) { error = EINVAL; goto out; } else { /* * 4797860 - workaround poorly written installers by * doing previous implementation (< 10.5) when caller * is non-POSIX conforming. */ if (limp->rlim_cur > maxsmap) limp->rlim_cur = maxsmap; if (limp->rlim_max > maxsmap) limp->rlim_max = maxsmap; } } /* * Stack is allocated to the max at exec time with only * "rlim_cur" bytes accessible. If stack limit is going * up make more accessible, if going down make inaccessible. */ if (limp->rlim_cur > alimp->rlim_cur) { user_addr_t addr; user_size_t size; /* grow stack */ size = round_page_64(limp->rlim_cur); size -= round_page_64(alimp->rlim_cur); #if STACK_GROWTH_UP /* go to top of current stack */ addr = p->user_stack + round_page_64(alimp->rlim_cur); #else /* STACK_GROWTH_UP */ addr = p->user_stack - round_page_64(limp->rlim_cur); #endif /* STACK_GROWTH_UP */ kr = mach_vm_protect(current_map(), addr, size, FALSE, VM_PROT_DEFAULT); if (kr != KERN_SUCCESS) { error = EINVAL; goto out; } } else if (limp->rlim_cur < alimp->rlim_cur) { user_addr_t addr; user_size_t size; user_addr_t cur_sp; /* shrink stack */ /* * First check if new stack limit would agree * with current stack usage. * Get the current thread's stack pointer... */ cur_sp = thread_adjuserstack(current_thread(), 0); #if STACK_GROWTH_UP if (cur_sp >= p->user_stack && cur_sp < (p->user_stack + round_page_64(alimp->rlim_cur))) { /* current stack pointer is in main stack */ if (cur_sp >= (p->user_stack + round_page_64(limp->rlim_cur))) { /* * New limit would cause * current usage to be invalid: * reject new limit. */ error = EINVAL; goto out; } } else { /* not on the main stack: reject */ error = EINVAL; goto out; } #else /* STACK_GROWTH_UP */ if (cur_sp <= p->user_stack && cur_sp > (p->user_stack - round_page_64(alimp->rlim_cur))) { /* stack pointer is in main stack */ if (cur_sp <= (p->user_stack - round_page_64(limp->rlim_cur))) { /* * New limit would cause * current usage to be invalid: * reject new limit. */ error = EINVAL; goto out; } } else { /* not on the main stack: reject */ error = EINVAL; goto out; } #endif /* STACK_GROWTH_UP */ size = round_page_64(alimp->rlim_cur); size -= round_page_64(limp->rlim_cur); #if STACK_GROWTH_UP addr = p->user_stack + round_page_64(limp->rlim_cur); #else /* STACK_GROWTH_UP */ addr = p->user_stack - round_page_64(alimp->rlim_cur); #endif /* STACK_GROWTH_UP */ kr = mach_vm_protect(current_map(), addr, size, FALSE, VM_PROT_NONE); if (kr != KERN_SUCCESS) { error = EINVAL; goto out; } } else { /* no change ... */ } break; case RLIMIT_NOFILE: /* * Only root can set the maxfiles limits, as it is * systemwide resource. If we are expecting POSIX behavior, * instead of clamping the value, return EINVAL. We do this * because historically, people have been able to attempt to * set RLIM_INFINITY to get "whatever the maximum is". */ if ( is_suser() ) { if (limp->rlim_cur != alimp->rlim_cur && limp->rlim_cur > (rlim_t)maxfiles) { if (posix) { error = EINVAL; goto out; } limp->rlim_cur = maxfiles; } if (limp->rlim_max != alimp->rlim_max && limp->rlim_max > (rlim_t)maxfiles) limp->rlim_max = maxfiles; } else { if (limp->rlim_cur != alimp->rlim_cur && limp->rlim_cur > (rlim_t)maxfilesperproc) { if (posix) { error = EINVAL; goto out; } limp->rlim_cur = maxfilesperproc; } if (limp->rlim_max != alimp->rlim_max && limp->rlim_max > (rlim_t)maxfilesperproc) limp->rlim_max = maxfilesperproc; } break; case RLIMIT_NPROC: /* * Only root can set to the maxproc limits, as it is * systemwide resource; all others are limited to * maxprocperuid (presumably less than maxproc). */ if ( is_suser() ) { if (limp->rlim_cur > (rlim_t)maxproc) limp->rlim_cur = maxproc; if (limp->rlim_max > (rlim_t)maxproc) limp->rlim_max = maxproc; } else { if (limp->rlim_cur > (rlim_t)maxprocperuid) limp->rlim_cur = maxprocperuid; if (limp->rlim_max > (rlim_t)maxprocperuid) limp->rlim_max = maxprocperuid; } break; case RLIMIT_MEMLOCK: /* * Tell the Mach VM layer about the new limit value. */ vm_map_set_user_wire_limit(current_map(), limp->rlim_cur); break; } /* switch... */ proc_lock(p); *alimp = *limp; proc_unlock(p); error = 0; out: proc_limitunblock(p); return (error); } /* ARGSUSED */ int getrlimit(struct proc *p, struct getrlimit_args *uap, __unused register_t *retval) { struct rlimit lim; /* * Take out flag now in case we need to use it to trigger variant * behaviour later. */ uap->which &= ~_RLIMIT_POSIX_FLAG; if (uap->which >= RLIM_NLIMITS) return (EINVAL); proc_limitget(p, uap->which, &lim); return (copyout((caddr_t)&lim, uap->rlp, sizeof (struct rlimit))); } /* * Transform the running time and tick information in proc p into user, * system, and interrupt time usage. */ /* No lock on proc is held for this.. */ void calcru(struct proc *p, struct timeval *up, struct timeval *sp, struct timeval *ip) { task_t task; timerclear(up); timerclear(sp); if (ip != NULL) timerclear(ip); task = p->task; if (task) { task_basic_info_data_t tinfo; task_thread_times_info_data_t ttimesinfo; mach_msg_type_number_t task_info_stuff, task_ttimes_stuff; struct timeval ut,st; task_info_stuff = TASK_BASIC_INFO_COUNT; task_info(task, TASK_BASIC_INFO, (task_info_t)&tinfo, &task_info_stuff); ut.tv_sec = tinfo.user_time.seconds; ut.tv_usec = tinfo.user_time.microseconds; st.tv_sec = tinfo.system_time.seconds; st.tv_usec = tinfo.system_time.microseconds; timeradd(&ut, up, up); timeradd(&st, sp, sp); task_ttimes_stuff = TASK_THREAD_TIMES_INFO_COUNT; task_info(task, TASK_THREAD_TIMES_INFO, (task_info_t)&ttimesinfo, &task_ttimes_stuff); ut.tv_sec = ttimesinfo.user_time.seconds; ut.tv_usec = ttimesinfo.user_time.microseconds; st.tv_sec = ttimesinfo.system_time.seconds; st.tv_usec = ttimesinfo.system_time.microseconds; timeradd(&ut, up, up); timeradd(&st, sp, sp); } } __private_extern__ void munge_rusage(struct rusage *a_rusage_p, struct user_rusage *a_user_rusage_p); /* ARGSUSED */ int getrusage(struct proc *p, struct getrusage_args *uap, __unused register_t *retval) { struct rusage *rup, rubuf; struct user_rusage rubuf64; size_t retsize = sizeof(rubuf); /* default: 32 bits */ caddr_t retbuf = (caddr_t)&rubuf; /* default: 32 bits */ struct timeval utime; struct timeval stime; switch (uap->who) { case RUSAGE_SELF: calcru(p, &utime, &stime, NULL); // LP64todo: proc struct should have 64 bit version of struct proc_lock(p); rup = &p->p_stats->p_ru; rup->ru_utime = utime; rup->ru_stime = stime; rubuf = *rup; proc_unlock(p); break; case RUSAGE_CHILDREN: proc_lock(p); rup = &p->p_stats->p_cru; rubuf = *rup; proc_unlock(p); break; default: return (EINVAL); } if (IS_64BIT_PROCESS(p)) { retsize = sizeof(rubuf64); retbuf = (caddr_t)&rubuf64; munge_rusage(&rubuf, &rubuf64); } return (copyout(retbuf, uap->rusage, retsize)); } void ruadd(struct rusage *ru, struct rusage *ru2) { long *ip, *ip2; int i; timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime); timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime); if (ru->ru_maxrss < ru2->ru_maxrss) ru->ru_maxrss = ru2->ru_maxrss; ip = &ru->ru_first; ip2 = &ru2->ru_first; for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) *ip++ += *ip2++; } void proc_limitget(proc_t p, int which, struct rlimit * limp) { proc_list_lock(); limp->rlim_cur = p->p_rlimit[which].rlim_cur; limp->rlim_max = p->p_rlimit[which].rlim_max; proc_list_unlock(); } void proc_limitdrop(proc_t p, int exiting) { struct plimit * freelim = NULL; struct plimit * freeoldlim = NULL; proc_list_lock(); if (--p->p_limit->pl_refcnt == 0) { freelim = p->p_limit; p->p_limit = NULL; } if ((exiting != 0) && (p->p_olimit != NULL) && (--p->p_olimit->pl_refcnt == 0)) { freeoldlim = p->p_olimit; p->p_olimit = NULL; } proc_list_unlock(); if (freelim != NULL) FREE_ZONE(freelim, sizeof *p->p_limit, M_PLIMIT); if (freeoldlim != NULL) FREE_ZONE(freeoldlim, sizeof *p->p_olimit, M_PLIMIT); } void proc_limitfork(proc_t parent, proc_t child) { proc_list_lock(); child->p_limit = parent->p_limit; child->p_limit->pl_refcnt++; child->p_olimit = NULL; proc_list_unlock(); } void proc_limitblock(proc_t p) { proc_lock(p); while (p->p_lflag & P_LLIMCHANGE) { p->p_lflag |= P_LLIMWAIT; msleep(&p->p_olimit, &p->p_mlock, 0, "proc_limitblock", NULL); } p->p_lflag |= P_LLIMCHANGE; proc_unlock(p); } void proc_limitunblock(proc_t p) { proc_lock(p); p->p_lflag &= ~P_LLIMCHANGE; if (p->p_lflag & P_LLIMWAIT) { p->p_lflag &= ~P_LLIMWAIT; wakeup(&p->p_olimit); } proc_unlock(p); } /* This is called behind serialization provided by proc_limitblock/unlbock */ int proc_limitreplace(proc_t p) { struct plimit *copy; proc_list_lock(); if (p->p_limit->pl_refcnt == 1) { proc_list_unlock(); return(0); } proc_list_unlock(); MALLOC_ZONE(copy, struct plimit *, sizeof(struct plimit), M_PLIMIT, M_WAITOK); if (copy == NULL) { return(ENOMEM); } proc_list_lock(); bcopy(p->p_limit->pl_rlimit, copy->pl_rlimit, sizeof(struct rlimit) * RLIM_NLIMITS); copy->pl_refcnt = 1; /* hang on to reference to old till process exits */ p->p_olimit = p->p_limit; p->p_limit = copy; proc_list_unlock(); return(0); } /* * iopolicysys * * Description: System call MUX for use in manipulating I/O policy attributes of the current process or thread * * Parameters: cmd Policy command * arg Pointer to policy arguments * * Returns: 0 Success * EINVAL Invalid command or invalid policy arguments * */ int iopolicysys(__unused struct proc *p, __unused struct iopolicysys_args *uap, __unused register_t *retval) { int error = 0; thread_t thread = THREAD_NULL; int *policy; struct uthread *ut = NULL; struct _iopol_param_t iop_param; if ((error = copyin(uap->arg, &iop_param, sizeof(iop_param))) != 0) goto exit; if (iop_param.iop_iotype != IOPOL_TYPE_DISK) { error = EINVAL; goto exit; } switch (iop_param.iop_scope) { case IOPOL_SCOPE_PROCESS: policy = &p->p_iopol_disk; break; case IOPOL_SCOPE_THREAD: thread = current_thread(); ut = get_bsdthread_info(thread); policy = &ut->uu_iopol_disk; break; default: error = EINVAL; goto exit; } switch(uap->cmd) { case IOPOL_CMD_SET: switch (iop_param.iop_policy) { case IOPOL_DEFAULT: case IOPOL_NORMAL: case IOPOL_THROTTLE: case IOPOL_PASSIVE: proc_lock(p); *policy = iop_param.iop_policy; proc_unlock(p); break; default: error = EINVAL; goto exit; } break; case IOPOL_CMD_GET: switch (*policy) { case IOPOL_DEFAULT: case IOPOL_NORMAL: case IOPOL_THROTTLE: case IOPOL_PASSIVE: iop_param.iop_policy = *policy; break; default: // in-kernel // this should never happen printf("%s: unknown I/O policy %d\n", __func__, *policy); // restore to default value *policy = IOPOL_DEFAULT; iop_param.iop_policy = *policy; } error = copyout((caddr_t)&iop_param, uap->arg, sizeof(iop_param)); break; default: error = EINVAL; // unknown command break; } exit: *retval = error; return (error); }