/* * Copyright (c) 2013 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ #include #include #ifdef IMPORTANCE_INHERITANCE #include #endif #include #include #include #include #include #include #include #include /* bcopy */ #include #include #include #include #include #include #include #include extern unsigned int not_in_kdp; /* * TODO: Even hackier than the other pieces. This should really * be moved off of kdp_pmap, and we should probably separate * machine_trace_thread out of the kdp code. */ extern pmap_t kdp_pmap; extern addr64_t kdp_vtophys(pmap_t pmap, addr64_t va); int kdp_snapshot = 0; static int stack_snapshot_ret = 0; static unsigned stack_snapshot_bytes_traced = 0; static void *stack_snapshot_buf; static uint32_t stack_snapshot_bufsize; int stack_snapshot_pid; static uint32_t stack_snapshot_flags; static uint32_t stack_snapshot_dispatch_offset; static unsigned int old_debugger; void do_stackshot(void); void kdp_snapshot_preflight(int pid, void * tracebuf, uint32_t tracebuf_size, uint32_t flags, uint32_t dispatch_offset); void kdp_snapshot_postflight(void); static int kdp_stackshot(int pid, void *tracebuf, uint32_t tracebuf_size, uint32_t flags, uint32_t dispatch_offset, uint32_t *pbytesTraced); int kdp_stack_snapshot_geterror(void); int kdp_stack_snapshot_bytes_traced(void); int kdp_stackshot(int pid, void *tracebuf, uint32_t tracebuf_size, uint32_t trace_flags, uint32_t dispatch_offset, uint32_t *pbytesTraced); static int pid_from_task(task_t task); static uint64_t proc_uniqueid_from_task(task_t task); static void kdp_mem_and_io_snapshot(struct mem_and_io_snapshot *memio_snap); static boolean_t kdp_copyin(pmap_t p, uint64_t uaddr, void *dest, size_t size); static uint64_t proc_was_throttled_from_task(task_t task); extern int proc_pid(void *p); extern uint64_t proc_uniqueid(void *p); extern uint64_t proc_was_throttled(void *p); extern uint64_t proc_did_throttle(void *p); static uint64_t proc_did_throttle_from_task(task_t task); extern void proc_name_kdp(task_t task, char *buf, int size); extern int proc_threadname_kdp(void *uth, char *buf, size_t size); extern void proc_starttime_kdp(void *p, uint64_t *tv_sec, uint64_t *tv_usec); extern int count_busy_buffers(void); /* must track with declaration in bsd/sys/buf_internal.h */ extern void bcopy_phys(addr64_t, addr64_t, vm_size_t); extern int machine_trace_thread(thread_t thread, char *tracepos, char *tracebound, int nframes, boolean_t user_p); extern int machine_trace_thread64(thread_t thread, char *tracepos, char *tracebound, int nframes, boolean_t user_p); /* Validates that the given address is both a valid page and has * default caching attributes for the current kdp_pmap. Returns * 0 if the address is invalid, and a kernel virtual address for * the given address if it is valid. */ vm_offset_t machine_trace_thread_get_kva(vm_offset_t cur_target_addr); /* Clears caching information used by the above validation routine * (in case the kdp_pmap has been changed or cleared). */ void machine_trace_thread_clear_validation_cache(void); #define MAX_FRAMES 1000 typedef struct thread_snapshot *thread_snapshot_t; typedef struct task_snapshot *task_snapshot_t; #if CONFIG_KDP_INTERACTIVE_DEBUGGING extern kdp_send_t kdp_en_send_pkt; #endif /* * Globals to support machine_trace_thread_get_kva. */ static vm_offset_t prev_target_page = 0; static vm_offset_t prev_target_kva = 0; static boolean_t validate_next_addr = TRUE; /* * Method for grabbing timer values safely, in the sense that no infinite loop will occur * Certain flavors of the timer_grab function, which would seem to be the thing to use, * can loop infinitely if called while the timer is in the process of being updated. * Unfortunately, it is (rarely) possible to get inconsistent top and bottom halves of * the timer using this method. This seems insoluble, since stackshot runs in a context * where the timer might be half-updated, and has no way of yielding control just long * enough to finish the update. */ static uint64_t safe_grab_timer_value(struct timer *t) { #if defined(__LP64__) return t->all_bits; #else uint64_t time = t->high_bits; /* endian independent grab */ time = (time << 32) | t->low_bits; return time; #endif } /* Cache stack snapshot parameters in preparation for a trace */ void kdp_snapshot_preflight(int pid, void * tracebuf, uint32_t tracebuf_size, uint32_t flags, uint32_t dispatch_offset) { stack_snapshot_pid = pid; stack_snapshot_buf = tracebuf; stack_snapshot_bufsize = tracebuf_size; stack_snapshot_flags = flags; stack_snapshot_dispatch_offset = dispatch_offset; kdp_snapshot++; /* Mark this debugger as active, since the polled mode driver that * ordinarily does this may not be enabled (yet), or since KDB may be * the primary debugger. */ old_debugger = current_debugger; if (old_debugger != KDP_CUR_DB) { current_debugger = KDP_CUR_DB; } } void kdp_snapshot_postflight(void) { kdp_snapshot--; #if CONFIG_KDP_INTERACTIVE_DEBUGGING if ( (kdp_en_send_pkt == NULL) || (old_debugger == KDB_CUR_DB)) current_debugger = old_debugger; #else current_debugger = old_debugger; #endif } int kdp_stack_snapshot_geterror(void) { return stack_snapshot_ret; } int kdp_stack_snapshot_bytes_traced(void) { return stack_snapshot_bytes_traced; } static int kdp_stackshot(int pid, void *tracebuf, uint32_t tracebuf_size, uint32_t trace_flags, uint32_t dispatch_offset, uint32_t *pbytesTraced) { char *tracepos = (char *) tracebuf; char *tracebound = tracepos + tracebuf_size; uint32_t tracebytes = 0; int error = 0, i; task_t task = TASK_NULL; thread_t thread = THREAD_NULL; unsigned framesize = 2 * sizeof(vm_offset_t); queue_head_t *task_list = &tasks; boolean_t is_active_list = TRUE; boolean_t dispatch_p = ((trace_flags & STACKSHOT_GET_DQ) != 0); boolean_t save_loadinfo_p = ((trace_flags & STACKSHOT_SAVE_LOADINFO) != 0); boolean_t save_kextloadinfo_p = ((trace_flags & STACKSHOT_SAVE_KEXT_LOADINFO) != 0); boolean_t save_userframes_p = ((trace_flags & STACKSHOT_SAVE_KERNEL_FRAMES_ONLY) == 0); boolean_t save_donating_pids_p = ((trace_flags & STACKSHOT_SAVE_IMP_DONATION_PIDS) != 0); if(trace_flags & STACKSHOT_GET_GLOBAL_MEM_STATS) { if(tracepos + sizeof(struct mem_and_io_snapshot) > tracebound) { error = -1; goto error_exit; } kdp_mem_and_io_snapshot((struct mem_and_io_snapshot *)tracepos); tracepos += sizeof(struct mem_and_io_snapshot); } walk_list: queue_iterate(task_list, task, task_t, tasks) { if ((task == NULL) || !ml_validate_nofault((vm_offset_t) task, sizeof(struct task))) goto error_exit; int task_pid = pid_from_task(task); uint64_t task_uniqueid = proc_uniqueid_from_task(task); boolean_t task64 = task_has_64BitAddr(task); if (!task->active) { /* * Not interested in terminated tasks without threads, and * at the moment, stackshot can't handle a task without a name. */ if (queue_empty(&task->threads) || task_pid == -1) { continue; } } /* Trace everything, unless a process was specified */ if ((pid == -1) || (pid == task_pid)) { task_snapshot_t task_snap; thread_snapshot_t tsnap = NULL; uint32_t uuid_info_count = 0; mach_vm_address_t uuid_info_addr = 0; boolean_t have_map = (task->map != NULL) && (ml_validate_nofault((vm_offset_t)(task->map), sizeof(struct _vm_map))); boolean_t have_pmap = have_map && (task->map->pmap != NULL) && (ml_validate_nofault((vm_offset_t)(task->map->pmap), sizeof(struct pmap))); uint64_t shared_cache_base_address = 0; if (have_pmap && task->active && save_loadinfo_p && task_pid > 0) { // Read the dyld_all_image_infos struct from the task memory to get UUID array count and location if (task64) { struct user64_dyld_all_image_infos task_image_infos; if (kdp_copyin(task->map->pmap, task->all_image_info_addr, &task_image_infos, sizeof(struct user64_dyld_all_image_infos))) { uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount; uuid_info_addr = task_image_infos.uuidArray; } } else { struct user32_dyld_all_image_infos task_image_infos; if (kdp_copyin(task->map->pmap, task->all_image_info_addr, &task_image_infos, sizeof(struct user32_dyld_all_image_infos))) { uuid_info_count = task_image_infos.uuidArrayCount; uuid_info_addr = task_image_infos.uuidArray; } } // If we get a NULL uuid_info_addr (which can happen when we catch dyld in the middle of updating // this data structure), we zero the uuid_info_count so that we won't even try to save load info // for this task. if (!uuid_info_addr) { uuid_info_count = 0; } } if (have_pmap && save_kextloadinfo_p && task_pid == 0) { if (ml_validate_nofault((vm_offset_t)(gLoadedKextSummaries), sizeof(OSKextLoadedKextSummaryHeader))) { uuid_info_count = gLoadedKextSummaries->numSummaries + 1; /* include main kernel UUID */ } } if (tracepos + sizeof(struct task_snapshot) > tracebound) { error = -1; goto error_exit; } task_snap = (task_snapshot_t) tracepos; task_snap->snapshot_magic = STACKSHOT_TASK_SNAPSHOT_MAGIC; task_snap->pid = task_pid; task_snap->uniqueid = task_uniqueid; task_snap->nloadinfos = uuid_info_count; task_snap->donating_pid_count = 0; /* Add the BSD process identifiers */ if (task_pid != -1) proc_name_kdp(task, task_snap->p_comm, sizeof(task_snap->p_comm)); else task_snap->p_comm[0] = '\0'; task_snap->ss_flags = 0; if (task64) task_snap->ss_flags |= kUser64_p; if (task64 && task_pid == 0) task_snap->ss_flags |= kKernel64_p; if (!task->active) task_snap->ss_flags |= kTerminatedSnapshot; if(task->pidsuspended) task_snap->ss_flags |= kPidSuspended; if(task->frozen) task_snap->ss_flags |= kFrozen; if (task->effective_policy.darwinbg == 1) { task_snap->ss_flags |= kTaskDarwinBG; } if (task->requested_policy.t_role == TASK_FOREGROUND_APPLICATION) { task_snap->ss_flags |= kTaskIsForeground; } if (task->requested_policy.t_boosted == 1) { task_snap->ss_flags |= kTaskIsBoosted; } if (task->effective_policy.t_sup_active == 1) task_snap->ss_flags |= kTaskIsSuppressed; #if IMPORTANCE_INHERITANCE if (task->task_imp_base) { if (task->task_imp_base->iit_donor) { task_snap->ss_flags |= kTaskIsImpDonor; } if (task->task_imp_base->iit_live_donor) { task_snap->ss_flags |= kTaskIsLiveImpDonor; } } #endif task_snap->latency_qos = (task->effective_policy.t_latency_qos == LATENCY_QOS_TIER_UNSPECIFIED) ? LATENCY_QOS_TIER_UNSPECIFIED : ((0xFF << 16) | task->effective_policy.t_latency_qos); task_snap->suspend_count = task->suspend_count; task_snap->task_size = have_pmap ? pmap_resident_count(task->map->pmap) : 0; task_snap->faults = task->faults; task_snap->pageins = task->pageins; task_snap->cow_faults = task->cow_faults; task_snap->user_time_in_terminated_threads = task->total_user_time; task_snap->system_time_in_terminated_threads = task->total_system_time; /* * The throttling counters are maintained as 64-bit counters in the proc * structure. However, we reserve 32-bits (each) for them in the task_snapshot * struct to save space and since we do not expect them to overflow 32-bits. If we * find these values overflowing in the future, the fix would be to simply * upgrade these counters to 64-bit in the task_snapshot struct */ task_snap->was_throttled = (uint32_t) proc_was_throttled_from_task(task); task_snap->did_throttle = (uint32_t) proc_did_throttle_from_task(task); /* fetch some useful BSD info: */ task_snap->p_start_sec = task_snap->p_start_usec = 0; proc_starttime_kdp(task->bsd_info, &task_snap->p_start_sec, &task_snap->p_start_usec); if (task->shared_region && ml_validate_nofault((vm_offset_t)task->shared_region, sizeof(struct vm_shared_region))) { struct vm_shared_region *sr = task->shared_region; shared_cache_base_address = sr->sr_base_address + sr->sr_first_mapping; } if (!shared_cache_base_address || !kdp_copyin(task->map->pmap, shared_cache_base_address + offsetof(struct _dyld_cache_header, uuid), task_snap->shared_cache_identifier, sizeof(task_snap->shared_cache_identifier))) { memset(task_snap->shared_cache_identifier, 0x0, sizeof(task_snap->shared_cache_identifier)); } if (task->shared_region) { /* * No refcounting here, but we are in debugger * context, so that should be safe. */ task_snap->shared_cache_slide = task->shared_region->sr_slide_info.slide; } else { task_snap->shared_cache_slide = 0; } /* I/O Statistics */ assert(IO_NUM_PRIORITIES == STACKSHOT_IO_NUM_PRIORITIES); if (task->task_io_stats) { task_snap->disk_reads_count = task->task_io_stats->disk_reads.count; task_snap->disk_reads_size = task->task_io_stats->disk_reads.size; task_snap->disk_writes_count = (task->task_io_stats->total_io.count - task->task_io_stats->disk_reads.count); task_snap->disk_writes_size = (task->task_io_stats->total_io.size - task->task_io_stats->disk_reads.size); for(i = 0; i < IO_NUM_PRIORITIES; i++) { task_snap->io_priority_count[i] = task->task_io_stats->io_priority[i].count; task_snap->io_priority_size[i] = task->task_io_stats->io_priority[i].size; } task_snap->paging_count = task->task_io_stats->paging.count; task_snap->paging_size = task->task_io_stats->paging.size; task_snap->non_paging_count = (task->task_io_stats->total_io.count - task->task_io_stats->paging.count); task_snap->non_paging_size = (task->task_io_stats->total_io.size - task->task_io_stats->paging.size); task_snap->metadata_count = task->task_io_stats->metadata.count; task_snap->metadata_size = task->task_io_stats->metadata.size; task_snap->data_count = (task->task_io_stats->total_io.count - task->task_io_stats->metadata.count); task_snap->data_size = (task->task_io_stats->total_io.size - task->task_io_stats->metadata.size); } else { /* zero from disk_reads_count to end of structure */ memset(&task_snap->disk_reads_count, 0, offsetof(struct task_snapshot, metadata_size) - offsetof(struct task_snapshot, disk_reads_count)); } tracepos += sizeof(struct task_snapshot); if (task_pid > 0 && uuid_info_count > 0) { uint32_t uuid_info_size = (uint32_t)(task64 ? sizeof(struct user64_dyld_uuid_info) : sizeof(struct user32_dyld_uuid_info)); uint32_t uuid_info_array_size = uuid_info_count * uuid_info_size; if (tracepos + uuid_info_array_size > tracebound) { error = -1; goto error_exit; } // Copy in the UUID info array // It may be nonresident, in which case just fix up nloadinfos to 0 in the task_snap if (have_pmap && !kdp_copyin(task->map->pmap, uuid_info_addr, tracepos, uuid_info_array_size)) task_snap->nloadinfos = 0; else tracepos += uuid_info_array_size; } else if (task_pid == 0 && uuid_info_count > 0) { uint32_t uuid_info_size = (uint32_t)sizeof(kernel_uuid_info); uint32_t uuid_info_array_size = uuid_info_count * uuid_info_size; kernel_uuid_info *output_uuids; if (tracepos + uuid_info_array_size > tracebound) { error = -1; goto error_exit; } output_uuids = (kernel_uuid_info *)tracepos; do { if (!kernel_uuid || !ml_validate_nofault((vm_offset_t)kernel_uuid, sizeof(uuid_t))) { /* Kernel UUID not found or inaccessible */ task_snap->nloadinfos = 0; break; } output_uuids[0].imageLoadAddress = (uintptr_t)VM_KERNEL_UNSLIDE(vm_kernel_stext); memcpy(&output_uuids[0].imageUUID, kernel_uuid, sizeof(uuid_t)); if (ml_validate_nofault((vm_offset_t)(&gLoadedKextSummaries->summaries[0]), gLoadedKextSummaries->entry_size * gLoadedKextSummaries->numSummaries)) { uint32_t kexti; for (kexti=0 ; kexti < gLoadedKextSummaries->numSummaries; kexti++) { output_uuids[1+kexti].imageLoadAddress = (uintptr_t)VM_KERNEL_UNSLIDE(gLoadedKextSummaries->summaries[kexti].address); memcpy(&output_uuids[1+kexti].imageUUID, &gLoadedKextSummaries->summaries[kexti].uuid, sizeof(uuid_t)); } tracepos += uuid_info_array_size; } else { /* kext summary invalid, but kernel UUID was copied */ task_snap->nloadinfos = 1; tracepos += uuid_info_size; break; } } while(0); } if (save_donating_pids_p) { task_snap->donating_pid_count = task_importance_list_pids(task, TASK_IMP_LIST_DONATING_PIDS, (int *)tracepos, (unsigned int)((tracebound - tracepos)/sizeof(int))); tracepos += sizeof(int) * task_snap->donating_pid_count; } queue_iterate(&task->threads, thread, thread_t, task_threads){ uint64_t tval; if ((thread == NULL) || !ml_validate_nofault((vm_offset_t) thread, sizeof(struct thread))) goto error_exit; if (((tracepos + 4 * sizeof(struct thread_snapshot)) > tracebound)) { error = -1; goto error_exit; } if (!save_userframes_p && thread->kernel_stack == 0) continue; /* Populate the thread snapshot header */ tsnap = (thread_snapshot_t) tracepos; tsnap->thread_id = thread_tid(thread); tsnap->state = thread->state; tsnap->priority = thread->priority; tsnap->sched_pri = thread->sched_pri; tsnap->sched_flags = thread->sched_flags; tsnap->wait_event = VM_KERNEL_UNSLIDE_OR_PERM(thread->wait_event); tsnap->continuation = VM_KERNEL_UNSLIDE(thread->continuation); tval = safe_grab_timer_value(&thread->user_timer); tsnap->user_time = tval; tval = safe_grab_timer_value(&thread->system_timer); if (thread->precise_user_kernel_time) { tsnap->system_time = tval; } else { tsnap->user_time += tval; tsnap->system_time = 0; } tsnap->snapshot_magic = STACKSHOT_THREAD_SNAPSHOT_MAGIC; bzero(&tsnap->pth_name, STACKSHOT_MAX_THREAD_NAME_SIZE); proc_threadname_kdp(thread->uthread, &tsnap->pth_name[0], STACKSHOT_MAX_THREAD_NAME_SIZE); tracepos += sizeof(struct thread_snapshot); tsnap->ss_flags = 0; /* I/O Statistics */ assert(IO_NUM_PRIORITIES == STACKSHOT_IO_NUM_PRIORITIES); if (thread->thread_io_stats) { tsnap->disk_reads_count = thread->thread_io_stats->disk_reads.count; tsnap->disk_reads_size = thread->thread_io_stats->disk_reads.size; tsnap->disk_writes_count = (thread->thread_io_stats->total_io.count - thread->thread_io_stats->disk_reads.count); tsnap->disk_writes_size = (thread->thread_io_stats->total_io.size - thread->thread_io_stats->disk_reads.size); for(i = 0; i < IO_NUM_PRIORITIES; i++) { tsnap->io_priority_count[i] = thread->thread_io_stats->io_priority[i].count; tsnap->io_priority_size[i] = thread->thread_io_stats->io_priority[i].size; } tsnap->paging_count = thread->thread_io_stats->paging.count; tsnap->paging_size = thread->thread_io_stats->paging.size; tsnap->non_paging_count = (thread->thread_io_stats->total_io.count - thread->thread_io_stats->paging.count); tsnap->non_paging_size = (thread->thread_io_stats->total_io.size - thread->thread_io_stats->paging.size); tsnap->metadata_count = thread->thread_io_stats->metadata.count; tsnap->metadata_size = thread->thread_io_stats->metadata.size; tsnap->data_count = (thread->thread_io_stats->total_io.count - thread->thread_io_stats->metadata.count); tsnap->data_size = (thread->thread_io_stats->total_io.size - thread->thread_io_stats->metadata.size); } else { /* zero from disk_reads_count to end of structure */ memset(&tsnap->disk_reads_count, 0, offsetof(struct thread_snapshot, metadata_size) - offsetof(struct thread_snapshot, disk_reads_count)); } if (thread->effective_policy.darwinbg) { tsnap->ss_flags |= kThreadDarwinBG; } tsnap->io_tier = proc_get_effective_thread_policy(thread, TASK_POLICY_IO); if (proc_get_effective_thread_policy(thread, TASK_POLICY_PASSIVE_IO)) { tsnap->ss_flags |= kThreadIOPassive; } if (thread->suspend_count > 0) { tsnap->ss_flags |= kThreadSuspended; } if (IPC_VOUCHER_NULL != thread->ith_voucher) { tsnap->voucher_identifier = VM_KERNEL_ADDRPERM(thread->ith_voucher); } tsnap->ts_qos = thread->effective_policy.thep_qos; tsnap->total_syscalls = thread->syscalls_mach + thread->syscalls_unix; if (dispatch_p && (task != kernel_task) && (task->active) && have_pmap) { uint64_t dqkeyaddr = thread_dispatchqaddr(thread); if (dqkeyaddr != 0) { uint64_t dqaddr = 0; if (kdp_copyin(task->map->pmap, dqkeyaddr, &dqaddr, (task64 ? 8 : 4)) && (dqaddr != 0)) { uint64_t dqserialnumaddr = dqaddr + dispatch_offset; uint64_t dqserialnum = 0; if (kdp_copyin(task->map->pmap, dqserialnumaddr, &dqserialnum, (task64 ? 8 : 4))) { tsnap->ss_flags |= kHasDispatchSerial; *(uint64_t *)tracepos = dqserialnum; tracepos += 8; } } } } /* Call through to the machine specific trace routines * Frames are added past the snapshot header. */ tracebytes = 0; if (thread->kernel_stack != 0) { #if defined(__LP64__) tracebytes = machine_trace_thread64(thread, tracepos, tracebound, MAX_FRAMES, FALSE); tsnap->ss_flags |= kKernel64_p; framesize = 16; #else tracebytes = machine_trace_thread(thread, tracepos, tracebound, MAX_FRAMES, FALSE); framesize = 8; #endif } tsnap->nkern_frames = tracebytes/framesize; tracepos += tracebytes; tracebytes = 0; /* Trace user stack, if any */ if (save_userframes_p && task->active && thread->task->map != kernel_map) { /* 64-bit task? */ if (task_has_64BitAddr(thread->task)) { tracebytes = machine_trace_thread64(thread, tracepos, tracebound, MAX_FRAMES, TRUE); tsnap->ss_flags |= kUser64_p; framesize = 16; } else { tracebytes = machine_trace_thread(thread, tracepos, tracebound, MAX_FRAMES, TRUE); framesize = 8; } } tsnap->nuser_frames = tracebytes/framesize; tracepos += tracebytes; tracebytes = 0; } if (!save_userframes_p && tsnap == NULL) { /* * No thread info is collected due to lack of kernel frames. * Remove information about this task also */ tracepos = (char *)task_snap; } } } if (is_active_list) { is_active_list = FALSE; task_list = &terminated_tasks; goto walk_list; } error_exit: /* Release stack snapshot wait indicator */ kdp_snapshot_postflight(); *pbytesTraced = (uint32_t)(tracepos - (char *) tracebuf); return error; } static int pid_from_task(task_t task) { int pid = -1; if (task->bsd_info) pid = proc_pid(task->bsd_info); return pid; } static uint64_t proc_uniqueid_from_task(task_t task) { uint64_t uniqueid = ~(0ULL); if (task->bsd_info) uniqueid = proc_uniqueid(task->bsd_info); return uniqueid; } static uint64_t proc_was_throttled_from_task(task_t task) { uint64_t was_throttled = 0; if (task->bsd_info) was_throttled = proc_was_throttled(task->bsd_info); return was_throttled; } static uint64_t proc_did_throttle_from_task(task_t task) { uint64_t did_throttle = 0; if (task->bsd_info) did_throttle = proc_did_throttle(task->bsd_info); return did_throttle; } static void kdp_mem_and_io_snapshot(struct mem_and_io_snapshot *memio_snap) { unsigned int pages_reclaimed; unsigned int pages_wanted; kern_return_t kErr; processor_t processor; vm_statistics64_t stat; vm_statistics64_data_t host_vm_stat; processor = processor_list; stat = &PROCESSOR_DATA(processor, vm_stat); host_vm_stat = *stat; if (processor_count > 1) { /* * processor_list may be in the process of changing as we are * attempting a stackshot. Ordinarily it will be lock protected, * but it is not safe to lock in the context of the debugger. * Fortunately we never remove elements from the processor list, * and only add to to the end of the list, so we SHOULD be able * to walk it. If we ever want to truly tear down processors, * this will have to change. */ while ((processor = processor->processor_list) != NULL) { stat = &PROCESSOR_DATA(processor, vm_stat); host_vm_stat.compressions += stat->compressions; host_vm_stat.decompressions += stat->decompressions; } } memio_snap->snapshot_magic = STACKSHOT_MEM_AND_IO_SNAPSHOT_MAGIC; memio_snap->free_pages = vm_page_free_count; memio_snap->active_pages = vm_page_active_count; memio_snap->inactive_pages = vm_page_inactive_count; memio_snap->purgeable_pages = vm_page_purgeable_count; memio_snap->wired_pages = vm_page_wire_count; memio_snap->speculative_pages = vm_page_speculative_count; memio_snap->throttled_pages = vm_page_throttled_count; memio_snap->busy_buffer_count = count_busy_buffers(); memio_snap->filebacked_pages = vm_page_pageable_external_count; memio_snap->compressions = (uint32_t)host_vm_stat.compressions; memio_snap->decompressions = (uint32_t)host_vm_stat.decompressions; memio_snap->compressor_size = VM_PAGE_COMPRESSOR_COUNT; kErr = mach_vm_pressure_monitor(FALSE, VM_PRESSURE_TIME_WINDOW, &pages_reclaimed, &pages_wanted); if ( ! kErr ) { memio_snap->pages_wanted = (uint32_t)pages_wanted; memio_snap->pages_reclaimed = (uint32_t)pages_reclaimed; memio_snap->pages_wanted_reclaimed_valid = 1; } else { memio_snap->pages_wanted = 0; memio_snap->pages_reclaimed = 0; memio_snap->pages_wanted_reclaimed_valid = 0; } } boolean_t kdp_copyin(pmap_t p, uint64_t uaddr, void *dest, size_t size) { size_t rem = size; char *kvaddr = dest; while (rem) { ppnum_t upn = pmap_find_phys(p, uaddr); uint64_t phys_src = ptoa_64(upn) | (uaddr & PAGE_MASK); uint64_t phys_dest = kvtophys((vm_offset_t)kvaddr); uint64_t src_rem = PAGE_SIZE - (phys_src & PAGE_MASK); uint64_t dst_rem = PAGE_SIZE - (phys_dest & PAGE_MASK); size_t cur_size = (uint32_t) MIN(src_rem, dst_rem); cur_size = MIN(cur_size, rem); if (upn && pmap_valid_page(upn) && phys_dest) { bcopy_phys(phys_src, phys_dest, cur_size); } else break; uaddr += cur_size; kvaddr += cur_size; rem -= cur_size; } return (rem == 0); } void do_stackshot() { stack_snapshot_ret = kdp_stackshot(stack_snapshot_pid, stack_snapshot_buf, stack_snapshot_bufsize, stack_snapshot_flags, stack_snapshot_dispatch_offset, &stack_snapshot_bytes_traced); } /* * A fantastical routine that tries to be fast about returning * translations. Caches the last page we found a translation * for, so that we can be quick about multiple queries to the * same page. It turns out this is exactly the workflow * machine_trace_thread and its relatives tend to throw at us. * * Please zero the nasty global this uses after a bulk lookup; * this isn't safe across a switch of the kdp_pmap or changes * to a pmap. * * This also means that if zero is a valid KVA, we are * screwed. Sucks to be us. Fortunately, this should never * happen. */ vm_offset_t machine_trace_thread_get_kva(vm_offset_t cur_target_addr) { unsigned cur_wimg_bits; vm_offset_t cur_target_page; vm_offset_t cur_phys_addr; vm_offset_t kern_virt_target_addr; cur_target_page = atop(cur_target_addr); if ((cur_target_page != prev_target_page) || validate_next_addr) { /* * Alright; it wasn't our previous page. So * we must validate that there is a page * table entry for this address under the * current kdp_pmap, and that it has default * cache attributes (otherwise it may not be * safe to access it). */ cur_phys_addr = kdp_vtophys(kdp_pmap ? kdp_pmap : kernel_pmap, cur_target_addr); if (!pmap_valid_page((ppnum_t) atop(cur_phys_addr))) { return 0; } cur_wimg_bits = pmap_cache_attributes((ppnum_t) atop(cur_phys_addr)); if ((cur_wimg_bits & VM_WIMG_MASK) != VM_WIMG_DEFAULT) { return 0; } #if __x86_64__ kern_virt_target_addr = (vm_offset_t) PHYSMAP_PTOV(cur_phys_addr); #else #error Oh come on... we should really unify the physical -> kernel virtual interface #endif prev_target_page = cur_target_page; prev_target_kva = (kern_virt_target_addr & ~PAGE_MASK); validate_next_addr = FALSE; return kern_virt_target_addr; } else { /* We found a translation, so stash this page */ kern_virt_target_addr = prev_target_kva + (cur_target_addr & PAGE_MASK); return kern_virt_target_addr; } } void machine_trace_thread_clear_validation_cache(void) { validate_next_addr = TRUE; }