/* * Copyright (c) 2005-2008 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * @OSF_FREE_COPYRIGHT@ */ /* * @APPLE_FREE_COPYRIGHT@ */ /* * Author: Bill Angell, Apple * Date: 10/auht-five * * Random diagnostics, augmented Derek Kumar 2011 * * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PERMIT_PERMCHECK (0) diagWork dgWork; uint64_t lastRuptClear = 0ULL; boolean_t diag_pmc_enabled = FALSE; void cpu_powerstats(void *); typedef struct { uint64_t caperf; uint64_t cmperf; uint64_t ccres[6]; uint64_t crtimes[CPU_RTIME_BINS]; uint64_t citimes[CPU_ITIME_BINS]; uint64_t crtime_total; uint64_t citime_total; uint64_t cpu_idle_exits; uint64_t cpu_insns; uint64_t cpu_ucc; uint64_t cpu_urc; } core_energy_stat_t; typedef struct { uint64_t pkes_version; uint64_t pkg_cres[2][7]; uint64_t pkg_power_unit; uint64_t pkg_energy; uint64_t pp0_energy; uint64_t pp1_energy; uint64_t ddr_energy; uint64_t llc_flushed_cycles; uint64_t ring_ratio_instantaneous; uint64_t IA_frequency_clipping_cause; uint64_t GT_frequency_clipping_cause; uint64_t pkg_idle_exits; uint64_t pkg_rtimes[CPU_RTIME_BINS]; uint64_t pkg_itimes[CPU_ITIME_BINS]; uint64_t mbus_delay_time; uint64_t mint_delay_time; uint32_t ncpus; core_energy_stat_t cest[]; } pkg_energy_statistics_t; int diagCall64(x86_saved_state_t * state) { uint64_t curpos, i, j; uint64_t selector, data; uint64_t currNap, durNap; x86_saved_state64_t *regs; boolean_t diagflag; uint32_t rval = 0; assert(is_saved_state64(state)); regs = saved_state64(state); diagflag = ((dgWork.dgFlags & enaDiagSCs) != 0); selector = regs->rdi; switch (selector) { /* Select the routine */ case dgRuptStat: /* Suck Interruption statistics */ (void) ml_set_interrupts_enabled(TRUE); data = regs->rsi; /* Get the number of processors */ if (data == 0) { /* If no location is specified for data, clear all * counts */ for (i = 0; i < real_ncpus; i++) { /* Cycle through * processors */ for (j = 0; j < 256; j++) cpu_data_ptr[i]->cpu_hwIntCnt[j] = 0; } lastRuptClear = mach_absolute_time(); /* Get the time of clear */ rval = 1; /* Normal return */ break; } (void) copyout((char *) &real_ncpus, data, sizeof(real_ncpus)); /* Copy out number of * processors */ currNap = mach_absolute_time(); /* Get the time now */ durNap = currNap - lastRuptClear; /* Get the last interval * duration */ if (durNap == 0) durNap = 1; /* This is a very short time, make it * bigger */ curpos = data + sizeof(real_ncpus); /* Point to the next * available spot */ for (i = 0; i < real_ncpus; i++) { /* Move 'em all out */ (void) copyout((char *) &durNap, curpos, 8); /* Copy out the time * since last clear */ (void) copyout((char *) &cpu_data_ptr[i]->cpu_hwIntCnt, curpos + 8, 256 * sizeof(uint32_t)); /* Copy out interrupt * data for this * processor */ curpos = curpos + (256 * sizeof(uint32_t) + 8); /* Point to next out put * slot */ } rval = 1; break; case dgPowerStat: { uint32_t c2l = 0, c2h = 0, c3l = 0, c3h = 0, c6l = 0, c6h = 0, c7l = 0, c7h = 0; uint32_t pkg_unit_l = 0, pkg_unit_h = 0, pkg_ecl = 0, pkg_ech = 0; pkg_energy_statistics_t pkes; core_energy_stat_t cest; bzero(&pkes, sizeof(pkes)); bzero(&cest, sizeof(cest)); pkes.pkes_version = 1ULL; rdmsr_carefully(MSR_IA32_PKG_C2_RESIDENCY, &c2l, &c2h); rdmsr_carefully(MSR_IA32_PKG_C3_RESIDENCY, &c3l, &c3h); rdmsr_carefully(MSR_IA32_PKG_C6_RESIDENCY, &c6l, &c6h); rdmsr_carefully(MSR_IA32_PKG_C7_RESIDENCY, &c7l, &c7h); pkes.pkg_cres[0][0] = ((uint64_t)c2h << 32) | c2l; pkes.pkg_cres[0][1] = ((uint64_t)c3h << 32) | c3l; pkes.pkg_cres[0][2] = ((uint64_t)c6h << 32) | c6l; pkes.pkg_cres[0][3] = ((uint64_t)c7h << 32) | c7l; uint64_t c8r = ~0ULL, c9r = ~0ULL, c10r = ~0ULL; rdmsr64_carefully(MSR_IA32_PKG_C8_RESIDENCY, &c8r); rdmsr64_carefully(MSR_IA32_PKG_C9_RESIDENCY, &c9r); rdmsr64_carefully(MSR_IA32_PKG_C10_RESIDENCY, &c10r); pkes.pkg_cres[0][4] = c8r; pkes.pkg_cres[0][5] = c9r; pkes.pkg_cres[0][6] = c10r; pkes.ddr_energy = ~0ULL; rdmsr64_carefully(MSR_IA32_DDR_ENERGY_STATUS, &pkes.ddr_energy); pkes.llc_flushed_cycles = ~0ULL; rdmsr64_carefully(MSR_IA32_LLC_FLUSHED_RESIDENCY_TIMER, &pkes.llc_flushed_cycles); pkes.ring_ratio_instantaneous = ~0ULL; rdmsr64_carefully(MSR_IA32_RING_PERF_STATUS, &pkes.ring_ratio_instantaneous); pkes.IA_frequency_clipping_cause = ~0ULL; rdmsr64_carefully(MSR_IA32_IA_PERF_LIMIT_REASONS, &pkes.IA_frequency_clipping_cause); pkes.GT_frequency_clipping_cause = ~0ULL; rdmsr64_carefully(MSR_IA32_GT_PERF_LIMIT_REASONS, &pkes.GT_frequency_clipping_cause); rdmsr_carefully(MSR_IA32_PKG_POWER_SKU_UNIT, &pkg_unit_l, &pkg_unit_h); rdmsr_carefully(MSR_IA32_PKG_ENERGY_STATUS, &pkg_ecl, &pkg_ech); pkes.pkg_power_unit = ((uint64_t)pkg_unit_h << 32) | pkg_unit_l; pkes.pkg_energy = ((uint64_t)pkg_ech << 32) | pkg_ecl; rdmsr_carefully(MSR_IA32_PP0_ENERGY_STATUS, &pkg_ecl, &pkg_ech); pkes.pp0_energy = ((uint64_t)pkg_ech << 32) | pkg_ecl; rdmsr_carefully(MSR_IA32_PP1_ENERGY_STATUS, &pkg_ecl, &pkg_ech); pkes.pp1_energy = ((uint64_t)pkg_ech << 32) | pkg_ecl; pkes.pkg_idle_exits = current_cpu_datap()->lcpu.package->package_idle_exits; pkes.ncpus = real_ncpus; (void) ml_set_interrupts_enabled(TRUE); copyout(&pkes, regs->rsi, sizeof(pkes)); curpos = regs->rsi + sizeof(pkes); mp_cpus_call(CPUMASK_ALL, ASYNC, cpu_powerstats, NULL); for (i = 0; i < real_ncpus; i++) { (void) ml_set_interrupts_enabled(FALSE); cest.caperf = cpu_data_ptr[i]->cpu_aperf; cest.cmperf = cpu_data_ptr[i]->cpu_mperf; cest.ccres[0] = cpu_data_ptr[i]->cpu_c3res; cest.ccres[1] = cpu_data_ptr[i]->cpu_c6res; cest.ccres[2] = cpu_data_ptr[i]->cpu_c7res; bcopy(&cpu_data_ptr[i]->cpu_rtimes[0], &cest.crtimes[0], sizeof(cest.crtimes)); bcopy(&cpu_data_ptr[i]->cpu_itimes[0], &cest.citimes[0], sizeof(cest.citimes)); cest.citime_total = cpu_data_ptr[i]->cpu_itime_total; cest.crtime_total = cpu_data_ptr[i]->cpu_rtime_total; cest.cpu_idle_exits = cpu_data_ptr[i]->cpu_idle_exits; cest.cpu_insns = cpu_data_ptr[i]->cpu_cur_insns; cest.cpu_ucc = cpu_data_ptr[i]->cpu_cur_ucc; cest.cpu_urc = cpu_data_ptr[i]->cpu_cur_urc; (void) ml_set_interrupts_enabled(TRUE); copyout(&cest, curpos, sizeof(cest)); curpos += sizeof(cest); } rval = 1; } break; case dgEnaPMC: { boolean_t enable = TRUE; uint32_t cpuinfo[4]; /* Require architectural PMC v2 or higher, corresponding to * Merom+, or equivalent virtualised facility. */ do_cpuid(0xA, &cpuinfo[0]); if ((cpuinfo[0] & 0xFF) >= 2) { mp_cpus_call(CPUMASK_ALL, ASYNC, cpu_pmc_control, &enable); diag_pmc_enabled = TRUE; } rval = 1; } break; #if DEBUG case dgGzallocTest: { (void) ml_set_interrupts_enabled(TRUE); if (diagflag) { unsigned *ptr = (unsigned *)kalloc(1024); kfree(ptr, 1024); *ptr = 0x42; } } break; #endif #if PERMIT_PERMCHECK case dgPermCheck: { (void) ml_set_interrupts_enabled(TRUE); if (diagflag) rval = pmap_permissions_verify(kernel_pmap, kernel_map, 0, ~0ULL); } break; #endif /* PERMIT_PERMCHECK */ default: /* Handle invalid ones */ rval = 0; /* Return an exception */ } regs->rax = rval; return rval; } void cpu_powerstats(__unused void *arg) { cpu_data_t *cdp = current_cpu_datap(); __unused int cnum = cdp->cpu_number; uint32_t cl = 0, ch = 0, mpl = 0, mph = 0, apl = 0, aph = 0; rdmsr_carefully(MSR_IA32_MPERF, &mpl, &mph); rdmsr_carefully(MSR_IA32_APERF, &apl, &aph); cdp->cpu_mperf = ((uint64_t)mph << 32) | mpl; cdp->cpu_aperf = ((uint64_t)aph << 32) | apl; uint64_t ctime = mach_absolute_time(); cdp->cpu_rtime_total += ctime - cdp->cpu_ixtime; cdp->cpu_ixtime = ctime; rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY, &cl, &ch); cdp->cpu_c3res = ((uint64_t)ch << 32) | cl; rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY, &cl, &ch); cdp->cpu_c6res = ((uint64_t)ch << 32) | cl; rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY, &cl, &ch); cdp->cpu_c7res = ((uint64_t)ch << 32) | cl; if (diag_pmc_enabled) { uint64_t insns = read_pmc(FIXED_PMC0); uint64_t ucc = read_pmc(FIXED_PMC1); uint64_t urc = read_pmc(FIXED_PMC2); cdp->cpu_cur_insns = insns; cdp->cpu_cur_ucc = ucc; cdp->cpu_cur_urc = urc; } } void cpu_pmc_control(void *enablep) { boolean_t enable = *(boolean_t *)enablep; cpu_data_t *cdp = current_cpu_datap(); if (enable) { wrmsr64(0x38F, 0x70000000FULL); wrmsr64(0x38D, 0x333); set_cr4(get_cr4() | CR4_PCE); } else { wrmsr64(0x38F, 0); wrmsr64(0x38D, 0); set_cr4((get_cr4() & ~CR4_PCE)); } cdp->cpu_fixed_pmcs_enabled = enable; }