/* * Copyright (c) 2006 Apple Computer, Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if CONFIG_FREEZE #include #endif /* CONFIG_FREEZE */ #include #if CONFIG_JETSAM /* For logging clarity */ static const char *jetsam_kill_cause_name[] = { "" , "jettisoned" , /* kMemorystatusKilled */ "highwater" , /* kMemorystatusKilledHiwat */ "vnode-limit" , /* kMemorystatusKilledVnodes */ "vm-pageshortage" , /* kMemorystatusKilledVMPageShortage */ "vm-thrashing" , /* kMemorystatusKilledVMThrashing */ "fc-thrashing" , /* kMemorystatusKilledFCThrashing */ "per-process-limit" , /* kMemorystatusKilledPerProcessLimit */ "diagnostic" , /* kMemorystatusKilledDiagnostic */ "idle-exit" , /* kMemorystatusKilledIdleExit */ }; /* Does cause indicate vm or fc thrashing? */ static boolean_t is_thrashing(unsigned cause) { switch (cause) { case kMemorystatusKilledVMThrashing: case kMemorystatusKilledFCThrashing: return TRUE; default: return FALSE; } } /* Callback into vm_compressor.c to signal that thrashing has been mitigated. */ extern void vm_thrashing_jetsam_done(void); #endif /* These are very verbose printfs(), enable with * MEMORYSTATUS_DEBUG_LOG */ #if MEMORYSTATUS_DEBUG_LOG #define MEMORYSTATUS_DEBUG(cond, format, ...) \ do { \ if (cond) { printf(format, ##__VA_ARGS__); } \ } while(0) #else #define MEMORYSTATUS_DEBUG(cond, format, ...) #endif /* General tunables */ unsigned long delta_percentage = 5; unsigned long critical_threshold_percentage = 5; unsigned long idle_offset_percentage = 5; unsigned long pressure_threshold_percentage = 15; unsigned long freeze_threshold_percentage = 50; /* General memorystatus stuff */ struct klist memorystatus_klist; static lck_mtx_t memorystatus_klist_mutex; static void memorystatus_klist_lock(void); static void memorystatus_klist_unlock(void); static uint64_t memorystatus_idle_delay_time = 0; /* * Memorystatus kevents */ static int filt_memorystatusattach(struct knote *kn); static void filt_memorystatusdetach(struct knote *kn); static int filt_memorystatus(struct knote *kn, long hint); struct filterops memorystatus_filtops = { .f_attach = filt_memorystatusattach, .f_detach = filt_memorystatusdetach, .f_event = filt_memorystatus, }; enum { kMemorystatusNoPressure = 0x1, kMemorystatusPressure = 0x2, kMemorystatusLowSwap = 0x4 }; /* Idle guard handling */ static int32_t memorystatus_scheduled_idle_demotions = 0; static thread_call_t memorystatus_idle_demotion_call; static void memorystatus_perform_idle_demotion(__unused void *spare1, __unused void *spare2); static void memorystatus_schedule_idle_demotion_locked(proc_t p, boolean_t set_state); static void memorystatus_invalidate_idle_demotion_locked(proc_t p, boolean_t clean_state); static void memorystatus_reschedule_idle_demotion_locked(void); static void memorystatus_update_priority_locked(proc_t p, int priority, boolean_t head_insert); boolean_t is_knote_registered_modify_task_pressure_bits(struct knote*, int, task_t, vm_pressure_level_t, vm_pressure_level_t); void memorystatus_send_low_swap_note(void); int memorystatus_wakeup = 0; unsigned int memorystatus_level = 0; static int memorystatus_list_count = 0; #define MEMSTAT_BUCKET_COUNT (JETSAM_PRIORITY_MAX + 1) typedef struct memstat_bucket { TAILQ_HEAD(, proc) list; int count; } memstat_bucket_t; memstat_bucket_t memstat_bucket[MEMSTAT_BUCKET_COUNT]; uint64_t memstat_idle_demotion_deadline = 0; static unsigned int memorystatus_dirty_count = 0; int memorystatus_get_level(__unused struct proc *p, struct memorystatus_get_level_args *args, __unused int *ret) { user_addr_t level = 0; level = args->level; if (copyout(&memorystatus_level, level, sizeof(memorystatus_level)) != 0) { return EFAULT; } return 0; } static proc_t memorystatus_get_first_proc_locked(unsigned int *bucket_index, boolean_t search); static proc_t memorystatus_get_next_proc_locked(unsigned int *bucket_index, proc_t p, boolean_t search); static void memorystatus_thread(void *param __unused, wait_result_t wr __unused); /* Jetsam */ #if CONFIG_JETSAM int proc_get_memstat_priority(proc_t, boolean_t); /* Kill processes exceeding their limit either under memory pressure (1), or as soon as possible (0) */ #define LEGACY_HIWATER 1 static boolean_t memorystatus_idle_snapshot = 0; static int memorystatus_highwater_enabled = 1; unsigned int memorystatus_delta = 0; static unsigned int memorystatus_available_pages_critical_base = 0; //static unsigned int memorystatus_last_foreground_pressure_pages = (unsigned int)-1; static unsigned int memorystatus_available_pages_critical_idle_offset = 0; #if DEVELOPMENT || DEBUG static unsigned int memorystatus_jetsam_panic_debug = 0; static unsigned int memorystatus_jetsam_policy = kPolicyDefault; static unsigned int memorystatus_jetsam_policy_offset_pages_diagnostic = 0; #endif static unsigned int memorystatus_thread_wasted_wakeup = 0; static uint32_t kill_under_pressure_cause = 0; static memorystatus_jetsam_snapshot_t *memorystatus_jetsam_snapshot; #define memorystatus_jetsam_snapshot_list memorystatus_jetsam_snapshot->entries static unsigned int memorystatus_jetsam_snapshot_count = 0; static unsigned int memorystatus_jetsam_snapshot_max = 0; static void memorystatus_clear_errors(void); static void memorystatus_get_task_page_counts(task_t task, uint32_t *footprint, uint32_t *max_footprint, uint32_t *max_footprint_lifetime, uint32_t *purgeable_pages); static uint32_t memorystatus_build_state(proc_t p); static void memorystatus_update_levels_locked(boolean_t critical_only); //static boolean_t memorystatus_issue_pressure_kevent(boolean_t pressured); static boolean_t memorystatus_kill_specific_process(pid_t victim_pid, uint32_t cause); static boolean_t memorystatus_kill_top_process(boolean_t any, uint32_t cause, int32_t *priority, uint32_t *errors); #if LEGACY_HIWATER static boolean_t memorystatus_kill_hiwat_proc(uint32_t *errors); #endif static boolean_t memorystatus_kill_process_async(pid_t victim_pid, uint32_t cause); static boolean_t memorystatus_kill_process_sync(pid_t victim_pid, uint32_t cause); #endif /* CONFIG_JETSAM */ /* VM pressure */ extern unsigned int vm_page_free_count; extern unsigned int vm_page_active_count; extern unsigned int vm_page_inactive_count; extern unsigned int vm_page_throttled_count; extern unsigned int vm_page_purgeable_count; extern unsigned int vm_page_wire_count; #if VM_PRESSURE_EVENTS #include "vm_pressure.h" extern boolean_t memorystatus_warn_process(pid_t pid, boolean_t critical); vm_pressure_level_t memorystatus_vm_pressure_level = kVMPressureNormal; #if CONFIG_MEMORYSTATUS unsigned int memorystatus_available_pages = (unsigned int)-1; unsigned int memorystatus_available_pages_pressure = 0; unsigned int memorystatus_available_pages_critical = 0; unsigned int memorystatus_frozen_count = 0; unsigned int memorystatus_suspended_count = 0; /* * We use this flag to signal if we have any HWM offenders * on the system. This way we can reduce the number of wakeups * of the memorystatus_thread when the system is between the * "pressure" and "critical" threshold. * * The (re-)setting of this variable is done without any locks * or synchronization simply because it is not possible (currently) * to keep track of HWM offenders that drop down below their memory * limit and/or exit. So, we choose to burn a couple of wasted wakeups * by allowing the unguarded modification of this variable. */ boolean_t memorystatus_hwm_candidates = 0; static int memorystatus_send_note(int event_code, void *data, size_t data_length); #endif /* CONFIG_MEMORYSTATUS */ #endif /* VM_PRESSURE_EVENTS */ /* Freeze */ #if CONFIG_FREEZE boolean_t memorystatus_freeze_enabled = FALSE; int memorystatus_freeze_wakeup = 0; static inline boolean_t memorystatus_can_freeze_processes(void); static boolean_t memorystatus_can_freeze(boolean_t *memorystatus_freeze_swap_low); static void memorystatus_freeze_thread(void *param __unused, wait_result_t wr __unused); /* Thresholds */ static unsigned int memorystatus_freeze_threshold = 0; static unsigned int memorystatus_freeze_pages_min = 0; static unsigned int memorystatus_freeze_pages_max = 0; static unsigned int memorystatus_freeze_suspended_threshold = FREEZE_SUSPENDED_THRESHOLD_DEFAULT; /* Stats */ static uint64_t memorystatus_freeze_count = 0; static uint64_t memorystatus_freeze_pageouts = 0; /* Throttling */ static throttle_interval_t throttle_intervals[] = { { 60, 8, 0, 0, { 0, 0 }, FALSE }, /* 1 hour intermediate interval, 8x burst */ { 24 * 60, 1, 0, 0, { 0, 0 }, FALSE }, /* 24 hour long interval, no burst */ }; static uint64_t memorystatus_freeze_throttle_count = 0; static unsigned int memorystatus_suspended_footprint_total = 0; #endif /* CONFIG_FREEZE */ /* Debug */ extern struct knote *vm_find_knote_from_pid(pid_t, struct klist *); #if DEVELOPMENT || DEBUG #if CONFIG_JETSAM /* Debug aid to aid determination of limit */ static int sysctl_memorystatus_highwater_enable SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg2) proc_t p; unsigned int b = 0; int error, enable = 0; int32_t memlimit; error = SYSCTL_OUT(req, arg1, sizeof(int)); if (error || !req->newptr) { return (error); } error = SYSCTL_IN(req, &enable, sizeof(int)); if (error || !req->newptr) { return (error); } if (!(enable == 0 || enable == 1)) { return EINVAL; } proc_list_lock(); p = memorystatus_get_first_proc_locked(&b, TRUE); while (p) { if (enable) { if ((p->p_memstat_state & P_MEMSTAT_MEMLIMIT_BACKGROUND) && (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND)) { memlimit = -1; } else { memlimit = p->p_memstat_memlimit; } } else { memlimit = -1; } task_set_phys_footprint_limit_internal(p->task, (memlimit > 0) ? memlimit : -1, NULL, TRUE); if (memlimit == -1) { p->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; } else { if (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_BACKGROUND) { p->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; } } p = memorystatus_get_next_proc_locked(&b, p, TRUE); } memorystatus_highwater_enabled = enable; proc_list_unlock(); return 0; } SYSCTL_INT(_kern, OID_AUTO, memorystatus_idle_snapshot, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_idle_snapshot, 0, ""); SYSCTL_PROC(_kern, OID_AUTO, memorystatus_highwater_enabled, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_highwater_enabled, 0, sysctl_memorystatus_highwater_enable, "I", ""); SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_available_pages, 0, ""); SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_available_pages_critical, 0, ""); SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical_base, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_available_pages_critical_base, 0, ""); SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical_idle_offset, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_available_pages_critical_idle_offset, 0, ""); /* Diagnostic code */ enum { kJetsamDiagnosticModeNone = 0, kJetsamDiagnosticModeAll = 1, kJetsamDiagnosticModeStopAtFirstActive = 2, kJetsamDiagnosticModeCount } jetsam_diagnostic_mode = kJetsamDiagnosticModeNone; static int jetsam_diagnostic_suspended_one_active_proc = 0; static int sysctl_jetsam_diagnostic_mode SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) const char *diagnosticStrings[] = { "jetsam: diagnostic mode: resetting critical level.", "jetsam: diagnostic mode: will examine all processes", "jetsam: diagnostic mode: will stop at first active process" }; int error, val = jetsam_diagnostic_mode; boolean_t changed = FALSE; error = sysctl_handle_int(oidp, &val, 0, req); if (error || !req->newptr) return (error); if ((val < 0) || (val >= kJetsamDiagnosticModeCount)) { printf("jetsam: diagnostic mode: invalid value - %d\n", val); return EINVAL; } proc_list_lock(); if ((unsigned int) val != jetsam_diagnostic_mode) { jetsam_diagnostic_mode = val; memorystatus_jetsam_policy &= ~kPolicyDiagnoseActive; switch (jetsam_diagnostic_mode) { case kJetsamDiagnosticModeNone: /* Already cleared */ break; case kJetsamDiagnosticModeAll: memorystatus_jetsam_policy |= kPolicyDiagnoseAll; break; case kJetsamDiagnosticModeStopAtFirstActive: memorystatus_jetsam_policy |= kPolicyDiagnoseFirst; break; default: /* Already validated */ break; } memorystatus_update_levels_locked(FALSE); changed = TRUE; } proc_list_unlock(); if (changed) { printf("%s\n", diagnosticStrings[val]); } return (0); } SYSCTL_PROC(_debug, OID_AUTO, jetsam_diagnostic_mode, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED|CTLFLAG_ANYBODY, &jetsam_diagnostic_mode, 0, sysctl_jetsam_diagnostic_mode, "I", "Jetsam Diagnostic Mode"); SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jetsam_policy_offset_pages_diagnostic, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_jetsam_policy_offset_pages_diagnostic, 0, ""); #if VM_PRESSURE_EVENTS SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_pressure, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_available_pages_pressure, 0, ""); /* * This routine is used for targeted notifications * regardless of system memory pressure. * "memnote" is the current user. */ static int sysctl_memorystatus_vm_pressure_send SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error = 0, pid = 0; int ret = 0; struct knote *kn = NULL; error = sysctl_handle_int(oidp, &pid, 0, req); if (error || !req->newptr) return (error); /* * We inspect 3 lists here for targeted notifications: * - memorystatus_klist * - vm_pressure_klist * - vm_pressure_dormant_klist * * The vm_pressure_* lists are tied to the old VM_PRESSURE * notification mechanism. We intend to stop using that * mechanism and, in turn, get rid of the 2 lists and * vm_dispatch_pressure_note_to_pid() too. */ memorystatus_klist_lock(); kn = vm_find_knote_from_pid(pid, &memorystatus_klist); if (kn) { /* * Forcibly send this pid a "warning" memory pressure notification. */ kn->kn_fflags |= NOTE_MEMORYSTATUS_PRESSURE_WARN; KNOTE(&memorystatus_klist, kMemorystatusPressure); ret = 0; } else { ret = vm_dispatch_pressure_note_to_pid(pid, FALSE); } memorystatus_klist_unlock(); return ret; } SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_pressure_send, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED, 0, 0, &sysctl_memorystatus_vm_pressure_send, "I", ""); #endif /* VM_PRESSURE_EVENTS */ #endif /* CONFIG_JETSAM */ #if CONFIG_FREEZE SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_threshold, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_threshold, 0, ""); SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_pages_min, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_pages_min, 0, ""); SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_pages_max, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_pages_max, 0, ""); SYSCTL_QUAD(_kern, OID_AUTO, memorystatus_freeze_count, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_freeze_count, ""); SYSCTL_QUAD(_kern, OID_AUTO, memorystatus_freeze_pageouts, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_freeze_pageouts, ""); SYSCTL_QUAD(_kern, OID_AUTO, memorystatus_freeze_throttle_count, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_freeze_throttle_count, ""); SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_min_processes, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_suspended_threshold, 0, ""); boolean_t memorystatus_freeze_throttle_enabled = TRUE; SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_throttle_enabled, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_throttle_enabled, 0, ""); /* * Manual trigger of freeze and thaw for dev / debug kernels only. */ static int sysctl_memorystatus_freeze SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error, pid = 0; proc_t p; if (memorystatus_freeze_enabled == FALSE) { return ENOTSUP; } error = sysctl_handle_int(oidp, &pid, 0, req); if (error || !req->newptr) return (error); p = proc_find(pid); if (p != NULL) { uint32_t purgeable, wired, clean, dirty; boolean_t shared; uint32_t max_pages = 0; if (DEFAULT_FREEZER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_SWAPBACKED) { max_pages = MIN(default_pager_swap_pages_free(), memorystatus_freeze_pages_max); } else { max_pages = UINT32_MAX - 1; } error = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, FALSE); proc_rele(p); if (error) error = EIO; return error; } return EINVAL; } SYSCTL_PROC(_kern, OID_AUTO, memorystatus_freeze, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED, 0, 0, &sysctl_memorystatus_freeze, "I", ""); static int sysctl_memorystatus_available_pages_thaw SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error, pid = 0; proc_t p; if (memorystatus_freeze_enabled == FALSE) { return ENOTSUP; } error = sysctl_handle_int(oidp, &pid, 0, req); if (error || !req->newptr) return (error); p = proc_find(pid); if (p != NULL) { error = task_thaw(p->task); proc_rele(p); if (error) error = EIO; return error; } return EINVAL; } SYSCTL_PROC(_kern, OID_AUTO, memorystatus_thaw, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED, 0, 0, &sysctl_memorystatus_available_pages_thaw, "I", ""); #endif /* CONFIG_FREEZE */ #endif /* DEVELOPMENT || DEBUG */ extern kern_return_t kernel_thread_start_priority(thread_continue_t continuation, void *parameter, integer_t priority, thread_t *new_thread); #if CONFIG_JETSAM /* * Sort processes by size for a single jetsam bucket. */ static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index) { proc_t p = NULL, insert_after_proc = NULL, max_proc = NULL; uint32_t pages = 0, max_pages = 0; memstat_bucket_t *current_bucket; if (bucket_index >= MEMSTAT_BUCKET_COUNT) { return; } current_bucket = &memstat_bucket[bucket_index]; p = TAILQ_FIRST(¤t_bucket->list); if (p) { memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL, NULL); max_pages = pages; insert_after_proc = NULL; p = TAILQ_NEXT(p, p_memstat_list); restart: while (p) { memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL, NULL); if (pages > max_pages) { max_pages = pages; max_proc = p; } p = TAILQ_NEXT(p, p_memstat_list); } if (max_proc) { TAILQ_REMOVE(¤t_bucket->list, max_proc, p_memstat_list); if (insert_after_proc == NULL) { TAILQ_INSERT_HEAD(¤t_bucket->list, max_proc, p_memstat_list); } else { TAILQ_INSERT_AFTER(¤t_bucket->list, insert_after_proc, max_proc, p_memstat_list); } insert_after_proc = max_proc; /* Reset parameters for the new search. */ p = TAILQ_NEXT(max_proc, p_memstat_list); if (p) { memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL, NULL); max_pages = pages; } max_proc = NULL; goto restart; } } } #endif /* CONFIG_JETSAM */ static proc_t memorystatus_get_first_proc_locked(unsigned int *bucket_index, boolean_t search) { memstat_bucket_t *current_bucket; proc_t next_p; if ((*bucket_index) >= MEMSTAT_BUCKET_COUNT) { return NULL; } current_bucket = &memstat_bucket[*bucket_index]; next_p = TAILQ_FIRST(¤t_bucket->list); if (!next_p && search) { while (!next_p && (++(*bucket_index) < MEMSTAT_BUCKET_COUNT)) { current_bucket = &memstat_bucket[*bucket_index]; next_p = TAILQ_FIRST(¤t_bucket->list); } } return next_p; } static proc_t memorystatus_get_next_proc_locked(unsigned int *bucket_index, proc_t p, boolean_t search) { memstat_bucket_t *current_bucket; proc_t next_p; if (!p || ((*bucket_index) >= MEMSTAT_BUCKET_COUNT)) { return NULL; } next_p = TAILQ_NEXT(p, p_memstat_list); while (!next_p && search && (++(*bucket_index) < MEMSTAT_BUCKET_COUNT)) { current_bucket = &memstat_bucket[*bucket_index]; next_p = TAILQ_FIRST(¤t_bucket->list); } return next_p; } __private_extern__ void memorystatus_init(void) { thread_t thread = THREAD_NULL; kern_return_t result; int i; #if CONFIG_FREEZE memorystatus_freeze_pages_min = FREEZE_PAGES_MIN; memorystatus_freeze_pages_max = FREEZE_PAGES_MAX; #endif nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS * NSEC_PER_SEC, &memorystatus_idle_delay_time); /* Init buckets */ for (i = 0; i < MEMSTAT_BUCKET_COUNT; i++) { TAILQ_INIT(&memstat_bucket[i].list); memstat_bucket[i].count = 0; } memorystatus_idle_demotion_call = thread_call_allocate((thread_call_func_t)memorystatus_perform_idle_demotion, NULL); /* Apply overrides */ PE_get_default("kern.jetsam_delta", &delta_percentage, sizeof(delta_percentage)); assert(delta_percentage < 100); PE_get_default("kern.jetsam_critical_threshold", &critical_threshold_percentage, sizeof(critical_threshold_percentage)); assert(critical_threshold_percentage < 100); PE_get_default("kern.jetsam_idle_offset", &idle_offset_percentage, sizeof(idle_offset_percentage)); assert(idle_offset_percentage < 100); PE_get_default("kern.jetsam_pressure_threshold", &pressure_threshold_percentage, sizeof(pressure_threshold_percentage)); assert(pressure_threshold_percentage < 100); PE_get_default("kern.jetsam_freeze_threshold", &freeze_threshold_percentage, sizeof(freeze_threshold_percentage)); assert(freeze_threshold_percentage < 100); #if CONFIG_JETSAM memorystatus_delta = delta_percentage * atop_64(max_mem) / 100; memorystatus_available_pages_critical_idle_offset = idle_offset_percentage * atop_64(max_mem) / 100; memorystatus_available_pages_critical_base = (critical_threshold_percentage / delta_percentage) * memorystatus_delta; memorystatus_jetsam_snapshot_max = maxproc; memorystatus_jetsam_snapshot = (memorystatus_jetsam_snapshot_t*)kalloc(sizeof(memorystatus_jetsam_snapshot_t) + sizeof(memorystatus_jetsam_snapshot_entry_t) * memorystatus_jetsam_snapshot_max); if (!memorystatus_jetsam_snapshot) { panic("Could not allocate memorystatus_jetsam_snapshot"); } /* No contention at this point */ memorystatus_update_levels_locked(FALSE); #endif #if CONFIG_FREEZE memorystatus_freeze_threshold = (freeze_threshold_percentage / delta_percentage) * memorystatus_delta; #endif result = kernel_thread_start_priority(memorystatus_thread, NULL, 95 /* MAXPRI_KERNEL */, &thread); if (result == KERN_SUCCESS) { thread_deallocate(thread); } else { panic("Could not create memorystatus_thread"); } } /* Centralised for the purposes of allowing panic-on-jetsam */ extern void vm_wake_compactor_swapper(void); /* * The jetsam no frills kill call * Return: 0 on success * error code on failure (EINVAL...) */ static int jetsam_do_kill(proc_t p, int jetsam_flags) { int error = 0; error = exit1_internal(p, W_EXITCODE(0, SIGKILL), (int *)NULL, FALSE, FALSE, jetsam_flags); return(error); } /* * Wrapper for processes exiting with memorystatus details */ static boolean_t memorystatus_do_kill(proc_t p, uint32_t cause) { int error = 0; __unused pid_t victim_pid = p->p_pid; KERNEL_DEBUG_CONSTANT( (BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DO_KILL)) | DBG_FUNC_START, victim_pid, cause, vm_page_free_count, 0, 0); #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) if (memorystatus_jetsam_panic_debug & (1 << cause)) { panic("memorystatus_do_kill(): jetsam debug panic (cause: %d)", cause); } #else #pragma unused(cause) #endif int jetsam_flags = P_LTERM_JETSAM; switch (cause) { case kMemorystatusKilledHiwat: jetsam_flags |= P_JETSAM_HIWAT; break; case kMemorystatusKilledVnodes: jetsam_flags |= P_JETSAM_VNODE; break; case kMemorystatusKilledVMPageShortage: jetsam_flags |= P_JETSAM_VMPAGESHORTAGE; break; case kMemorystatusKilledVMThrashing: jetsam_flags |= P_JETSAM_VMTHRASHING; break; case kMemorystatusKilledFCThrashing: jetsam_flags |= P_JETSAM_FCTHRASHING; break; case kMemorystatusKilledPerProcessLimit: jetsam_flags |= P_JETSAM_PID; break; case kMemorystatusKilledIdleExit: jetsam_flags |= P_JETSAM_IDLEEXIT; break; } error = jetsam_do_kill(p, jetsam_flags); KERNEL_DEBUG_CONSTANT( (BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DO_KILL)) | DBG_FUNC_END, victim_pid, cause, vm_page_free_count, error, 0); if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) { vm_wake_compactor_swapper(); } return (error == 0); } /* * Node manipulation */ static void memorystatus_check_levels_locked(void) { #if CONFIG_JETSAM /* Update levels */ memorystatus_update_levels_locked(TRUE); #endif } static void memorystatus_perform_idle_demotion(__unused void *spare1, __unused void *spare2) { proc_t p; uint64_t current_time; memstat_bucket_t *demotion_bucket; MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion()\n"); KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_IDLE_DEMOTE) | DBG_FUNC_START, 0, 0, 0, 0, 0); current_time = mach_absolute_time(); proc_list_lock(); demotion_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE_DEFERRED]; p = TAILQ_FIRST(&demotion_bucket->list); while (p) { MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion() found %d\n", p->p_pid); assert(p->p_memstat_idledeadline); assert(p->p_memstat_dirty & P_DIRTY_DEFER_IN_PROGRESS); assert((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED|P_DIRTY_IS_DIRTY)) == P_DIRTY_IDLE_EXIT_ENABLED); if (current_time >= p->p_memstat_idledeadline) { #if DEBUG || DEVELOPMENT if (!(p->p_memstat_dirty & P_DIRTY_MARKED)) { printf("memorystatus_perform_idle_demotion: moving process %d [%s] to idle band, but never dirtied (0x%x)!\n", p->p_pid, (p->p_comm ? p->p_comm : "(unknown)"), p->p_memstat_dirty); } #endif memorystatus_invalidate_idle_demotion_locked(p, TRUE); memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, false); // The prior process has moved out of the demotion bucket, so grab the new head and continue p = TAILQ_FIRST(&demotion_bucket->list); continue; } // No further candidates break; } memorystatus_reschedule_idle_demotion_locked(); proc_list_unlock(); KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_IDLE_DEMOTE) | DBG_FUNC_END, 0, 0, 0, 0, 0); } static void memorystatus_schedule_idle_demotion_locked(proc_t p, boolean_t set_state) { boolean_t present_in_deferred_bucket = FALSE; if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE_DEFERRED) { present_in_deferred_bucket = TRUE; } MEMORYSTATUS_DEBUG(1, "memorystatus_schedule_idle_demotion_locked: scheduling demotion to idle band for process %d (dirty:0x%x, set_state %d, demotions %d).\n", p->p_pid, p->p_memstat_dirty, set_state, memorystatus_scheduled_idle_demotions); assert((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED); if (set_state) { assert(p->p_memstat_idledeadline == 0); p->p_memstat_dirty |= P_DIRTY_DEFER_IN_PROGRESS; p->p_memstat_idledeadline = mach_absolute_time() + memorystatus_idle_delay_time; } assert(p->p_memstat_idledeadline); if (present_in_deferred_bucket == FALSE) { memorystatus_scheduled_idle_demotions++; } } static void memorystatus_invalidate_idle_demotion_locked(proc_t p, boolean_t clear_state) { boolean_t present_in_deferred_bucket = FALSE; if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE_DEFERRED) { present_in_deferred_bucket = TRUE; assert(p->p_memstat_idledeadline); } MEMORYSTATUS_DEBUG(1, "memorystatus_invalidate_idle_demotion(): invalidating demotion to idle band for process %d (clear_state %d, demotions %d).\n", p->p_pid, clear_state, memorystatus_scheduled_idle_demotions); if (clear_state) { p->p_memstat_idledeadline = 0; p->p_memstat_dirty &= ~P_DIRTY_DEFER_IN_PROGRESS; } if (present_in_deferred_bucket == TRUE) { memorystatus_scheduled_idle_demotions--; } assert(memorystatus_scheduled_idle_demotions >= 0); } static void memorystatus_reschedule_idle_demotion_locked(void) { if (0 == memorystatus_scheduled_idle_demotions) { if (memstat_idle_demotion_deadline) { /* Transitioned 1->0, so cancel next call */ thread_call_cancel(memorystatus_idle_demotion_call); memstat_idle_demotion_deadline = 0; } } else { memstat_bucket_t *demotion_bucket; proc_t p; demotion_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE_DEFERRED]; p = TAILQ_FIRST(&demotion_bucket->list); assert(p && p->p_memstat_idledeadline); if (memstat_idle_demotion_deadline != p->p_memstat_idledeadline){ thread_call_enter_delayed(memorystatus_idle_demotion_call, p->p_memstat_idledeadline); memstat_idle_demotion_deadline = p->p_memstat_idledeadline; } } } /* * List manipulation */ int memorystatus_add(proc_t p, boolean_t locked) { memstat_bucket_t *bucket; MEMORYSTATUS_DEBUG(1, "memorystatus_list_add(): adding process %d with priority %d.\n", p->p_pid, p->p_memstat_effectivepriority); if (!locked) { proc_list_lock(); } /* Processes marked internal do not have priority tracked */ if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { goto exit; } bucket = &memstat_bucket[p->p_memstat_effectivepriority]; if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE_DEFERRED) { assert(bucket->count == memorystatus_scheduled_idle_demotions); } TAILQ_INSERT_TAIL(&bucket->list, p, p_memstat_list); bucket->count++; memorystatus_list_count++; memorystatus_check_levels_locked(); exit: if (!locked) { proc_list_unlock(); } return 0; } static void memorystatus_update_priority_locked(proc_t p, int priority, boolean_t head_insert) { memstat_bucket_t *old_bucket, *new_bucket; assert(priority < MEMSTAT_BUCKET_COUNT); /* Ensure that exit isn't underway, leaving the proc retained but removed from its bucket */ if ((p->p_listflag & P_LIST_EXITED) != 0) { return; } MEMORYSTATUS_DEBUG(1, "memorystatus_update_priority_locked(): setting process %d to priority %d, inserting at %s\n", p->p_pid, priority, head_insert ? "head" : "tail"); old_bucket = &memstat_bucket[p->p_memstat_effectivepriority]; if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE_DEFERRED) { assert(old_bucket->count == (memorystatus_scheduled_idle_demotions + 1)); } TAILQ_REMOVE(&old_bucket->list, p, p_memstat_list); old_bucket->count--; new_bucket = &memstat_bucket[priority]; if (head_insert) TAILQ_INSERT_HEAD(&new_bucket->list, p, p_memstat_list); else TAILQ_INSERT_TAIL(&new_bucket->list, p, p_memstat_list); new_bucket->count++; #if CONFIG_JETSAM if (memorystatus_highwater_enabled && (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_BACKGROUND)) { /* * Adjust memory limit based on if the task is going to/from foreground and background. */ if (((priority >= JETSAM_PRIORITY_FOREGROUND) && (p->p_memstat_effectivepriority < JETSAM_PRIORITY_FOREGROUND)) || ((priority < JETSAM_PRIORITY_FOREGROUND) && (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND))) { int32_t memlimit = (priority >= JETSAM_PRIORITY_FOREGROUND) ? -1 : p->p_memstat_memlimit; task_set_phys_footprint_limit_internal(p->task, (memlimit > 0) ? memlimit : -1, NULL, TRUE); if (memlimit <= 0) { p->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; } else { p->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; } } } #endif p->p_memstat_effectivepriority = priority; memorystatus_check_levels_locked(); } int memorystatus_update(proc_t p, int priority, uint64_t user_data, boolean_t effective, boolean_t update_memlimit, int32_t memlimit, boolean_t memlimit_background, boolean_t is_fatal_limit) { int ret; boolean_t head_insert = false; #if !CONFIG_JETSAM #pragma unused(update_memlimit, memlimit, memlimit_background, is_fatal_limit) #endif MEMORYSTATUS_DEBUG(1, "memorystatus_update: changing process %d: priority %d, user_data 0x%llx\n", p->p_pid, priority, user_data); KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_UPDATE) | DBG_FUNC_START, p->p_pid, priority, user_data, effective, 0); if (priority == -1) { /* Use as shorthand for default priority */ priority = JETSAM_PRIORITY_DEFAULT; } else if (priority == JETSAM_PRIORITY_IDLE_DEFERRED) { /* JETSAM_PRIORITY_IDLE_DEFERRED is reserved for internal use; if requested, adjust to JETSAM_PRIORITY_IDLE. */ priority = JETSAM_PRIORITY_IDLE; } else if (priority == JETSAM_PRIORITY_IDLE_HEAD) { /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle queue */ priority = JETSAM_PRIORITY_IDLE; head_insert = true; } else if ((priority < 0) || (priority >= MEMSTAT_BUCKET_COUNT)) { /* Sanity check */ ret = EINVAL; goto out; } proc_list_lock(); assert(!(p->p_memstat_state & P_MEMSTAT_INTERNAL)); if (effective && (p->p_memstat_state & P_MEMSTAT_PRIORITYUPDATED)) { ret = EALREADY; proc_list_unlock(); MEMORYSTATUS_DEBUG(1, "memorystatus_update: effective change specified for pid %d, but change already occurred.\n", p->p_pid); goto out; } if ((p->p_memstat_state & P_MEMSTAT_TERMINATED) || ((p->p_listflag & P_LIST_EXITED) != 0)) { /* * This could happen when a process calling posix_spawn() is exiting on the jetsam thread. */ ret = EBUSY; proc_list_unlock(); goto out; } p->p_memstat_state |= P_MEMSTAT_PRIORITYUPDATED; p->p_memstat_userdata = user_data; p->p_memstat_requestedpriority = priority; #if CONFIG_JETSAM if (update_memlimit) { p->p_memstat_memlimit = memlimit; if (memlimit_background) { /* Will be set as priority is updated */ p->p_memstat_state |= P_MEMSTAT_MEMLIMIT_BACKGROUND; /* Cannot have a background memory limit and be fatal. */ is_fatal_limit = FALSE; } else { /* Otherwise, apply now */ if (memorystatus_highwater_enabled) { task_set_phys_footprint_limit_internal(p->task, (memlimit > 0) ? memlimit : -1, NULL, TRUE); } } if (is_fatal_limit || memlimit <= 0) { p->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; } else { p->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; } } #endif /* * We can't add to the JETSAM_PRIORITY_IDLE_DEFERRED bucket here. * But, we could be removing it from the bucket. * Check and take appropriate steps if so. */ if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE_DEFERRED) { memorystatus_invalidate_idle_demotion_locked(p, TRUE); } memorystatus_update_priority_locked(p, priority, head_insert); proc_list_unlock(); ret = 0; out: KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_UPDATE) | DBG_FUNC_END, ret, 0, 0, 0, 0); return ret; } int memorystatus_remove(proc_t p, boolean_t locked) { int ret; memstat_bucket_t *bucket; MEMORYSTATUS_DEBUG(1, "memorystatus_list_remove: removing process %d\n", p->p_pid); if (!locked) { proc_list_lock(); } assert(!(p->p_memstat_state & P_MEMSTAT_INTERNAL)); bucket = &memstat_bucket[p->p_memstat_effectivepriority]; if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE_DEFERRED) { assert(bucket->count == memorystatus_scheduled_idle_demotions); } TAILQ_REMOVE(&bucket->list, p, p_memstat_list); bucket->count--; memorystatus_list_count--; /* If awaiting demotion to the idle band, clean up */ if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE_DEFERRED) { memorystatus_invalidate_idle_demotion_locked(p, TRUE); memorystatus_reschedule_idle_demotion_locked(); } memorystatus_check_levels_locked(); #if CONFIG_FREEZE if (p->p_memstat_state & (P_MEMSTAT_FROZEN)) { memorystatus_frozen_count--; } if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) { memorystatus_suspended_footprint_total -= p->p_memstat_suspendedfootprint; memorystatus_suspended_count--; } #endif if (!locked) { proc_list_unlock(); } if (p) { ret = 0; } else { ret = ESRCH; } return ret; } static boolean_t memorystatus_validate_track_flags(struct proc *target_p, uint32_t pcontrol) { /* See that the process isn't marked for termination */ if (target_p->p_memstat_dirty & P_DIRTY_TERMINATED) { return FALSE; } /* Idle exit requires that process be tracked */ if ((pcontrol & PROC_DIRTY_ALLOW_IDLE_EXIT) && !(pcontrol & PROC_DIRTY_TRACK)) { return FALSE; } /* 'Launch in progress' tracking requires that process have enabled dirty tracking too. */ if ((pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) && !(pcontrol & PROC_DIRTY_TRACK)) { return FALSE; } /* Deferral is only relevant if idle exit is specified */ if ((pcontrol & PROC_DIRTY_DEFER) && !(pcontrol & PROC_DIRTY_ALLOWS_IDLE_EXIT)) { return FALSE; } return TRUE; } static void memorystatus_update_idle_priority_locked(proc_t p) { int32_t priority; MEMORYSTATUS_DEBUG(1, "memorystatus_update_idle_priority_locked(): pid %d dirty 0x%X\n", p->p_pid, p->p_memstat_dirty); if ((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED|P_DIRTY_IS_DIRTY)) == P_DIRTY_IDLE_EXIT_ENABLED) { priority = (p->p_memstat_dirty & P_DIRTY_DEFER_IN_PROGRESS) ? JETSAM_PRIORITY_IDLE_DEFERRED : JETSAM_PRIORITY_IDLE; } else { priority = p->p_memstat_requestedpriority; } if (priority != p->p_memstat_effectivepriority) { memorystatus_update_priority_locked(p, priority, false); } } /* * Processes can opt to have their state tracked by the kernel, indicating when they are busy (dirty) or idle * (clean). They may also indicate that they support termination when idle, with the result that they are promoted * to their desired, higher, jetsam priority when dirty (and are therefore killed later), and demoted to the low * priority idle band when clean (and killed earlier, protecting higher priority procesess). * * If the deferral flag is set, then newly tracked processes will be protected for an initial period (as determined by * memorystatus_idle_delay_time); if they go clean during this time, then they will be moved to a deferred-idle band * with a slightly higher priority, guarding against immediate termination under memory pressure and being unable to * make forward progress. Finally, when the guard expires, they will be moved to the standard, lowest-priority, idle * band. The deferral can be cleared early by clearing the appropriate flag. * * The deferral timer is active only for the duration that the process is marked as guarded and clean; if the process * is marked dirty, the timer will be cancelled. Upon being subsequently marked clean, the deferment will either be * re-enabled or the guard state cleared, depending on whether the guard deadline has passed. */ int memorystatus_dirty_track(proc_t p, uint32_t pcontrol) { unsigned int old_dirty; boolean_t reschedule = FALSE; boolean_t already_deferred = FALSE; boolean_t defer_now = FALSE; int ret; KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_TRACK), p->p_pid, p->p_memstat_dirty, pcontrol, 0, 0); proc_list_lock(); if ((p->p_listflag & P_LIST_EXITED) != 0) { /* * Process is on its way out. */ ret = EBUSY; goto exit; } if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { ret = EPERM; goto exit; } if (!memorystatus_validate_track_flags(p, pcontrol)) { ret = EINVAL; goto exit; } old_dirty = p->p_memstat_dirty; /* These bits are cumulative, as per */ if (pcontrol & PROC_DIRTY_TRACK) { p->p_memstat_dirty |= P_DIRTY_TRACK; } if (pcontrol & PROC_DIRTY_ALLOW_IDLE_EXIT) { p->p_memstat_dirty |= P_DIRTY_ALLOW_IDLE_EXIT; } if (pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) { p->p_memstat_dirty |= P_DIRTY_LAUNCH_IN_PROGRESS; } if (old_dirty & P_DIRTY_DEFER_IN_PROGRESS) { already_deferred = TRUE; } /* This can be set and cleared exactly once. */ if (pcontrol & PROC_DIRTY_DEFER) { if ( !(old_dirty & P_DIRTY_DEFER)) { p->p_memstat_dirty |= P_DIRTY_DEFER; } defer_now = TRUE; } MEMORYSTATUS_DEBUG(1, "memorystatus_on_track_dirty(): set idle-exit %s / defer %s / dirty %s for process %d\n", ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) ? "Y" : "N", defer_now ? "Y" : "N", p->p_memstat_dirty & P_DIRTY ? "Y" : "N", p->p_pid); /* Kick off or invalidate the idle exit deferment if there's a state transition. */ if (!(p->p_memstat_dirty & P_DIRTY_IS_DIRTY)) { if (((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) && defer_now && !already_deferred) { /* * Request to defer a clean process that's idle-exit enabled * and not already in the jetsam deferred band. */ memorystatus_schedule_idle_demotion_locked(p, TRUE); reschedule = TRUE; } else if (!defer_now && already_deferred) { /* * Either the process is no longer idle-exit enabled OR * there's a request to cancel a currently active deferral. */ memorystatus_invalidate_idle_demotion_locked(p, TRUE); reschedule = TRUE; } } else { /* * We are trying to operate on a dirty process. Dirty processes have to * be removed from the deferred band. The question is do we reset the * deferred state or not? * * This could be a legal request like: * - this process had opted into the JETSAM_DEFERRED band * - but it's now dirty and requests to opt out. * In this case, we remove the process from the band and reset its * state too. It'll opt back in properly when needed. * * OR, this request could be a user-space bug. E.g.: * - this process had opted into the JETSAM_DEFERRED band when clean * - and, then issues another request to again put it into the band except * this time the process is dirty. * The process going dirty, as a transition in memorystatus_dirty_set(), will pull the process out of * the deferred band with its state intact. So our request below is no-op. * But we do it here anyways for coverage. * * memorystatus_update_idle_priority_locked() * single-mindedly treats a dirty process as "cannot be in the deferred band". */ if (!defer_now && already_deferred) { memorystatus_invalidate_idle_demotion_locked(p, TRUE); reschedule = TRUE; } else { memorystatus_invalidate_idle_demotion_locked(p, FALSE); reschedule = TRUE; } } memorystatus_update_idle_priority_locked(p); if (reschedule) { memorystatus_reschedule_idle_demotion_locked(); } ret = 0; exit: proc_list_unlock(); return ret; } int memorystatus_dirty_set(proc_t p, boolean_t self, uint32_t pcontrol) { int ret; boolean_t kill = false; boolean_t reschedule = FALSE; boolean_t was_dirty = FALSE; boolean_t now_dirty = FALSE; MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_set(): %d %d 0x%x 0x%x\n", self, p->p_pid, pcontrol, p->p_memstat_dirty); KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_SET), p->p_pid, self, pcontrol, 0, 0); proc_list_lock(); if ((p->p_listflag & P_LIST_EXITED) != 0) { /* * Process is on its way out. */ ret = EBUSY; goto exit; } if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { ret = EPERM; goto exit; } if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) was_dirty = TRUE; if (!(p->p_memstat_dirty & P_DIRTY_TRACK)) { /* Dirty tracking not enabled */ ret = EINVAL; } else if (pcontrol && (p->p_memstat_dirty & P_DIRTY_TERMINATED)) { /* * Process is set to be terminated and we're attempting to mark it dirty. * Set for termination and marking as clean is OK - see . */ ret = EBUSY; } else { int flag = (self == TRUE) ? P_DIRTY : P_DIRTY_SHUTDOWN; if (pcontrol && !(p->p_memstat_dirty & flag)) { /* Mark the process as having been dirtied at some point */ p->p_memstat_dirty |= (flag | P_DIRTY_MARKED); memorystatus_dirty_count++; ret = 0; } else if ((pcontrol == 0) && (p->p_memstat_dirty & flag)) { if ((flag == P_DIRTY_SHUTDOWN) && (!p->p_memstat_dirty & P_DIRTY)) { /* Clearing the dirty shutdown flag, and the process is otherwise clean - kill */ p->p_memstat_dirty |= P_DIRTY_TERMINATED; kill = true; } else if ((flag == P_DIRTY) && (p->p_memstat_dirty & P_DIRTY_TERMINATED)) { /* Kill previously terminated processes if set clean */ kill = true; } p->p_memstat_dirty &= ~flag; memorystatus_dirty_count--; ret = 0; } else { /* Already set */ ret = EALREADY; } } if (ret != 0) { goto exit; } if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) now_dirty = TRUE; if ((was_dirty == TRUE && now_dirty == FALSE) || (was_dirty == FALSE && now_dirty == TRUE)) { /* Manage idle exit deferral, if applied */ if ((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED|P_DIRTY_DEFER_IN_PROGRESS)) == (P_DIRTY_IDLE_EXIT_ENABLED|P_DIRTY_DEFER_IN_PROGRESS)) { /* * P_DIRTY_DEFER_IN_PROGRESS means the process is in the deferred band OR it might be heading back * there once it's clean again and has some protection window left. */ if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) { /* * New dirty process i.e. "was_dirty == FALSE && now_dirty == TRUE" * * The process will move from the deferred band to its higher requested * jetsam band. But we don't clear its state i.e. we want to remember that * this process was part of the "deferred" band and will return to it. * * This way, we don't let it age beyond the protection * window when it returns to "clean". All the while giving * it a chance to perform its work while "dirty". * */ memorystatus_invalidate_idle_demotion_locked(p, FALSE); reschedule = TRUE; } else { /* * Process is back from "dirty" to "clean". * * Is its timer up OR does it still have some protection * window left? */ if (mach_absolute_time() >= p->p_memstat_idledeadline) { /* * The process' deadline has expired. It currently * does not reside in the DEFERRED bucket. * * It's on its way to the JETSAM_PRIORITY_IDLE * bucket via memorystatus_update_idle_priority_locked() * below. * So all we need to do is reset all the state on the * process that's related to the DEFERRED bucket i.e. * the DIRTY_DEFER_IN_PROGRESS flag and the timer deadline. * */ memorystatus_invalidate_idle_demotion_locked(p, TRUE); reschedule = TRUE; } else { /* * It still has some protection window left and so * we just re-arm the timer without modifying any * state on the process. */ memorystatus_schedule_idle_demotion_locked(p, FALSE); reschedule = TRUE; } } } memorystatus_update_idle_priority_locked(p); /* If the deferral state changed, reschedule the demotion timer */ if (reschedule) { memorystatus_reschedule_idle_demotion_locked(); } } if (kill) { psignal(p, SIGKILL); } exit: proc_list_unlock(); return ret; } int memorystatus_dirty_clear(proc_t p, uint32_t pcontrol) { int ret = 0; MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_clear(): %d 0x%x 0x%x\n", p->p_pid, pcontrol, p->p_memstat_dirty); KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_CLEAR), p->p_pid, pcontrol, 0, 0, 0); proc_list_lock(); if ((p->p_listflag & P_LIST_EXITED) != 0) { /* * Process is on its way out. */ ret = EBUSY; goto exit; } if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { ret = EPERM; goto exit; } if (!(p->p_memstat_dirty & P_DIRTY_TRACK)) { /* Dirty tracking not enabled */ ret = EINVAL; goto exit; } if (!pcontrol || (pcontrol & (PROC_DIRTY_LAUNCH_IN_PROGRESS | PROC_DIRTY_DEFER)) == 0) { ret = EINVAL; goto exit; } if (pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) { p->p_memstat_dirty &= ~P_DIRTY_LAUNCH_IN_PROGRESS; } /* This can be set and cleared exactly once. */ if (pcontrol & PROC_DIRTY_DEFER) { if (p->p_memstat_dirty & P_DIRTY_DEFER) { p->p_memstat_dirty &= ~P_DIRTY_DEFER; memorystatus_invalidate_idle_demotion_locked(p, TRUE); memorystatus_update_idle_priority_locked(p); memorystatus_reschedule_idle_demotion_locked(); } } ret = 0; exit: proc_list_unlock(); return ret; } int memorystatus_dirty_get(proc_t p) { int ret = 0; proc_list_lock(); if (p->p_memstat_dirty & P_DIRTY_TRACK) { ret |= PROC_DIRTY_TRACKED; if (p->p_memstat_dirty & P_DIRTY_ALLOW_IDLE_EXIT) { ret |= PROC_DIRTY_ALLOWS_IDLE_EXIT; } if (p->p_memstat_dirty & P_DIRTY) { ret |= PROC_DIRTY_IS_DIRTY; } if (p->p_memstat_dirty & P_DIRTY_LAUNCH_IN_PROGRESS) { ret |= PROC_DIRTY_LAUNCH_IS_IN_PROGRESS; } } proc_list_unlock(); return ret; } int memorystatus_on_terminate(proc_t p) { int sig; proc_list_lock(); p->p_memstat_dirty |= P_DIRTY_TERMINATED; if ((p->p_memstat_dirty & (P_DIRTY_TRACK|P_DIRTY_IS_DIRTY)) == P_DIRTY_TRACK) { /* Clean; mark as terminated and issue SIGKILL */ sig = SIGKILL; } else { /* Dirty, terminated, or state tracking is unsupported; issue SIGTERM to allow cleanup */ sig = SIGTERM; } proc_list_unlock(); return sig; } void memorystatus_on_suspend(proc_t p) { #if CONFIG_FREEZE uint32_t pages; memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL, NULL); #endif proc_list_lock(); #if CONFIG_FREEZE p->p_memstat_suspendedfootprint = pages; memorystatus_suspended_footprint_total += pages; memorystatus_suspended_count++; #endif p->p_memstat_state |= P_MEMSTAT_SUSPENDED; proc_list_unlock(); } void memorystatus_on_resume(proc_t p) { #if CONFIG_FREEZE boolean_t frozen; pid_t pid; #endif proc_list_lock(); #if CONFIG_FREEZE frozen = (p->p_memstat_state & P_MEMSTAT_FROZEN); if (frozen) { memorystatus_frozen_count--; p->p_memstat_state |= P_MEMSTAT_PRIOR_THAW; } memorystatus_suspended_footprint_total -= p->p_memstat_suspendedfootprint; memorystatus_suspended_count--; pid = p->p_pid; #endif p->p_memstat_state &= ~(P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN); proc_list_unlock(); #if CONFIG_FREEZE if (frozen) { memorystatus_freeze_entry_t data = { pid, FALSE, 0 }; memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data)); } #endif } void memorystatus_on_inactivity(proc_t p) { #pragma unused(p) #if CONFIG_FREEZE /* Wake the freeze thread */ thread_wakeup((event_t)&memorystatus_freeze_wakeup); #endif } static uint32_t memorystatus_build_state(proc_t p) { uint32_t snapshot_state = 0; /* General */ if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) { snapshot_state |= kMemorystatusSuspended; } if (p->p_memstat_state & P_MEMSTAT_FROZEN) { snapshot_state |= kMemorystatusFrozen; } if (p->p_memstat_state & P_MEMSTAT_PRIOR_THAW) { snapshot_state |= kMemorystatusWasThawed; } /* Tracking */ if (p->p_memstat_dirty & P_DIRTY_TRACK) { snapshot_state |= kMemorystatusTracked; } if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) { snapshot_state |= kMemorystatusSupportsIdleExit; } if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) { snapshot_state |= kMemorystatusDirty; } return snapshot_state; } #if !CONFIG_JETSAM static boolean_t kill_idle_exit_proc(void) { proc_t p, victim_p = PROC_NULL; uint64_t current_time; boolean_t killed = FALSE; unsigned int i = 0; /* Pick next idle exit victim. */ current_time = mach_absolute_time(); proc_list_lock(); p = memorystatus_get_first_proc_locked(&i, FALSE); while (p) { /* No need to look beyond the idle band */ if (p->p_memstat_effectivepriority != JETSAM_PRIORITY_IDLE) { break; } if ((p->p_memstat_dirty & (P_DIRTY_ALLOW_IDLE_EXIT|P_DIRTY_IS_DIRTY|P_DIRTY_TERMINATED)) == (P_DIRTY_ALLOW_IDLE_EXIT)) { if (current_time >= p->p_memstat_idledeadline) { p->p_memstat_dirty |= P_DIRTY_TERMINATED; victim_p = proc_ref_locked(p); break; } } p = memorystatus_get_next_proc_locked(&i, p, FALSE); } proc_list_unlock(); if (victim_p) { printf("memorystatus_thread: idle exiting pid %d [%s]\n", victim_p->p_pid, (victim_p->p_comm ? victim_p->p_comm : "(unknown)")); killed = memorystatus_do_kill(victim_p, kMemorystatusKilledIdleExit); proc_rele(victim_p); } return killed; } #endif #if CONFIG_JETSAM static void memorystatus_thread_wake(void) { thread_wakeup((event_t)&memorystatus_wakeup); } #endif /* CONFIG_JETSAM */ extern void vm_pressure_response(void); static int memorystatus_thread_block(uint32_t interval_ms, thread_continue_t continuation) { if (interval_ms) { assert_wait_timeout(&memorystatus_wakeup, THREAD_UNINT, interval_ms, 1000 * NSEC_PER_USEC); } else { assert_wait(&memorystatus_wakeup, THREAD_UNINT); } return thread_block(continuation); } static void memorystatus_thread(void *param __unused, wait_result_t wr __unused) { static boolean_t is_vm_privileged = FALSE; #if CONFIG_JETSAM boolean_t post_snapshot = FALSE; uint32_t errors = 0; uint32_t hwm_kill = 0; #endif if (is_vm_privileged == FALSE) { /* * It's the first time the thread has run, so just mark the thread as privileged and block. * This avoids a spurious pass with unset variables, as set out in . */ thread_wire(host_priv_self(), current_thread(), TRUE); is_vm_privileged = TRUE; memorystatus_thread_block(0, memorystatus_thread); } #if CONFIG_JETSAM KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_SCAN) | DBG_FUNC_START, memorystatus_available_pages, 0, 0, 0, 0); /* * Jetsam aware version. * * The VM pressure notification thread is working it's way through clients in parallel. * * So, while the pressure notification thread is targeting processes in order of * increasing jetsam priority, we can hopefully reduce / stop it's work by killing * any processes that have exceeded their highwater mark. * * If we run out of HWM processes and our available pages drops below the critical threshold, then, * we target the least recently used process in order of increasing jetsam priority (exception: the FG band). */ while (is_thrashing(kill_under_pressure_cause) || memorystatus_available_pages <= memorystatus_available_pages_pressure) { boolean_t killed; int32_t priority; uint32_t cause; if (kill_under_pressure_cause) { cause = kill_under_pressure_cause; } else { cause = kMemorystatusKilledVMPageShortage; } #if LEGACY_HIWATER /* Highwater */ killed = memorystatus_kill_hiwat_proc(&errors); if (killed) { hwm_kill++; post_snapshot = TRUE; goto done; } else { memorystatus_hwm_candidates = FALSE; } /* No highwater processes to kill. Continue or stop for now? */ if (!is_thrashing(kill_under_pressure_cause) && (memorystatus_available_pages > memorystatus_available_pages_critical)) { /* * We are _not_ out of pressure but we are above the critical threshold and there's: * - no compressor thrashing * - no more HWM processes left. * For now, don't kill any other processes. */ if (hwm_kill == 0) { memorystatus_thread_wasted_wakeup++; } break; } #endif /* LRU */ killed = memorystatus_kill_top_process(TRUE, cause, &priority, &errors); if (killed) { /* Don't generate logs for steady-state idle-exit kills (unless overridden for debug) */ if ((priority != JETSAM_PRIORITY_IDLE) || memorystatus_idle_snapshot) { post_snapshot = TRUE; } goto done; } if (memorystatus_available_pages <= memorystatus_available_pages_critical) { /* Under pressure and unable to kill a process - panic */ panic("memorystatus_jetsam_thread: no victim! available pages:%d\n", memorystatus_available_pages); } done: /* * We do not want to over-kill when thrashing has been detected. * To avoid that, we reset the flag here and notify the * compressor. */ if (is_thrashing(kill_under_pressure_cause)) { kill_under_pressure_cause = 0; vm_thrashing_jetsam_done(); } } kill_under_pressure_cause = 0; if (errors) { memorystatus_clear_errors(); } #if VM_PRESSURE_EVENTS /* * LD: We used to target the foreground process first and foremost here. * Now, we target all processes, starting from the non-suspended, background * processes first. We will target foreground too. * * memorystatus_update_vm_pressure(TRUE); */ //vm_pressure_response(); #endif if (post_snapshot) { size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count); memorystatus_jetsam_snapshot->notification_time = mach_absolute_time(); memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size)); } KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_SCAN) | DBG_FUNC_END, memorystatus_available_pages, 0, 0, 0, 0); #else /* CONFIG_JETSAM */ /* * Jetsam not enabled */ #endif /* CONFIG_JETSAM */ memorystatus_thread_block(0, memorystatus_thread); } #if !CONFIG_JETSAM /* * Returns TRUE: * when an idle-exitable proc was killed * Returns FALSE: * when there are no more idle-exitable procs found * when the attempt to kill an idle-exitable proc failed */ boolean_t memorystatus_idle_exit_from_VM(void) { return(kill_idle_exit_proc()); } #endif /* !CONFIG_JETSAM */ #if CONFIG_JETSAM /* * Callback invoked when allowable physical memory footprint exceeded * (dirty pages + IOKit mappings) * * This is invoked for both advisory, non-fatal per-task high watermarks, * as well as the fatal task memory limits. */ void memorystatus_on_ledger_footprint_exceeded(boolean_t warning, const int max_footprint_mb) { proc_t p = current_proc(); if (warning == FALSE) { printf("process %d (%s) exceeded physical memory footprint limit of %d MB\n", p->p_pid, p->p_comm, max_footprint_mb); } #if VM_PRESSURE_EVENTS if (warning == TRUE) { if (memorystatus_warn_process(p->p_pid, TRUE /* critical? */) != TRUE) { /* Print warning, since it's possible that task has not registered for pressure notifications */ printf("task_exceeded_footprint: failed to warn the current task (exiting, or no handler registered?).\n"); } return; } #endif /* VM_PRESSURE_EVENTS */ if ((p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT) == P_MEMSTAT_FATAL_MEMLIMIT) { /* * If this process has no high watermark or has a fatal task limit, then we have been invoked because the task * has violated either the system-wide per-task memory limit OR its own task limit. */ if (memorystatus_kill_process_sync(p->p_pid, kMemorystatusKilledPerProcessLimit) != TRUE) { printf("task_exceeded_footprint: failed to kill the current task (exiting?).\n"); } } else { /* * HWM offender exists. Done without locks or synchronization. * See comment near its declaration for more details. */ memorystatus_hwm_candidates = TRUE; } } /* * This is invoked when cpulimits have been exceeded while in fatal mode. * The jetsam_flags do not apply as those are for memory related kills. * We call this routine so that the offending process is killed with * a non-zero exit status. */ void jetsam_on_ledger_cpulimit_exceeded(void) { int retval = 0; int jetsam_flags = 0; /* make it obvious */ proc_t p = current_proc(); printf("task_exceeded_cpulimit: killing pid %d [%s]\n", p->p_pid, (p->p_comm ? p->p_comm : "(unknown)")); retval = jetsam_do_kill(p, jetsam_flags); if (retval) { printf("task_exceeded_cpulimit: failed to kill current task (exiting?).\n"); } } static void memorystatus_get_task_page_counts(task_t task, uint32_t *footprint, uint32_t *max_footprint, uint32_t *max_footprint_lifetime, uint32_t *purgeable_pages) { assert(task); assert(footprint); *footprint = (uint32_t)(get_task_phys_footprint(task) / PAGE_SIZE_64); if (max_footprint) { *max_footprint = (uint32_t)(get_task_phys_footprint_max(task) / PAGE_SIZE_64); } if (max_footprint_lifetime) { *max_footprint_lifetime = (uint32_t)(get_task_resident_max(task) / PAGE_SIZE_64); } if (purgeable_pages) { *purgeable_pages = (uint32_t)(get_task_purgeable_size(task) / PAGE_SIZE_64); } } static void memorystatus_update_snapshot_locked(proc_t p, uint32_t kill_cause) { unsigned int i; for (i = 0; i < memorystatus_jetsam_snapshot_count; i++) { if (memorystatus_jetsam_snapshot_list[i].pid == p->p_pid) { /* Update if the priority has changed since the snapshot was taken */ if (memorystatus_jetsam_snapshot_list[i].priority != p->p_memstat_effectivepriority) { memorystatus_jetsam_snapshot_list[i].priority = p->p_memstat_effectivepriority; strlcpy(memorystatus_jetsam_snapshot_list[i].name, p->p_comm, MAXCOMLEN+1); memorystatus_jetsam_snapshot_list[i].state = memorystatus_build_state(p); memorystatus_jetsam_snapshot_list[i].user_data = p->p_memstat_userdata; memorystatus_jetsam_snapshot_list[i].fds = p->p_fd->fd_nfiles; } memorystatus_jetsam_snapshot_list[i].killed = kill_cause; return; } } } void memorystatus_pages_update(unsigned int pages_avail) { memorystatus_available_pages = pages_avail; #if VM_PRESSURE_EVENTS /* * Since memorystatus_available_pages changes, we should * re-evaluate the pressure levels on the system and * check if we need to wake the pressure thread. * We also update memorystatus_level in that routine. */ vm_pressure_response(); if (memorystatus_available_pages <= memorystatus_available_pages_pressure) { if (memorystatus_hwm_candidates || (memorystatus_available_pages <= memorystatus_available_pages_critical)) { memorystatus_thread_wake(); } } #else /* VM_PRESSURE_EVENTS */ boolean_t critical, delta; if (!memorystatus_delta) { return; } critical = (pages_avail < memorystatus_available_pages_critical) ? TRUE : FALSE; delta = ((pages_avail >= (memorystatus_available_pages + memorystatus_delta)) || (memorystatus_available_pages >= (pages_avail + memorystatus_delta))) ? TRUE : FALSE; if (critical || delta) { memorystatus_level = memorystatus_available_pages * 100 / atop_64(max_mem); memorystatus_thread_wake(); } #endif /* VM_PRESSURE_EVENTS */ } static boolean_t memorystatus_get_snapshot_properties_for_proc_locked(proc_t p, memorystatus_jetsam_snapshot_entry_t *entry) { clock_sec_t tv_sec; clock_usec_t tv_usec; memset(entry, 0, sizeof(memorystatus_jetsam_snapshot_entry_t)); entry->pid = p->p_pid; strlcpy(&entry->name[0], p->p_comm, MAXCOMLEN+1); entry->priority = p->p_memstat_effectivepriority; memorystatus_get_task_page_counts(p->task, &entry->pages, &entry->max_pages, &entry->max_pages_lifetime, &entry->purgeable_pages); entry->state = memorystatus_build_state(p); entry->user_data = p->p_memstat_userdata; memcpy(&entry->uuid[0], &p->p_uuid[0], sizeof(p->p_uuid)); entry->fds = p->p_fd->fd_nfiles; absolutetime_to_microtime(get_task_cpu_time(p->task), &tv_sec, &tv_usec); entry->cpu_time.tv_sec = tv_sec; entry->cpu_time.tv_usec = tv_usec; return TRUE; } static void memorystatus_jetsam_snapshot_procs_locked(void) { proc_t p, next_p; unsigned int b = 0, i = 0; kern_return_t kr = KERN_SUCCESS; mach_msg_type_number_t count = HOST_VM_INFO64_COUNT; vm_statistics64_data_t vm_stat; if ((kr = host_statistics64(host_self(), HOST_VM_INFO64, (host_info64_t)&vm_stat, &count) != KERN_SUCCESS)) { printf("memorystatus_jetsam_snapshot_procs_locked: host_statistics64 failed with %d\n", kr); memset(&memorystatus_jetsam_snapshot->stats, 0, sizeof(memorystatus_jetsam_snapshot->stats)); } else { memorystatus_jetsam_snapshot->stats.free_pages = vm_stat.free_count; memorystatus_jetsam_snapshot->stats.active_pages = vm_stat.active_count; memorystatus_jetsam_snapshot->stats.inactive_pages = vm_stat.inactive_count; memorystatus_jetsam_snapshot->stats.throttled_pages = vm_stat.throttled_count; memorystatus_jetsam_snapshot->stats.purgeable_pages = vm_stat.purgeable_count; memorystatus_jetsam_snapshot->stats.wired_pages = vm_stat.wire_count; memorystatus_jetsam_snapshot->stats.speculative_pages = vm_stat.speculative_count; memorystatus_jetsam_snapshot->stats.filebacked_pages = vm_stat.external_page_count; memorystatus_jetsam_snapshot->stats.anonymous_pages = vm_stat.internal_page_count; memorystatus_jetsam_snapshot->stats.compressions = vm_stat.compressions; memorystatus_jetsam_snapshot->stats.decompressions = vm_stat.decompressions; memorystatus_jetsam_snapshot->stats.compressor_pages = vm_stat.compressor_page_count; memorystatus_jetsam_snapshot->stats.total_uncompressed_pages_in_compressor = vm_stat.total_uncompressed_pages_in_compressor; } next_p = memorystatus_get_first_proc_locked(&b, TRUE); while (next_p) { p = next_p; next_p = memorystatus_get_next_proc_locked(&b, p, TRUE); if (FALSE == memorystatus_get_snapshot_properties_for_proc_locked(p, &memorystatus_jetsam_snapshot_list[i])) { continue; } MEMORYSTATUS_DEBUG(0, "jetsam snapshot pid = %d, uuid = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", p->p_pid, p->p_uuid[0], p->p_uuid[1], p->p_uuid[2], p->p_uuid[3], p->p_uuid[4], p->p_uuid[5], p->p_uuid[6], p->p_uuid[7], p->p_uuid[8], p->p_uuid[9], p->p_uuid[10], p->p_uuid[11], p->p_uuid[12], p->p_uuid[13], p->p_uuid[14], p->p_uuid[15]); if (++i == memorystatus_jetsam_snapshot_max) { break; } } memorystatus_jetsam_snapshot->snapshot_time = mach_absolute_time(); memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = i; } #if DEVELOPMENT || DEBUG static int memorystatus_cmd_set_panic_bits(user_addr_t buffer, uint32_t buffer_size) { int ret; memorystatus_jetsam_panic_options_t debug; if (buffer_size != sizeof(memorystatus_jetsam_panic_options_t)) { return EINVAL; } ret = copyin(buffer, &debug, buffer_size); if (ret) { return ret; } /* Panic bits match kMemorystatusKilled* enum */ memorystatus_jetsam_panic_debug = (memorystatus_jetsam_panic_debug & ~debug.mask) | (debug.data & debug.mask); /* Copyout new value */ debug.data = memorystatus_jetsam_panic_debug; ret = copyout(&debug, buffer, sizeof(memorystatus_jetsam_panic_options_t)); return ret; } #endif /* * Jetsam a specific process. */ static boolean_t memorystatus_kill_specific_process(pid_t victim_pid, uint32_t cause) { boolean_t killed; proc_t p; /* TODO - add a victim queue and push this into the main jetsam thread */ p = proc_find(victim_pid); if (!p) { return FALSE; } printf("memorystatus: specifically killing pid %d [%s] (%s) - memorystatus_available_pages: %d\n", victim_pid, (p->p_comm ? p->p_comm : "(unknown)"), jetsam_kill_cause_name[cause], memorystatus_available_pages); proc_list_lock(); if (memorystatus_jetsam_snapshot_count == 0) { memorystatus_jetsam_snapshot_procs_locked(); } memorystatus_update_snapshot_locked(p, cause); proc_list_unlock(); killed = memorystatus_do_kill(p, cause); proc_rele(p); return killed; } /* * Jetsam the first process in the queue. */ static boolean_t memorystatus_kill_top_process(boolean_t any, uint32_t cause, int32_t *priority, uint32_t *errors) { pid_t aPid; proc_t p = PROC_NULL, next_p = PROC_NULL; boolean_t new_snapshot = FALSE, killed = FALSE; unsigned int i = 0; #ifndef CONFIG_FREEZE #pragma unused(any) #endif KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START, memorystatus_available_pages, 0, 0, 0, 0); proc_list_lock(); memorystatus_sort_by_largest_process_locked(JETSAM_PRIORITY_FOREGROUND); next_p = memorystatus_get_first_proc_locked(&i, TRUE); while (next_p) { #if DEVELOPMENT || DEBUG int activeProcess; int procSuspendedForDiagnosis; #endif /* DEVELOPMENT || DEBUG */ p = next_p; next_p = memorystatus_get_next_proc_locked(&i, p, TRUE); #if DEVELOPMENT || DEBUG activeProcess = p->p_memstat_state & P_MEMSTAT_FOREGROUND; procSuspendedForDiagnosis = p->p_memstat_state & P_MEMSTAT_DIAG_SUSPENDED; #endif /* DEVELOPMENT || DEBUG */ aPid = p->p_pid; if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) { continue; } #if DEVELOPMENT || DEBUG if ((memorystatus_jetsam_policy & kPolicyDiagnoseActive) && procSuspendedForDiagnosis) { printf("jetsam: continuing after ignoring proc suspended already for diagnosis - %d\n", aPid); continue; } #endif /* DEVELOPMENT || DEBUG */ if (cause == kMemorystatusKilledVnodes) { /* * If the system runs out of vnodes, we systematically jetsam * processes in hopes of stumbling onto a vnode gain that helps * the system recover. The process that happens to trigger * this path has no known relationship to the vnode consumption. * We attempt to safeguard that process e.g: do not jetsam it. */ if (p == current_proc()) { /* do not jetsam the current process */ continue; } } #if CONFIG_FREEZE boolean_t skip; boolean_t reclaim_proc = !(p->p_memstat_state & (P_MEMSTAT_LOCKED | P_MEMSTAT_NORECLAIM)); if (any || reclaim_proc) { skip = FALSE; } else { skip = TRUE; } if (skip) { continue; } else #endif { if (priority) { *priority = p->p_memstat_effectivepriority; } /* * Capture a snapshot if none exists and: * - priority was not requested (this is something other than an ambient kill) * - the priority was requested *and* the targeted process is not at idle priority */ if ((memorystatus_jetsam_snapshot_count == 0) && (memorystatus_idle_snapshot || ((!priority) || (priority && (*priority != JETSAM_PRIORITY_IDLE))))) { memorystatus_jetsam_snapshot_procs_locked(); new_snapshot = TRUE; } /* * Mark as terminated so that if exit1() indicates success, but the process (for example) * is blocked in task_exception_notify(), it'll be skipped if encountered again - see * . This is cheaper than examining P_LEXIT, which requires the * acquisition of the proc lock. */ p->p_memstat_state |= P_MEMSTAT_TERMINATED; #if DEVELOPMENT || DEBUG if ((memorystatus_jetsam_policy & kPolicyDiagnoseActive) && activeProcess) { MEMORYSTATUS_DEBUG(1, "jetsam: suspending pid %d [%s] (active) for diagnosis - memory_status_level: %d\n", aPid, (p->p_comm ? p->p_comm: "(unknown)"), memorystatus_level); memorystatus_update_snapshot_locked(p, kMemorystatusKilledDiagnostic); p->p_memstat_state |= P_MEMSTAT_DIAG_SUSPENDED; if (memorystatus_jetsam_policy & kPolicyDiagnoseFirst) { jetsam_diagnostic_suspended_one_active_proc = 1; printf("jetsam: returning after suspending first active proc - %d\n", aPid); } p = proc_ref_locked(p); proc_list_unlock(); if (p) { task_suspend(p->task); proc_rele(p); killed = TRUE; } goto exit; } else #endif /* DEVELOPMENT || DEBUG */ { /* Shift queue, update stats */ memorystatus_update_snapshot_locked(p, cause); p = proc_ref_locked(p); proc_list_unlock(); if (p) { printf("memorystatus: %s %d [%s] (%s) - memorystatus_available_pages: %d\n", ((p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) ? "idle exiting pid" : "jetsam killing pid"), aPid, (p->p_comm ? p->p_comm : "(unknown)"), jetsam_kill_cause_name[cause], memorystatus_available_pages); killed = memorystatus_do_kill(p, cause); } /* Success? */ if (killed) { proc_rele(p); goto exit; } /* Failure - unwind and restart. */ proc_list_lock(); proc_rele_locked(p); p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; p->p_memstat_state |= P_MEMSTAT_ERROR; *errors += 1; i = 0; next_p = memorystatus_get_first_proc_locked(&i, TRUE); } } } proc_list_unlock(); exit: /* Clear snapshot if freshly captured and no target was found */ if (new_snapshot && !killed) { memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0; } KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END, memorystatus_available_pages, killed ? aPid : 0, 0, 0, 0); return killed; } #if LEGACY_HIWATER static boolean_t memorystatus_kill_hiwat_proc(uint32_t *errors) { pid_t aPid = 0; proc_t p = PROC_NULL, next_p = PROC_NULL; boolean_t new_snapshot = FALSE, killed = FALSE; unsigned int i = 0; KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM_HIWAT) | DBG_FUNC_START, memorystatus_available_pages, 0, 0, 0, 0); proc_list_lock(); memorystatus_sort_by_largest_process_locked(JETSAM_PRIORITY_FOREGROUND); next_p = memorystatus_get_first_proc_locked(&i, TRUE); while (next_p) { uint32_t footprint; boolean_t skip; p = next_p; next_p = memorystatus_get_next_proc_locked(&i, p, TRUE); aPid = p->p_pid; if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) { continue; } /* skip if no limit set */ if (p->p_memstat_memlimit <= 0) { continue; } /* skip if a currently inapplicable limit is encountered */ if ((p->p_memstat_state & P_MEMSTAT_MEMLIMIT_BACKGROUND) && (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND)) { continue; } footprint = (uint32_t)(get_task_phys_footprint(p->task) / (1024 * 1024)); skip = (((int32_t)footprint) <= p->p_memstat_memlimit); #if DEVELOPMENT || DEBUG if (!skip && (memorystatus_jetsam_policy & kPolicyDiagnoseActive)) { if (p->p_memstat_state & P_MEMSTAT_DIAG_SUSPENDED) { continue; } } #endif /* DEVELOPMENT || DEBUG */ #if CONFIG_FREEZE if (!skip) { if (p->p_memstat_state & P_MEMSTAT_LOCKED) { skip = TRUE; } else { skip = FALSE; } } #endif if (skip) { continue; } else { MEMORYSTATUS_DEBUG(1, "jetsam: %s pid %d [%s] - %d Mb > 1 (%d Mb)\n", (memorystatus_jetsam_policy & kPolicyDiagnoseActive) ? "suspending": "killing", aPid, p->p_comm, footprint, p->p_memstat_memlimit); if (memorystatus_jetsam_snapshot_count == 0) { memorystatus_jetsam_snapshot_procs_locked(); new_snapshot = TRUE; } p->p_memstat_state |= P_MEMSTAT_TERMINATED; #if DEVELOPMENT || DEBUG if (memorystatus_jetsam_policy & kPolicyDiagnoseActive) { MEMORYSTATUS_DEBUG(1, "jetsam: pid %d suspended for diagnosis - memorystatus_available_pages: %d\n", aPid, memorystatus_available_pages); memorystatus_update_snapshot_locked(p, kMemorystatusKilledDiagnostic); p->p_memstat_state |= P_MEMSTAT_DIAG_SUSPENDED; p = proc_ref_locked(p); proc_list_unlock(); if (p) { task_suspend(p->task); proc_rele(p); killed = TRUE; } goto exit; } else #endif /* DEVELOPMENT || DEBUG */ { memorystatus_update_snapshot_locked(p, kMemorystatusKilledHiwat); p = proc_ref_locked(p); proc_list_unlock(); if (p) { printf("memorystatus: jetsam killing pid %d [%s] (highwater) - memorystatus_available_pages: %d\n", aPid, (p->p_comm ? p->p_comm : "(unknown)"), memorystatus_available_pages); killed = memorystatus_do_kill(p, kMemorystatusKilledHiwat); } /* Success? */ if (killed) { proc_rele(p); goto exit; } /* Failure - unwind and restart. */ proc_list_lock(); proc_rele_locked(p); p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; p->p_memstat_state |= P_MEMSTAT_ERROR; *errors += 1; i = 0; next_p = memorystatus_get_first_proc_locked(&i, TRUE); } } } proc_list_unlock(); exit: /* Clear snapshot if freshly captured and no target was found */ if (new_snapshot && !killed) { memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0; } KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM_HIWAT) | DBG_FUNC_END, memorystatus_available_pages, killed ? aPid : 0, 0, 0, 0); return killed; } #endif /* LEGACY_HIWATER */ static boolean_t memorystatus_kill_process_async(pid_t victim_pid, uint32_t cause) { /* TODO: allow a general async path */ if ((victim_pid != -1) || (cause != kMemorystatusKilledVMPageShortage && cause != kMemorystatusKilledVMThrashing && cause != kMemorystatusKilledFCThrashing)) { return FALSE; } kill_under_pressure_cause = cause; memorystatus_thread_wake(); return TRUE; } static boolean_t memorystatus_kill_process_sync(pid_t victim_pid, uint32_t cause) { boolean_t res; uint32_t errors = 0; if (victim_pid == -1) { /* No pid, so kill first process */ res = memorystatus_kill_top_process(TRUE, cause, NULL, &errors); } else { res = memorystatus_kill_specific_process(victim_pid, cause); } if (errors) { memorystatus_clear_errors(); } if (res == TRUE) { /* Fire off snapshot notification */ size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + sizeof(memorystatus_jetsam_snapshot_entry_t) * memorystatus_jetsam_snapshot_count; memorystatus_jetsam_snapshot->notification_time = mach_absolute_time(); memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size)); } return res; } boolean_t memorystatus_kill_on_VM_page_shortage(boolean_t async) { if (async) { return memorystatus_kill_process_async(-1, kMemorystatusKilledVMPageShortage); } else { return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMPageShortage); } } boolean_t memorystatus_kill_on_VM_thrashing(boolean_t async) { if (async) { return memorystatus_kill_process_async(-1, kMemorystatusKilledVMThrashing); } else { return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMThrashing); } } boolean_t memorystatus_kill_on_FC_thrashing(boolean_t async) { if (async) { return memorystatus_kill_process_async(-1, kMemorystatusKilledFCThrashing); } else { return memorystatus_kill_process_sync(-1, kMemorystatusKilledFCThrashing); } } boolean_t memorystatus_kill_on_vnode_limit(void) { return memorystatus_kill_process_sync(-1, kMemorystatusKilledVnodes); } #endif /* CONFIG_JETSAM */ #if CONFIG_FREEZE __private_extern__ void memorystatus_freeze_init(void) { kern_return_t result; thread_t thread; result = kernel_thread_start(memorystatus_freeze_thread, NULL, &thread); if (result == KERN_SUCCESS) { thread_deallocate(thread); } else { panic("Could not create memorystatus_freeze_thread"); } } static int memorystatus_freeze_top_process(boolean_t *memorystatus_freeze_swap_low) { pid_t aPid = 0; int ret = -1; proc_t p = PROC_NULL, next_p = PROC_NULL; unsigned int i = 0; KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_START, memorystatus_available_pages, 0, 0, 0, 0); proc_list_lock(); next_p = memorystatus_get_first_proc_locked(&i, TRUE); while (next_p) { kern_return_t kr; uint32_t purgeable, wired, clean, dirty; boolean_t shared; uint32_t pages; uint32_t max_pages = 0; uint32_t state; p = next_p; next_p = memorystatus_get_next_proc_locked(&i, p, TRUE); aPid = p->p_pid; state = p->p_memstat_state; /* Ensure the process is eligible for freezing */ if ((state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_FROZEN)) || !(state & P_MEMSTAT_SUSPENDED)) { continue; // with lock held } /* Only freeze processes meeting our minimum resident page criteria */ memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL, NULL); if (pages < memorystatus_freeze_pages_min) { continue; // with lock held } if (DEFAULT_FREEZER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_SWAPBACKED) { /* Ensure there's enough free space to freeze this process. */ max_pages = MIN(default_pager_swap_pages_free(), memorystatus_freeze_pages_max); if (max_pages < memorystatus_freeze_pages_min) { *memorystatus_freeze_swap_low = TRUE; proc_list_unlock(); goto exit; } } else { max_pages = UINT32_MAX - 1; } /* Mark as locked temporarily to avoid kill */ p->p_memstat_state |= P_MEMSTAT_LOCKED; p = proc_ref_locked(p); proc_list_unlock(); if (!p) { goto exit; } kr = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, FALSE); MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_top_process: task_freeze %s for pid %d [%s] - " "memorystatus_pages: %d, purgeable: %d, wired: %d, clean: %d, dirty: %d, shared %d, free swap: %d\n", (kr == KERN_SUCCESS) ? "SUCCEEDED" : "FAILED", aPid, (p->p_comm ? p->p_comm : "(unknown)"), memorystatus_available_pages, purgeable, wired, clean, dirty, shared, default_pager_swap_pages_free()); proc_list_lock(); p->p_memstat_state &= ~P_MEMSTAT_LOCKED; /* Success? */ if (KERN_SUCCESS == kr) { memorystatus_freeze_entry_t data = { aPid, TRUE, dirty }; memorystatus_frozen_count++; p->p_memstat_state |= (P_MEMSTAT_FROZEN | (shared ? 0: P_MEMSTAT_NORECLAIM)); /* Update stats */ for (i = 0; i < sizeof(throttle_intervals) / sizeof(struct throttle_interval_t); i++) { throttle_intervals[i].pageouts += dirty; } memorystatus_freeze_pageouts += dirty; memorystatus_freeze_count++; proc_list_unlock(); memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data)); /* Return the number of reclaimed pages */ ret = dirty; } else { proc_list_unlock(); } proc_rele(p); goto exit; } proc_list_unlock(); exit: KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_END, memorystatus_available_pages, aPid, 0, 0, 0); return ret; } static inline boolean_t memorystatus_can_freeze_processes(void) { boolean_t ret; proc_list_lock(); if (memorystatus_suspended_count) { uint32_t average_resident_pages, estimated_processes; /* Estimate the number of suspended processes we can fit */ average_resident_pages = memorystatus_suspended_footprint_total / memorystatus_suspended_count; estimated_processes = memorystatus_suspended_count + ((memorystatus_available_pages - memorystatus_available_pages_critical) / average_resident_pages); /* If it's predicted that no freeze will occur, lower the threshold temporarily */ if (estimated_processes <= FREEZE_SUSPENDED_THRESHOLD_DEFAULT) { memorystatus_freeze_suspended_threshold = FREEZE_SUSPENDED_THRESHOLD_LOW; } else { memorystatus_freeze_suspended_threshold = FREEZE_SUSPENDED_THRESHOLD_DEFAULT; } MEMORYSTATUS_DEBUG(1, "memorystatus_can_freeze_processes: %d suspended processes, %d average resident pages / process, %d suspended processes estimated\n", memorystatus_suspended_count, average_resident_pages, estimated_processes); if ((memorystatus_suspended_count - memorystatus_frozen_count) > memorystatus_freeze_suspended_threshold) { ret = TRUE; } else { ret = FALSE; } } else { ret = FALSE; } proc_list_unlock(); return ret; } static boolean_t memorystatus_can_freeze(boolean_t *memorystatus_freeze_swap_low) { /* Only freeze if we're sufficiently low on memory; this holds off freeze right after boot, and is generally is a no-op once we've reached steady state. */ if (memorystatus_available_pages > memorystatus_freeze_threshold) { return FALSE; } /* Check minimum suspended process threshold. */ if (!memorystatus_can_freeze_processes()) { return FALSE; } /* Is swap running low? */ if (*memorystatus_freeze_swap_low) { /* If there's been no movement in free swap pages since we last attempted freeze, return. */ if (default_pager_swap_pages_free() < memorystatus_freeze_pages_min) { return FALSE; } /* Pages have been freed - we can retry. */ *memorystatus_freeze_swap_low = FALSE; } /* OK */ return TRUE; } static void memorystatus_freeze_update_throttle_interval(mach_timespec_t *ts, struct throttle_interval_t *interval) { if (CMP_MACH_TIMESPEC(ts, &interval->ts) >= 0) { if (!interval->max_pageouts) { interval->max_pageouts = (interval->burst_multiple * (((uint64_t)interval->mins * FREEZE_DAILY_PAGEOUTS_MAX) / (24 * 60))); } else { printf("memorystatus_freeze_update_throttle_interval: %d minute throttle timeout, resetting\n", interval->mins); } interval->ts.tv_sec = interval->mins * 60; interval->ts.tv_nsec = 0; ADD_MACH_TIMESPEC(&interval->ts, ts); /* Since we update the throttle stats pre-freeze, adjust for overshoot here */ if (interval->pageouts > interval->max_pageouts) { interval->pageouts -= interval->max_pageouts; } else { interval->pageouts = 0; } interval->throttle = FALSE; } else if (!interval->throttle && interval->pageouts >= interval->max_pageouts) { printf("memorystatus_freeze_update_throttle_interval: %d minute pageout limit exceeded; enabling throttle\n", interval->mins); interval->throttle = TRUE; } MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_update_throttle_interval: throttle updated - %d frozen (%d max) within %dm; %dm remaining; throttle %s\n", interval->pageouts, interval->max_pageouts, interval->mins, (interval->ts.tv_sec - ts->tv_sec) / 60, interval->throttle ? "on" : "off"); } static boolean_t memorystatus_freeze_update_throttle(void) { clock_sec_t sec; clock_nsec_t nsec; mach_timespec_t ts; uint32_t i; boolean_t throttled = FALSE; #if DEVELOPMENT || DEBUG if (!memorystatus_freeze_throttle_enabled) return FALSE; #endif clock_get_system_nanotime(&sec, &nsec); ts.tv_sec = sec; ts.tv_nsec = nsec; /* Check freeze pageouts over multiple intervals and throttle if we've exceeded our budget. * * This ensures that periods of inactivity can't be used as 'credit' towards freeze if the device has * remained dormant for a long period. We do, however, allow increased thresholds for shorter intervals in * order to allow for bursts of activity. */ for (i = 0; i < sizeof(throttle_intervals) / sizeof(struct throttle_interval_t); i++) { memorystatus_freeze_update_throttle_interval(&ts, &throttle_intervals[i]); if (throttle_intervals[i].throttle == TRUE) throttled = TRUE; } return throttled; } static void memorystatus_freeze_thread(void *param __unused, wait_result_t wr __unused) { static boolean_t memorystatus_freeze_swap_low = FALSE; if (memorystatus_freeze_enabled) { if (memorystatus_can_freeze(&memorystatus_freeze_swap_low)) { /* Only freeze if we've not exceeded our pageout budgets or we're not backed by swap. */ if (DEFAULT_FREEZER_COMPRESSED_PAGER_IS_SWAPLESS || !memorystatus_freeze_update_throttle()) { memorystatus_freeze_top_process(&memorystatus_freeze_swap_low); } else { printf("memorystatus_freeze_thread: in throttle, ignoring freeze\n"); memorystatus_freeze_throttle_count++; /* Throttled, update stats */ } } } assert_wait((event_t) &memorystatus_freeze_wakeup, THREAD_UNINT); thread_block((thread_continue_t) memorystatus_freeze_thread); } #endif /* CONFIG_FREEZE */ #if VM_PRESSURE_EVENTS #if CONFIG_MEMORYSTATUS static int memorystatus_send_note(int event_code, void *data, size_t data_length) { int ret; struct kev_msg ev_msg; ev_msg.vendor_code = KEV_VENDOR_APPLE; ev_msg.kev_class = KEV_SYSTEM_CLASS; ev_msg.kev_subclass = KEV_MEMORYSTATUS_SUBCLASS; ev_msg.event_code = event_code; ev_msg.dv[0].data_length = data_length; ev_msg.dv[0].data_ptr = data; ev_msg.dv[1].data_length = 0; ret = kev_post_msg(&ev_msg); if (ret) { printf("%s: kev_post_msg() failed, err %d\n", __func__, ret); } return ret; } boolean_t memorystatus_warn_process(pid_t pid, boolean_t critical) { boolean_t ret = FALSE; struct knote *kn = NULL; /* * See comment in sysctl_memorystatus_vm_pressure_send. */ memorystatus_klist_lock(); kn = vm_find_knote_from_pid(pid, &memorystatus_klist); if (kn) { /* * By setting the "fflags" here, we are forcing * a process to deal with the case where it's * bumping up into its memory limits. If we don't * do this here, we will end up depending on the * system pressure snapshot evaluation in * filt_memorystatus(). */ if (critical) { kn->kn_fflags |= NOTE_MEMORYSTATUS_PRESSURE_CRITICAL; } else { kn->kn_fflags |= NOTE_MEMORYSTATUS_PRESSURE_WARN; } KNOTE(&memorystatus_klist, kMemorystatusPressure); ret = TRUE; } else { if (vm_dispatch_pressure_note_to_pid(pid, FALSE) == 0) { ret = TRUE; } } memorystatus_klist_unlock(); return ret; } int memorystatus_send_pressure_note(pid_t pid) { MEMORYSTATUS_DEBUG(1, "memorystatus_send_pressure_note(): pid %d\n", pid); return memorystatus_send_note(kMemorystatusPressureNote, &pid, sizeof(pid)); } void memorystatus_send_low_swap_note(void) { struct knote *kn = NULL; memorystatus_klist_lock(); SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) { if (is_knote_registered_modify_task_pressure_bits(kn, NOTE_MEMORYSTATUS_LOW_SWAP, NULL, 0, 0) == TRUE) { KNOTE(&memorystatus_klist, kMemorystatusLowSwap); } } memorystatus_klist_unlock(); } boolean_t memorystatus_bg_pressure_eligible(proc_t p) { boolean_t eligible = FALSE; proc_list_lock(); MEMORYSTATUS_DEBUG(1, "memorystatus_bg_pressure_eligible: pid %d, state 0x%x\n", p->p_pid, p->p_memstat_state); /* Foreground processes have already been dealt with at this point, so just test for eligibility */ if (!(p->p_memstat_state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN))) { eligible = TRUE; } proc_list_unlock(); return eligible; } boolean_t memorystatus_is_foreground_locked(proc_t p) { return ((p->p_memstat_effectivepriority == JETSAM_PRIORITY_FOREGROUND) || (p->p_memstat_effectivepriority == JETSAM_PRIORITY_FOREGROUND_SUPPORT)); } #endif /* CONFIG_MEMORYSTATUS */ /* * Trigger levels to test the mechanism. * Can be used via a sysctl. */ #define TEST_LOW_MEMORY_TRIGGER_ONE 1 #define TEST_LOW_MEMORY_TRIGGER_ALL 2 #define TEST_PURGEABLE_TRIGGER_ONE 3 #define TEST_PURGEABLE_TRIGGER_ALL 4 #define TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE 5 #define TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL 6 boolean_t memorystatus_manual_testing_on = FALSE; vm_pressure_level_t memorystatus_manual_testing_level = kVMPressureNormal; extern struct knote * vm_pressure_select_optimal_candidate_to_notify(struct klist *, int, boolean_t); extern kern_return_t vm_pressure_notification_without_levels(boolean_t); extern void vm_pressure_klist_lock(void); extern void vm_pressure_klist_unlock(void); extern void vm_reset_active_list(void); extern void delay(int); #define INTER_NOTIFICATION_DELAY (250000) /* .25 second */ void memorystatus_on_pageout_scan_end(void) { /* No-op */ } /* * kn_max - knote * * knote_pressure_level - to check if the knote is registered for this notification level. * * task - task whose bits we'll be modifying * * pressure_level_to_clear - if the task has been notified of this past level, clear that notification bit so that if/when we revert to that level, the task will be notified again. * * pressure_level_to_set - the task is about to be notified of this new level. Update the task's bit notification information appropriately. * */ boolean_t is_knote_registered_modify_task_pressure_bits(struct knote *kn_max, int knote_pressure_level, task_t task, vm_pressure_level_t pressure_level_to_clear, vm_pressure_level_t pressure_level_to_set) { if (kn_max->kn_sfflags & knote_pressure_level) { if (task_has_been_notified(task, pressure_level_to_clear) == TRUE) { task_clear_has_been_notified(task, pressure_level_to_clear); } task_mark_has_been_notified(task, pressure_level_to_set); return TRUE; } return FALSE; } extern kern_return_t vm_pressure_notify_dispatch_vm_clients(boolean_t target_foreground_process); #define VM_PRESSURE_DECREASED_SMOOTHING_PERIOD 5000 /* milliseconds */ kern_return_t memorystatus_update_vm_pressure(boolean_t target_foreground_process) { struct knote *kn_max = NULL; pid_t target_pid = -1; struct klist dispatch_klist = { NULL }; proc_t target_proc = PROC_NULL; struct task *task = NULL; boolean_t found_candidate = FALSE; static vm_pressure_level_t level_snapshot = kVMPressureNormal; static vm_pressure_level_t prev_level_snapshot = kVMPressureNormal; boolean_t smoothing_window_started = FALSE; struct timeval smoothing_window_start_tstamp = {0, 0}; struct timeval curr_tstamp = {0, 0}; int elapsed_msecs = 0; #if !CONFIG_JETSAM #define MAX_IDLE_KILLS 100 /* limit the number of idle kills allowed */ int idle_kill_counter = 0; /* * On desktop we take this opportunity to free up memory pressure * by immediately killing idle exitable processes. We use a delay * to avoid overkill. And we impose a max counter as a fail safe * in case daemons re-launch too fast. */ while ((memorystatus_vm_pressure_level != kVMPressureNormal) && (idle_kill_counter < MAX_IDLE_KILLS)) { if (memorystatus_idle_exit_from_VM() == FALSE) { /* No idle exitable processes left to kill */ break; } idle_kill_counter++; delay(1000000); /* 1 second */ } #endif /* !CONFIG_JETSAM */ while (1) { /* * There is a race window here. But it's not clear * how much we benefit from having extra synchronization. */ level_snapshot = memorystatus_vm_pressure_level; if (prev_level_snapshot > level_snapshot) { /* * Pressure decreased? Let's take a little breather * and see if this condition stays. */ if (smoothing_window_started == FALSE) { smoothing_window_started = TRUE; microuptime(&smoothing_window_start_tstamp); } microuptime(&curr_tstamp); timevalsub(&curr_tstamp, &smoothing_window_start_tstamp); elapsed_msecs = curr_tstamp.tv_sec * 1000 + curr_tstamp.tv_usec / 1000; if (elapsed_msecs < VM_PRESSURE_DECREASED_SMOOTHING_PERIOD) { delay(INTER_NOTIFICATION_DELAY); continue; } } prev_level_snapshot = level_snapshot; smoothing_window_started = FALSE; memorystatus_klist_lock(); kn_max = vm_pressure_select_optimal_candidate_to_notify(&memorystatus_klist, level_snapshot, target_foreground_process); if (kn_max == NULL) { memorystatus_klist_unlock(); /* * No more level-based clients to notify. * Try the non-level based notification clients. * * However, these non-level clients don't understand * the "return-to-normal" notification. * * So don't consider them for those notifications. Just * return instead. * */ if (level_snapshot != kVMPressureNormal) { goto try_dispatch_vm_clients; } else { return KERN_FAILURE; } } target_proc = kn_max->kn_kq->kq_p; proc_list_lock(); if (target_proc != proc_ref_locked(target_proc)) { target_proc = PROC_NULL; proc_list_unlock(); memorystatus_klist_unlock(); continue; } proc_list_unlock(); memorystatus_klist_unlock(); target_pid = target_proc->p_pid; task = (struct task *)(target_proc->task); if (level_snapshot != kVMPressureNormal) { if (level_snapshot == kVMPressureWarning || level_snapshot == kVMPressureUrgent) { if (is_knote_registered_modify_task_pressure_bits(kn_max, NOTE_MEMORYSTATUS_PRESSURE_WARN, task, kVMPressureCritical, kVMPressureWarning) == TRUE) { found_candidate = TRUE; } } else { if (level_snapshot == kVMPressureCritical) { if (is_knote_registered_modify_task_pressure_bits(kn_max, NOTE_MEMORYSTATUS_PRESSURE_CRITICAL, task, kVMPressureWarning, kVMPressureCritical) == TRUE) { found_candidate = TRUE; } } } } else { if (kn_max->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_NORMAL) { task_clear_has_been_notified(task, kVMPressureWarning); task_clear_has_been_notified(task, kVMPressureCritical); found_candidate = TRUE; } } if (found_candidate == FALSE) { continue; } memorystatus_klist_lock(); KNOTE_DETACH(&memorystatus_klist, kn_max); KNOTE_ATTACH(&dispatch_klist, kn_max); memorystatus_klist_unlock(); KNOTE(&dispatch_klist, (level_snapshot != kVMPressureNormal) ? kMemorystatusPressure : kMemorystatusNoPressure); memorystatus_klist_lock(); KNOTE_DETACH(&dispatch_klist, kn_max); KNOTE_ATTACH(&memorystatus_klist, kn_max); memorystatus_klist_unlock(); microuptime(&target_proc->vm_pressure_last_notify_tstamp); proc_rele(target_proc); if (memorystatus_manual_testing_on == TRUE && target_foreground_process == TRUE) { break; } try_dispatch_vm_clients: if (kn_max == NULL && level_snapshot != kVMPressureNormal) { /* * We will exit this loop when we are done with * notification clients (level and non-level based). */ if ((vm_pressure_notify_dispatch_vm_clients(target_foreground_process) == KERN_FAILURE) && (kn_max == NULL)) { /* * kn_max == NULL i.e. we didn't find any eligible clients for the level-based notifications * AND * we have failed to find any eligible clients for the non-level based notifications too. * So, we are done. */ return KERN_FAILURE; } } /* * LD: This block of code below used to be invoked in the older memory notification scheme on embedded everytime * a process was sent a memory pressure notification. The "memorystatus_klist" list was used to hold these * privileged listeners. But now we have moved to the newer scheme and are trying to move away from the extra * notifications. So the code is here in case we break compat. and need to send out notifications to the privileged * apps. */ #if 0 #endif /* 0 */ if (memorystatus_manual_testing_on == TRUE) { /* * Testing out the pressure notification scheme. * No need for delays etc. */ } else { uint32_t sleep_interval = INTER_NOTIFICATION_DELAY; #if CONFIG_JETSAM unsigned int page_delta = 0; unsigned int skip_delay_page_threshold = 0; assert(memorystatus_available_pages_pressure >= memorystatus_available_pages_critical_base); page_delta = (memorystatus_available_pages_pressure - memorystatus_available_pages_critical_base) / 2; skip_delay_page_threshold = memorystatus_available_pages_pressure - page_delta; if (memorystatus_available_pages <= skip_delay_page_threshold) { /* * We are nearing the critcal mark fast and can't afford to wait between * notifications. */ sleep_interval = 0; } #endif /* CONFIG_JETSAM */ if (sleep_interval) { delay(sleep_interval); } } } return KERN_SUCCESS; } vm_pressure_level_t convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t); vm_pressure_level_t convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t internal_pressure_level) { vm_pressure_level_t dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_NORMAL; switch (internal_pressure_level) { case kVMPressureNormal: { dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_NORMAL; break; } case kVMPressureWarning: case kVMPressureUrgent: { dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_WARN; break; } case kVMPressureCritical: { dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_CRITICAL; break; } default: break; } return dispatch_level; } static int sysctl_memorystatus_vm_pressure_level SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2, oidp) vm_pressure_level_t dispatch_level = convert_internal_pressure_level_to_dispatch_level(memorystatus_vm_pressure_level); return SYSCTL_OUT(req, &dispatch_level, sizeof(dispatch_level)); } #if DEBUG || DEVELOPMENT SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_pressure_level, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_LOCKED, 0, 0, &sysctl_memorystatus_vm_pressure_level, "I", ""); #else /* DEBUG || DEVELOPMENT */ SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_pressure_level, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_LOCKED|CTLFLAG_MASKED, 0, 0, &sysctl_memorystatus_vm_pressure_level, "I", ""); #endif /* DEBUG || DEVELOPMENT */ extern int memorystatus_purge_on_warning; extern int memorystatus_purge_on_critical; static int sysctl_memorypressure_manual_trigger SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int level = 0; int error = 0; int pressure_level = 0; int trigger_request = 0; int force_purge; error = sysctl_handle_int(oidp, &level, 0, req); if (error || !req->newptr) { return (error); } memorystatus_manual_testing_on = TRUE; trigger_request = (level >> 16) & 0xFFFF; pressure_level = (level & 0xFFFF); if (trigger_request < TEST_LOW_MEMORY_TRIGGER_ONE || trigger_request > TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL) { return EINVAL; } switch (pressure_level) { case NOTE_MEMORYSTATUS_PRESSURE_NORMAL: case NOTE_MEMORYSTATUS_PRESSURE_WARN: case NOTE_MEMORYSTATUS_PRESSURE_CRITICAL: break; default: return EINVAL; } /* * The pressure level is being set from user-space. * And user-space uses the constants in sys/event.h * So we translate those events to our internal levels here. */ if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_NORMAL) { memorystatus_manual_testing_level = kVMPressureNormal; force_purge = 0; } else if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_WARN) { memorystatus_manual_testing_level = kVMPressureWarning; force_purge = memorystatus_purge_on_warning; } else if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) { memorystatus_manual_testing_level = kVMPressureCritical; force_purge = memorystatus_purge_on_critical; } memorystatus_vm_pressure_level = memorystatus_manual_testing_level; /* purge according to the new pressure level */ switch (trigger_request) { case TEST_PURGEABLE_TRIGGER_ONE: case TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE: if (force_purge == 0) { /* no purging requested */ break; } vm_purgeable_object_purge_one_unlocked(force_purge); break; case TEST_PURGEABLE_TRIGGER_ALL: case TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL: if (force_purge == 0) { /* no purging requested */ break; } while (vm_purgeable_object_purge_one_unlocked(force_purge)); break; } if ((trigger_request == TEST_LOW_MEMORY_TRIGGER_ONE) || (trigger_request == TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE)) { memorystatus_update_vm_pressure(TRUE); } if ((trigger_request == TEST_LOW_MEMORY_TRIGGER_ALL) || (trigger_request == TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL)) { while (memorystatus_update_vm_pressure(FALSE) == KERN_SUCCESS) { continue; } } if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_NORMAL) { memorystatus_manual_testing_on = FALSE; vm_pressure_klist_lock(); vm_reset_active_list(); vm_pressure_klist_unlock(); } else { vm_pressure_klist_lock(); vm_pressure_notification_without_levels(FALSE); vm_pressure_klist_unlock(); } return 0; } SYSCTL_PROC(_kern, OID_AUTO, memorypressure_manual_trigger, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED, 0, 0, &sysctl_memorypressure_manual_trigger, "I", ""); extern int memorystatus_purge_on_warning; extern int memorystatus_purge_on_urgent; extern int memorystatus_purge_on_critical; SYSCTL_INT(_kern, OID_AUTO, memorystatus_purge_on_warning, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_purge_on_warning, 0, ""); SYSCTL_INT(_kern, OID_AUTO, memorystatus_purge_on_urgent, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_purge_on_urgent, 0, ""); SYSCTL_INT(_kern, OID_AUTO, memorystatus_purge_on_critical, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_purge_on_critical, 0, ""); #endif /* VM_PRESSURE_EVENTS */ /* Return both allocated and actual size, since there's a race between allocation and list compilation */ static int memorystatus_get_priority_list(memorystatus_priority_entry_t **list_ptr, size_t *buffer_size, size_t *list_size, boolean_t size_only) { uint32_t list_count, i = 0; memorystatus_priority_entry_t *list_entry; proc_t p; list_count = memorystatus_list_count; *list_size = sizeof(memorystatus_priority_entry_t) * list_count; /* Just a size check? */ if (size_only) { return 0; } /* Otherwise, validate the size of the buffer */ if (*buffer_size < *list_size) { return EINVAL; } *list_ptr = (memorystatus_priority_entry_t*)kalloc(*list_size); if (!list_ptr) { return ENOMEM; } memset(*list_ptr, 0, *list_size); *buffer_size = *list_size; *list_size = 0; list_entry = *list_ptr; proc_list_lock(); p = memorystatus_get_first_proc_locked(&i, TRUE); while (p && (*list_size < *buffer_size)) { list_entry->pid = p->p_pid; list_entry->priority = p->p_memstat_effectivepriority; list_entry->user_data = p->p_memstat_userdata; #if LEGACY_HIWATER if (((p->p_memstat_state & P_MEMSTAT_MEMLIMIT_BACKGROUND) && (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND)) || (p->p_memstat_memlimit <= 0)) { task_get_phys_footprint_limit(p->task, &list_entry->limit); } else { list_entry->limit = p->p_memstat_memlimit; } #else task_get_phys_footprint_limit(p->task, &list_entry->limit); #endif list_entry->state = memorystatus_build_state(p); list_entry++; *list_size += sizeof(memorystatus_priority_entry_t); p = memorystatus_get_next_proc_locked(&i, p, TRUE); } proc_list_unlock(); MEMORYSTATUS_DEBUG(1, "memorystatus_get_priority_list: returning %lu for size\n", (unsigned long)*list_size); return 0; } static int memorystatus_cmd_get_priority_list(user_addr_t buffer, size_t buffer_size, int32_t *retval) { int error = EINVAL; boolean_t size_only; memorystatus_priority_entry_t *list = NULL; size_t list_size; size_only = ((buffer == USER_ADDR_NULL) ? TRUE: FALSE); error = memorystatus_get_priority_list(&list, &buffer_size, &list_size, size_only); if (error) { goto out; } if (!size_only) { error = copyout(list, buffer, list_size); } if (error == 0) { *retval = list_size; } out: if (list) { kfree(list, buffer_size); } return error; } #if CONFIG_JETSAM static void memorystatus_clear_errors(void) { proc_t p; unsigned int i = 0; KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CLEAR_ERRORS) | DBG_FUNC_START, 0, 0, 0, 0, 0); proc_list_lock(); p = memorystatus_get_first_proc_locked(&i, TRUE); while (p) { if (p->p_memstat_state & P_MEMSTAT_ERROR) { p->p_memstat_state &= ~P_MEMSTAT_ERROR; } p = memorystatus_get_next_proc_locked(&i, p, TRUE); } proc_list_unlock(); KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CLEAR_ERRORS) | DBG_FUNC_END, 0, 0, 0, 0, 0); } static void memorystatus_update_levels_locked(boolean_t critical_only) { memorystatus_available_pages_critical = memorystatus_available_pages_critical_base; /* * If there's an entry in the first bucket, we have idle processes. */ memstat_bucket_t *first_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; if (first_bucket->count) { memorystatus_available_pages_critical += memorystatus_available_pages_critical_idle_offset; if (memorystatus_available_pages_critical > memorystatus_available_pages_pressure ) { /* * The critical threshold must never exceed the pressure threshold */ memorystatus_available_pages_critical = memorystatus_available_pages_pressure; } } #if DEBUG || DEVELOPMENT if (memorystatus_jetsam_policy & kPolicyDiagnoseActive) { memorystatus_available_pages_critical += memorystatus_jetsam_policy_offset_pages_diagnostic; if (memorystatus_available_pages_critical > memorystatus_available_pages_pressure ) { /* * The critical threshold must never exceed the pressure threshold */ memorystatus_available_pages_critical = memorystatus_available_pages_pressure; } } #endif if (critical_only) { return; } #if VM_PRESSURE_EVENTS memorystatus_available_pages_pressure = (pressure_threshold_percentage / delta_percentage) * memorystatus_delta; #if DEBUG || DEVELOPMENT if (memorystatus_jetsam_policy & kPolicyDiagnoseActive) { memorystatus_available_pages_pressure += memorystatus_jetsam_policy_offset_pages_diagnostic; } #endif #endif } static int memorystatus_get_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) { size_t input_size = *snapshot_size; if (memorystatus_jetsam_snapshot_count > 0) { *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count)); } else { *snapshot_size = 0; } if (size_only) { return 0; } if (input_size < *snapshot_size) { return EINVAL; } *snapshot = memorystatus_jetsam_snapshot; MEMORYSTATUS_DEBUG(1, "memorystatus_snapshot: returning %ld for size\n", (long)*snapshot_size); return 0; } static int memorystatus_cmd_get_jetsam_snapshot(user_addr_t buffer, size_t buffer_size, int32_t *retval) { int error = EINVAL; boolean_t size_only; memorystatus_jetsam_snapshot_t *snapshot; size_only = ((buffer == USER_ADDR_NULL) ? TRUE : FALSE); error = memorystatus_get_snapshot(&snapshot, &buffer_size, size_only); if (error) { goto out; } /* Copy out and reset */ if (!size_only) { if ((error = copyout(snapshot, buffer, buffer_size)) == 0) { snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0; } } if (error == 0) { *retval = buffer_size; } out: return error; } /* * Routine: memorystatus_cmd_grp_set_properties * Purpose: Update properties for a group of processes. * * Supported Properties: * [priority] * Move each process out of its effective priority * band and into a new priority band. * Maintains relative order from lowest to highest priority. * In single band, maintains relative order from head to tail. * * eg: before [effectivepriority | pid] * [18 | p101 ] * [17 | p55, p67, p19 ] * [12 | p103 p10 ] * [ 7 | p25 ] * [ 0 | p71, p82, ] * * after [ new band | pid] * [ xxx | p71, p82, p25, p103, p10, p55, p67, p19, p101] * * Returns: 0 on success, else non-zero. * * Caveat: We know there is a race window regarding recycled pids. * A process could be killed before the kernel can act on it here. * If a pid cannot be found in any of the jetsam priority bands, * then we simply ignore it. No harm. * But, if the pid has been recycled then it could be an issue. * In that scenario, we might move an unsuspecting process to the new * priority band. It's not clear how the kernel can safeguard * against this, but it would be an extremely rare case anyway. * The caller of this api might avoid such race conditions by * ensuring that the processes passed in the pid list are suspended. */ /* This internal structure can expand when we add support for more properties */ typedef struct memorystatus_internal_properties { proc_t proc; int32_t priority; /* see memorytstatus_priority_entry_t : priority */ } memorystatus_internal_properties_t; static int memorystatus_cmd_grp_set_properties(int32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) { #pragma unused (flags) /* * We only handle setting priority * per process */ int error = 0; memorystatus_priority_entry_t *entries = NULL; uint32_t entry_count = 0; /* This will be the ordered proc list */ memorystatus_internal_properties_t *table = NULL; size_t table_size = 0; uint32_t table_count = 0; uint32_t i = 0; uint32_t bucket_index = 0; boolean_t head_insert; int32_t new_priority; proc_t p; /* Verify inputs */ if ((buffer == USER_ADDR_NULL) || (buffer_size == 0) || ((buffer_size % sizeof(memorystatus_priority_entry_t)) != 0)) { error = EINVAL; goto out; } entry_count = (buffer_size / sizeof(memorystatus_priority_entry_t)); if ((entries = (memorystatus_priority_entry_t *)kalloc(buffer_size)) == NULL) { error = ENOMEM; goto out; } KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_START, entry_count, 0, 0, 0, 0); if ((error = copyin(buffer, entries, buffer_size)) != 0) { goto out; } /* Verify sanity of input priorities */ for (i=0; i < entry_count; i++) { if (entries[i].priority == -1) { /* Use as shorthand for default priority */ entries[i].priority = JETSAM_PRIORITY_DEFAULT; } else if (entries[i].priority == JETSAM_PRIORITY_IDLE_DEFERRED) { /* JETSAM_PRIORITY_IDLE_DEFERRED is reserved for internal use; * if requested, adjust to JETSAM_PRIORITY_IDLE. */ entries[i].priority = JETSAM_PRIORITY_IDLE; } else if (entries[i].priority == JETSAM_PRIORITY_IDLE_HEAD) { /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle * queue */ /* Deal with this later */ } else if ((entries[i].priority < 0) || (entries[i].priority >= MEMSTAT_BUCKET_COUNT)) { /* Sanity check */ error = EINVAL; goto out; } } table_size = sizeof(memorystatus_internal_properties_t) * entry_count; if ( (table = (memorystatus_internal_properties_t *)kalloc(table_size)) == NULL) { error = ENOMEM; goto out; } memset(table, 0, table_size); /* * For each jetsam bucket entry, spin through the input property list. * When a matching pid is found, populate an adjacent table with the * appropriate proc pointer and new property values. * This traversal automatically preserves order from lowest * to highest priority. */ bucket_index=0; proc_list_lock(); /* Create the ordered table */ p = memorystatus_get_first_proc_locked(&bucket_index, TRUE); while (p && (table_count < entry_count)) { for (i=0; i < entry_count; i++ ) { if (p->p_pid == entries[i].pid) { /* Build the table data */ table[table_count].proc = p; table[table_count].priority = entries[i].priority; table_count++; break; } } p = memorystatus_get_next_proc_locked(&bucket_index, p, TRUE); } /* We now have ordered list of procs ready to move */ for (i=0; i < table_count; i++) { p = table[i].proc; assert(p != NULL); /* Allow head inserts -- but relative order is now */ if (table[i].priority == JETSAM_PRIORITY_IDLE_HEAD) { new_priority = JETSAM_PRIORITY_IDLE; head_insert = true; } else { new_priority = table[i].priority; head_insert = false; } /* Not allowed */ if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { continue; } /* * Take appropriate steps if moving proc out of the * JETSAM_PRIORITY_IDLE_DEFERRED band. */ if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE_DEFERRED) { memorystatus_invalidate_idle_demotion_locked(p, TRUE); } memorystatus_update_priority_locked(p, new_priority, head_insert); } proc_list_unlock(); /* * if (table_count != entry_count) * then some pids were not found in a jetsam band. * harmless but interesting... */ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_END, entry_count, table_count, 0, 0, 0); out: if (entries) kfree(entries, buffer_size); if (table) kfree(table, table_size); return (error); } /* * This routine is meant solely for the purpose of adjusting jetsam priorities and bands. * It is _not_ meant to be used for the setting of memory limits, especially, since we can't * tell if the memory limit being set is fatal or not. * * So the the last 5 args to the memorystatus_update() call below, related to memory limits, are all 0 or FALSE. */ static int memorystatus_cmd_set_priority_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) { const uint32_t MAX_ENTRY_COUNT = 2; /* Cap the entry count */ int error; uint32_t i; uint32_t entry_count; memorystatus_priority_properties_t *entries; /* Validate inputs */ if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size == 0)) { return EINVAL; } /* Make sure the buffer is a multiple of the entry size, and that an excessive size isn't specified */ entry_count = (buffer_size / sizeof(memorystatus_priority_properties_t)); if (((buffer_size % sizeof(memorystatus_priority_properties_t)) != 0) || (entry_count > MAX_ENTRY_COUNT)) { return EINVAL; } entries = (memorystatus_priority_properties_t *)kalloc(buffer_size); error = copyin(buffer, entries, buffer_size); for (i = 0; i < entry_count; i++) { proc_t p; if (error) { break; } p = proc_find(pid); if (!p) { error = ESRCH; break; } if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { error = EPERM; proc_rele(p); break; } error = memorystatus_update(p, entries[i].priority, entries[i].user_data, FALSE, FALSE, 0, 0, FALSE); proc_rele(p); } kfree(entries, buffer_size); return error; } static int memorystatus_cmd_get_pressure_status(int32_t *retval) { int error; /* Need privilege for check */ error = priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE, 0); if (error) { return (error); } /* Inherently racy, so it's not worth taking a lock here */ *retval = (kVMPressureNormal != memorystatus_vm_pressure_level) ? 1 : 0; return error; } /* * Every process, including a P_MEMSTAT_INTERNAL process (currently only pid 1), is allowed to set a HWM. */ static int memorystatus_cmd_set_jetsam_memory_limit(pid_t pid, int32_t high_water_mark, __unused int32_t *retval, boolean_t is_fatal_limit) { int error = 0; proc_t p = proc_find(pid); if (!p) { return ESRCH; } if (high_water_mark <= 0) { high_water_mark = -1; /* Disable */ } proc_list_lock(); p->p_memstat_memlimit = high_water_mark; if (memorystatus_highwater_enabled) { if (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_BACKGROUND) { memorystatus_update_priority_locked(p, p->p_memstat_effectivepriority, false); /* * The update priority call above takes care to set/reset the fatal memory limit state * IF the process is transitioning between foreground <-> background and has a background * memory limit. * Here, however, the process won't be doing any such transitions and so we explicitly tackle * the fatal limit state. */ is_fatal_limit = FALSE; } else { error = (task_set_phys_footprint_limit_internal(p->task, high_water_mark, NULL, TRUE) == 0) ? 0 : EINVAL; } } if (error == 0) { if (is_fatal_limit == TRUE) { p->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; } else { p->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; } } proc_list_unlock(); proc_rele(p); return error; } /* * Returns the jetsam priority (effective or requested) of the process * associated with this task. */ int proc_get_memstat_priority(proc_t p, boolean_t effective_priority) { if (p) { if (effective_priority) { return p->p_memstat_effectivepriority; } else { return p->p_memstat_requestedpriority; } } return 0; } #endif /* CONFIG_JETSAM */ int memorystatus_control(struct proc *p __unused, struct memorystatus_control_args *args, int *ret) { int error = EINVAL; #if !CONFIG_JETSAM #pragma unused(ret) #endif /* Root only for now */ if (!kauth_cred_issuser(kauth_cred_get())) { error = EPERM; goto out; } /* Sanity check */ if (args->buffersize > MEMORYSTATUS_BUFFERSIZE_MAX) { error = EINVAL; goto out; } switch (args->command) { case MEMORYSTATUS_CMD_GET_PRIORITY_LIST: error = memorystatus_cmd_get_priority_list(args->buffer, args->buffersize, ret); break; #if CONFIG_JETSAM case MEMORYSTATUS_CMD_SET_PRIORITY_PROPERTIES: error = memorystatus_cmd_set_priority_properties(args->pid, args->buffer, args->buffersize, ret); break; case MEMORYSTATUS_CMD_GRP_SET_PROPERTIES: error = memorystatus_cmd_grp_set_properties((int32_t)args->flags, args->buffer, args->buffersize, ret); break; case MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT: error = memorystatus_cmd_get_jetsam_snapshot(args->buffer, args->buffersize, ret); break; case MEMORYSTATUS_CMD_GET_PRESSURE_STATUS: error = memorystatus_cmd_get_pressure_status(ret); break; case MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK: error = memorystatus_cmd_set_jetsam_memory_limit(args->pid, (int32_t)args->flags, ret, FALSE); break; case MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT: error = memorystatus_cmd_set_jetsam_memory_limit(args->pid, (int32_t)args->flags, ret, TRUE); break; /* Test commands */ #if DEVELOPMENT || DEBUG case MEMORYSTATUS_CMD_TEST_JETSAM: error = memorystatus_kill_process_sync(args->pid, kMemorystatusKilled) ? 0 : EINVAL; break; case MEMORYSTATUS_CMD_SET_JETSAM_PANIC_BITS: error = memorystatus_cmd_set_panic_bits(args->buffer, args->buffersize); break; #endif /* DEVELOPMENT || DEBUG */ #endif /* CONFIG_JETSAM */ default: break; } out: return error; } static int filt_memorystatusattach(struct knote *kn) { kn->kn_flags |= EV_CLEAR; return memorystatus_knote_register(kn); } static void filt_memorystatusdetach(struct knote *kn) { memorystatus_knote_unregister(kn); } static int filt_memorystatus(struct knote *kn __unused, long hint) { if (hint) { switch (hint) { case kMemorystatusNoPressure: if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_NORMAL) { kn->kn_fflags |= NOTE_MEMORYSTATUS_PRESSURE_NORMAL; } break; case kMemorystatusPressure: if (memorystatus_vm_pressure_level == kVMPressureWarning || memorystatus_vm_pressure_level == kVMPressureUrgent) { if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_WARN) { kn->kn_fflags |= NOTE_MEMORYSTATUS_PRESSURE_WARN; } } else if (memorystatus_vm_pressure_level == kVMPressureCritical) { if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) { kn->kn_fflags |= NOTE_MEMORYSTATUS_PRESSURE_CRITICAL; } } break; case kMemorystatusLowSwap: if (kn->kn_sfflags & NOTE_MEMORYSTATUS_LOW_SWAP) { kn->kn_fflags |= NOTE_MEMORYSTATUS_LOW_SWAP; } break; default: break; } } return (kn->kn_fflags != 0); } static void memorystatus_klist_lock(void) { lck_mtx_lock(&memorystatus_klist_mutex); } static void memorystatus_klist_unlock(void) { lck_mtx_unlock(&memorystatus_klist_mutex); } void memorystatus_kevent_init(lck_grp_t *grp, lck_attr_t *attr) { lck_mtx_init(&memorystatus_klist_mutex, grp, attr); klist_init(&memorystatus_klist); } int memorystatus_knote_register(struct knote *kn) { int error = 0; memorystatus_klist_lock(); if (kn->kn_sfflags & (NOTE_MEMORYSTATUS_PRESSURE_NORMAL | NOTE_MEMORYSTATUS_PRESSURE_WARN | NOTE_MEMORYSTATUS_PRESSURE_CRITICAL | NOTE_MEMORYSTATUS_LOW_SWAP)) { if (kn->kn_sfflags & NOTE_MEMORYSTATUS_LOW_SWAP) { error = suser(kauth_cred_get(), 0); } if (error == 0) { KNOTE_ATTACH(&memorystatus_klist, kn); } } else { error = ENOTSUP; } memorystatus_klist_unlock(); return error; } void memorystatus_knote_unregister(struct knote *kn __unused) { memorystatus_klist_lock(); KNOTE_DETACH(&memorystatus_klist, kn); memorystatus_klist_unlock(); } #if 0 #if CONFIG_JETSAM && VM_PRESSURE_EVENTS static boolean_t memorystatus_issue_pressure_kevent(boolean_t pressured) { memorystatus_klist_lock(); KNOTE(&memorystatus_klist, pressured ? kMemorystatusPressure : kMemorystatusNoPressure); memorystatus_klist_unlock(); return TRUE; } #endif /* CONFIG_JETSAM && VM_PRESSURE_EVENTS */ #endif /* 0 */