/* * Copyright (C) 1999 Lars Knoll (knoll@kde.org) * (C) 1999 Antti Koivisto (koivisto@kde.org) * (C) 2005 Allan Sandfeld Jensen (kde@carewolf.com) * (C) 2005, 2006 Samuel Weinig (sam.weinig@gmail.com) * Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #include "config.h" #include "RenderBox.h" #include "Chrome.h" #include "ChromeClient.h" #include "Document.h" #include "EventHandler.h" #include "FloatQuad.h" #include "FloatRoundedRect.h" #include "Frame.h" #include "FrameView.h" #include "GraphicsContext.h" #include "HTMLElement.h" #include "HTMLFrameOwnerElement.h" #include "HTMLInputElement.h" #include "HTMLNames.h" #include "HTMLTextAreaElement.h" #include "HitTestResult.h" #include "InlineElementBox.h" #include "Page.h" #include "PaintInfo.h" #include "RenderBoxRegionInfo.h" #include "RenderFlexibleBox.h" #include "RenderGeometryMap.h" #include "RenderInline.h" #include "RenderIterator.h" #include "RenderLayer.h" #include "RenderLayerCompositor.h" #include "RenderNamedFlowFragment.h" #include "RenderNamedFlowThread.h" #include "RenderTableCell.h" #include "RenderTheme.h" #include "RenderView.h" #include "TransformState.h" #include "htmlediting.h" #include #include #include #if PLATFORM(IOS) #include "Settings.h" #endif namespace WebCore { struct SameSizeAsRenderBox : public RenderBoxModelObject { virtual ~SameSizeAsRenderBox() { } LayoutRect frameRect; LayoutBoxExtent marginBox; LayoutUnit preferredLogicalWidths[2]; void* pointers[2]; }; COMPILE_ASSERT(sizeof(RenderBox) == sizeof(SameSizeAsRenderBox), RenderBox_should_stay_small); using namespace HTMLNames; // Used by flexible boxes when flexing this element and by table cells. typedef WTF::HashMap OverrideSizeMap; static OverrideSizeMap* gOverrideHeightMap = 0; static OverrideSizeMap* gOverrideWidthMap = 0; #if ENABLE(CSS_GRID_LAYOUT) // Used by grid elements to properly size their grid items. static OverrideSizeMap* gOverrideContainingBlockLogicalHeightMap = nullptr; static OverrideSizeMap* gOverrideContainingBlockLogicalWidthMap = nullptr; #endif // Size of border belt for autoscroll. When mouse pointer in border belt, // autoscroll is started. static const int autoscrollBeltSize = 20; static const unsigned backgroundObscurationTestMaxDepth = 4; bool RenderBox::s_hadOverflowClip = false; static bool skipBodyBackground(const RenderBox* bodyElementRenderer) { ASSERT(bodyElementRenderer->isBody()); // The only paints its background if the root element has defined a background independent of the body, // or if the 's parent is not the document element's renderer (e.g. inside SVG foreignObject). auto documentElementRenderer = bodyElementRenderer->document().documentElement()->renderer(); return documentElementRenderer && !documentElementRenderer->hasBackground() && (documentElementRenderer == bodyElementRenderer->parent()); } RenderBox::RenderBox(Element& element, PassRef style, unsigned baseTypeFlags) : RenderBoxModelObject(element, WTF::move(style), baseTypeFlags) , m_minPreferredLogicalWidth(-1) , m_maxPreferredLogicalWidth(-1) , m_inlineBoxWrapper(0) { setIsBox(); } RenderBox::RenderBox(Document& document, PassRef style, unsigned baseTypeFlags) : RenderBoxModelObject(document, WTF::move(style), baseTypeFlags) , m_minPreferredLogicalWidth(-1) , m_maxPreferredLogicalWidth(-1) , m_inlineBoxWrapper(0) { setIsBox(); } RenderBox::~RenderBox() { view().unscheduleLazyRepaint(*this); if (hasControlStatesForRenderer(this)) removeControlStatesForRenderer(this); } RenderRegion* RenderBox::clampToStartAndEndRegions(RenderRegion* region) const { RenderFlowThread* flowThread = flowThreadContainingBlock(); ASSERT(isRenderView() || (region && flowThread)); if (isRenderView()) return region; // We need to clamp to the block, since we want any lines or blocks that overflow out of the // logical top or logical bottom of the block to size as though the border box in the first and // last regions extended infinitely. Otherwise the lines are going to size according to the regions // they overflow into, which makes no sense when this block doesn't exist in |region| at all. RenderRegion* startRegion = nullptr; RenderRegion* endRegion = nullptr; if (!flowThread->getRegionRangeForBox(this, startRegion, endRegion)) return region; if (region->logicalTopForFlowThreadContent() < startRegion->logicalTopForFlowThreadContent()) return startRegion; if (region->logicalTopForFlowThreadContent() > endRegion->logicalTopForFlowThreadContent()) return endRegion; return region; } bool RenderBox::hasRegionRangeInFlowThread() const { RenderFlowThread* flowThread = flowThreadContainingBlock(); if (!flowThread || !flowThread->hasValidRegionInfo()) return false; return flowThread->hasCachedRegionRangeForBox(this); } LayoutRect RenderBox::clientBoxRectInRegion(RenderRegion* region) const { if (!region) return clientBoxRect(); LayoutRect clientBox = borderBoxRectInRegion(region); clientBox.setLocation(clientBox.location() + LayoutSize(borderLeft(), borderTop())); clientBox.setSize(clientBox.size() - LayoutSize(borderLeft() + borderRight() + verticalScrollbarWidth(), borderTop() + borderBottom() + horizontalScrollbarHeight())); return clientBox; } LayoutRect RenderBox::borderBoxRectInRegion(RenderRegion* region, RenderBoxRegionInfoFlags cacheFlag) const { if (!region) return borderBoxRect(); RenderFlowThread* flowThread = flowThreadContainingBlock(); if (!flowThread) return borderBoxRect(); RenderRegion* startRegion = nullptr; RenderRegion* endRegion = nullptr; if (!flowThread->getRegionRangeForBox(this, startRegion, endRegion)) { // FIXME: In a perfect world this condition should never happen. return borderBoxRect(); } ASSERT(flowThread->regionInRange(region, startRegion, endRegion)); // Compute the logical width and placement in this region. RenderBoxRegionInfo* boxInfo = renderBoxRegionInfo(region, cacheFlag); if (!boxInfo) return borderBoxRect(); // We have cached insets. LayoutUnit logicalWidth = boxInfo->logicalWidth(); LayoutUnit logicalLeft = boxInfo->logicalLeft(); // Now apply the parent inset since it is cumulative whenever anything in the containing block chain shifts. // FIXME: Doesn't work right with perpendicular writing modes. const RenderBlock* currentBox = containingBlock(); RenderBoxRegionInfo* currentBoxInfo = currentBox->renderBoxRegionInfo(region); while (currentBoxInfo && currentBoxInfo->isShifted()) { if (currentBox->style().direction() == LTR) logicalLeft += currentBoxInfo->logicalLeft(); else logicalLeft -= (currentBox->logicalWidth() - currentBoxInfo->logicalWidth()) - currentBoxInfo->logicalLeft(); currentBox = currentBox->containingBlock(); region = currentBox->clampToStartAndEndRegions(region); currentBoxInfo = currentBox->renderBoxRegionInfo(region); } if (cacheFlag == DoNotCacheRenderBoxRegionInfo) delete boxInfo; if (isHorizontalWritingMode()) return LayoutRect(logicalLeft, 0, logicalWidth, height()); return LayoutRect(0, logicalLeft, width(), logicalWidth); } void RenderBox::willBeDestroyed() { if (frame().eventHandler().autoscrollRenderer() == this) frame().eventHandler().stopAutoscrollTimer(true); clearOverrideSize(); #if ENABLE(CSS_GRID_LAYOUT) clearContainingBlockOverrideSize(); #endif RenderBlock::removePercentHeightDescendantIfNeeded(*this); #if ENABLE(CSS_SHAPES) ShapeOutsideInfo::removeInfo(*this); #endif RenderBoxModelObject::willBeDestroyed(); } RenderBlockFlow* RenderBox::outermostBlockContainingFloatingObject() { ASSERT(isFloating()); RenderBlockFlow* parentBlock = nullptr; for (auto& ancestor : ancestorsOfType(*this)) { if (ancestor.isRenderView()) break; if (!parentBlock || ancestor.containsFloat(*this)) parentBlock = &ancestor; } return parentBlock; } void RenderBox::removeFloatingOrPositionedChildFromBlockLists() { ASSERT(isFloatingOrOutOfFlowPositioned()); if (documentBeingDestroyed()) return; if (isFloating()) { if (RenderBlockFlow* parentBlock = outermostBlockContainingFloatingObject()) { parentBlock->markSiblingsWithFloatsForLayout(this); parentBlock->markAllDescendantsWithFloatsForLayout(this, false); } } if (isOutOfFlowPositioned()) RenderBlock::removePositionedObject(*this); } void RenderBox::styleWillChange(StyleDifference diff, const RenderStyle& newStyle) { s_hadOverflowClip = hasOverflowClip(); const RenderStyle* oldStyle = hasInitializedStyle() ? &style() : nullptr; if (oldStyle) { // The background of the root element or the body element could propagate up to // the canvas. Issue full repaint, when our style changes substantially. if (diff >= StyleDifferenceRepaint && (isRoot() || isBody())) { view().repaintRootContents(); if (oldStyle->hasEntirelyFixedBackground() != newStyle.hasEntirelyFixedBackground()) view().compositor().rootFixedBackgroundsChanged(); } // When a layout hint happens and an object's position style changes, we have to do a layout // to dirty the render tree using the old position value now. if (diff == StyleDifferenceLayout && parent() && oldStyle->position() != newStyle.position()) { markContainingBlocksForLayout(); if (oldStyle->position() == StaticPosition) repaint(); else if (newStyle.hasOutOfFlowPosition()) parent()->setChildNeedsLayout(); if (isFloating() && !isOutOfFlowPositioned() && newStyle.hasOutOfFlowPosition()) removeFloatingOrPositionedChildFromBlockLists(); } } else if (isBody()) view().repaintRootContents(); RenderBoxModelObject::styleWillChange(diff, newStyle); } void RenderBox::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle) { // Horizontal writing mode definition is updated in RenderBoxModelObject::updateFromStyle, // (as part of the RenderBoxModelObject::styleDidChange call below). So, we can safely cache the horizontal // writing mode value before style change here. bool oldHorizontalWritingMode = isHorizontalWritingMode(); RenderBoxModelObject::styleDidChange(diff, oldStyle); const RenderStyle& newStyle = style(); if (needsLayout() && oldStyle) { RenderBlock::removePercentHeightDescendantIfNeeded(*this); // Normally we can do optimized positioning layout for absolute/fixed positioned objects. There is one special case, however, which is // when the positioned object's margin-before is changed. In this case the parent has to get a layout in order to run margin collapsing // to determine the new static position. if (isOutOfFlowPositioned() && newStyle.hasStaticBlockPosition(isHorizontalWritingMode()) && oldStyle->marginBefore() != newStyle.marginBefore() && parent() && !parent()->normalChildNeedsLayout()) parent()->setChildNeedsLayout(); } if (RenderBlock::hasPercentHeightContainerMap() && firstChild() && oldHorizontalWritingMode != isHorizontalWritingMode()) RenderBlock::clearPercentHeightDescendantsFrom(*this); // If our zoom factor changes and we have a defined scrollLeft/Top, we need to adjust that value into the // new zoomed coordinate space. if (hasOverflowClip() && oldStyle && oldStyle->effectiveZoom() != newStyle.effectiveZoom()) { if (int left = layer()->scrollXOffset()) { left = (left / oldStyle->effectiveZoom()) * newStyle.effectiveZoom(); layer()->scrollToXOffset(left); } if (int top = layer()->scrollYOffset()) { top = (top / oldStyle->effectiveZoom()) * newStyle.effectiveZoom(); layer()->scrollToYOffset(top); } } // Our opaqueness might have changed without triggering layout. if (diff >= StyleDifferenceRepaint && diff <= StyleDifferenceRepaintLayer) { auto parentToInvalidate = parent(); for (unsigned i = 0; i < backgroundObscurationTestMaxDepth && parentToInvalidate; ++i) { parentToInvalidate->invalidateBackgroundObscurationStatus(); parentToInvalidate = parentToInvalidate->parent(); } } bool isBodyRenderer = isBody(); bool isRootRenderer = isRoot(); // Set the text color if we're the body. if (isBodyRenderer) document().setTextColor(newStyle.visitedDependentColor(CSSPropertyColor)); if (isRootRenderer || isBodyRenderer) { // Propagate the new writing mode and direction up to the RenderView. RenderStyle& viewStyle = view().style(); bool viewChangedWritingMode = false; bool rootStyleChanged = false; bool viewStyleChanged = false; RenderObject* rootRenderer = isBodyRenderer ? document().documentElement()->renderer() : nullptr; if (viewStyle.direction() != newStyle.direction() && (isRootRenderer || !document().directionSetOnDocumentElement())) { viewStyle.setDirection(newStyle.direction()); viewStyleChanged = true; if (isBodyRenderer) { rootRenderer->style().setDirection(newStyle.direction()); rootStyleChanged = true; } setNeedsLayoutAndPrefWidthsRecalc(); } if (viewStyle.writingMode() != newStyle.writingMode() && (isRootRenderer || !document().writingModeSetOnDocumentElement())) { viewStyle.setWritingMode(newStyle.writingMode()); viewChangedWritingMode = true; viewStyleChanged = true; view().setHorizontalWritingMode(newStyle.isHorizontalWritingMode()); view().markAllDescendantsWithFloatsForLayout(); if (isBodyRenderer) { rootStyleChanged = true; rootRenderer->style().setWritingMode(newStyle.writingMode()); rootRenderer->setHorizontalWritingMode(newStyle.isHorizontalWritingMode()); } setNeedsLayoutAndPrefWidthsRecalc(); } view().frameView().recalculateScrollbarOverlayStyle(); const Pagination& pagination = view().frameView().pagination(); if (viewChangedWritingMode && pagination.mode != Pagination::Unpaginated) { viewStyle.setColumnStylesFromPaginationMode(pagination.mode); if (view().multiColumnFlowThread()) view().updateColumnProgressionFromStyle(&viewStyle); } if (viewStyleChanged && view().multiColumnFlowThread()) view().updateStylesForColumnChildren(); if (rootStyleChanged && rootRenderer && rootRenderer->isRenderBlockFlow() && toRenderBlockFlow(rootRenderer)->multiColumnFlowThread()) toRenderBlockFlow(rootRenderer)->updateStylesForColumnChildren(); } #if ENABLE(CSS_SHAPES) if ((oldStyle && oldStyle->shapeOutside()) || style().shapeOutside()) updateShapeOutsideInfoAfterStyleChange(style(), oldStyle); #endif } #if ENABLE(CSS_SHAPES) void RenderBox::updateShapeOutsideInfoAfterStyleChange(const RenderStyle& style, const RenderStyle* oldStyle) { const ShapeValue* shapeOutside = style.shapeOutside(); const ShapeValue* oldShapeOutside = oldStyle ? oldStyle->shapeOutside() : nullptr; Length shapeMargin = style.shapeMargin(); Length oldShapeMargin = oldStyle ? oldStyle->shapeMargin() : RenderStyle::initialShapeMargin(); float shapeImageThreshold = style.shapeImageThreshold(); float oldShapeImageThreshold = oldStyle ? oldStyle->shapeImageThreshold() : RenderStyle::initialShapeImageThreshold(); // FIXME: A future optimization would do a deep comparison for equality. (bug 100811) if (shapeOutside == oldShapeOutside && shapeMargin == oldShapeMargin && shapeImageThreshold == oldShapeImageThreshold) return; if (!shapeOutside) ShapeOutsideInfo::removeInfo(*this); else ShapeOutsideInfo::ensureInfo(*this).markShapeAsDirty(); if (shapeOutside || shapeOutside != oldShapeOutside) markShapeOutsideDependentsForLayout(); } #endif void RenderBox::updateFromStyle() { RenderBoxModelObject::updateFromStyle(); const RenderStyle& styleToUse = style(); bool isRootObject = isRoot(); bool isViewObject = isRenderView(); // The root and the RenderView always paint their backgrounds/borders. if (isRootObject || isViewObject) setHasBoxDecorations(true); setFloating(!isOutOfFlowPositioned() && styleToUse.isFloating()); // We also handle and , whose overflow applies to the viewport. if (styleToUse.overflowX() != OVISIBLE && !isRootObject && isRenderBlock()) { bool boxHasOverflowClip = true; if (isBody()) { // Overflow on the body can propagate to the viewport under the following conditions. // (1) The root element is . // (2) We are the primary (can be checked by looking at document.body). // (3) The root element has visible overflow. if (document().documentElement()->hasTagName(htmlTag) && document().body() == element() && document().documentElement()->renderer()->style().overflowX() == OVISIBLE) { boxHasOverflowClip = false; } } // Check for overflow clip. // It's sufficient to just check one direction, since it's illegal to have visible on only one overflow value. if (boxHasOverflowClip) { if (!s_hadOverflowClip) // Erase the overflow repaint(); setHasOverflowClip(); } } setHasTransform(styleToUse.hasTransformRelatedProperty()); setHasReflection(styleToUse.boxReflect()); } void RenderBox::layout() { StackStats::LayoutCheckPoint layoutCheckPoint; ASSERT(needsLayout()); RenderObject* child = firstChild(); if (!child) { clearNeedsLayout(); return; } LayoutStateMaintainer statePusher(view(), *this, locationOffset(), style().isFlippedBlocksWritingMode()); while (child) { if (child->needsLayout()) toRenderElement(child)->layout(); ASSERT(!child->needsLayout()); child = child->nextSibling(); } statePusher.pop(); invalidateBackgroundObscurationStatus(); clearNeedsLayout(); } // More IE extensions. clientWidth and clientHeight represent the interior of an object // excluding border and scrollbar. LayoutUnit RenderBox::clientWidth() const { return width() - borderLeft() - borderRight() - verticalScrollbarWidth(); } LayoutUnit RenderBox::clientHeight() const { return height() - borderTop() - borderBottom() - horizontalScrollbarHeight(); } int RenderBox::pixelSnappedClientWidth() const { return snapSizeToPixel(clientWidth(), x() + clientLeft()); } int RenderBox::pixelSnappedClientHeight() const { return snapSizeToPixel(clientHeight(), y() + clientTop()); } int RenderBox::pixelSnappedOffsetWidth() const { return snapSizeToPixel(offsetWidth(), x() + clientLeft()); } int RenderBox::pixelSnappedOffsetHeight() const { return snapSizeToPixel(offsetHeight(), y() + clientTop()); } int RenderBox::scrollWidth() const { if (hasOverflowClip()) return layer()->scrollWidth(); // For objects with visible overflow, this matches IE. // FIXME: Need to work right with writing modes. if (style().isLeftToRightDirection()) return snapSizeToPixel(std::max(clientWidth(), layoutOverflowRect().maxX() - borderLeft()), x() + clientLeft()); return clientWidth() - std::min(0, layoutOverflowRect().x() - borderLeft()); } int RenderBox::scrollHeight() const { if (hasOverflowClip()) return layer()->scrollHeight(); // For objects with visible overflow, this matches IE. // FIXME: Need to work right with writing modes. return snapSizeToPixel(std::max(clientHeight(), layoutOverflowRect().maxY() - borderTop()), y() + clientTop()); } int RenderBox::scrollLeft() const { return hasOverflowClip() ? layer()->scrollXOffset() : 0; } int RenderBox::scrollTop() const { return hasOverflowClip() ? layer()->scrollYOffset() : 0; } void RenderBox::setScrollLeft(int newLeft) { if (hasOverflowClip()) layer()->scrollToXOffset(newLeft, RenderLayer::ScrollOffsetClamped); } void RenderBox::setScrollTop(int newTop) { if (hasOverflowClip()) layer()->scrollToYOffset(newTop, RenderLayer::ScrollOffsetClamped); } void RenderBox::absoluteRects(Vector& rects, const LayoutPoint& accumulatedOffset) const { rects.append(pixelSnappedIntRect(accumulatedOffset, size())); } void RenderBox::absoluteQuads(Vector& quads, bool* wasFixed) const { FloatRect localRect(0, 0, width(), height()); RenderFlowThread* flowThread = flowThreadContainingBlock(); if (flowThread && flowThread->absoluteQuadsForBox(quads, wasFixed, this, localRect.y(), localRect.maxY())) return; quads.append(localToAbsoluteQuad(localRect, 0 /* mode */, wasFixed)); } void RenderBox::updateLayerTransform() { // Transform-origin depends on box size, so we need to update the layer transform after layout. if (hasLayer()) layer()->updateTransform(); } LayoutUnit RenderBox::constrainLogicalWidthInRegionByMinMax(LayoutUnit logicalWidth, LayoutUnit availableWidth, RenderBlock* cb, RenderRegion* region) const { const RenderStyle& styleToUse = style(); if (!styleToUse.logicalMaxWidth().isUndefined()) logicalWidth = std::min(logicalWidth, computeLogicalWidthInRegionUsing(MaxSize, styleToUse.logicalMaxWidth(), availableWidth, cb, region)); return std::max(logicalWidth, computeLogicalWidthInRegionUsing(MinSize, styleToUse.logicalMinWidth(), availableWidth, cb, region)); } LayoutUnit RenderBox::constrainLogicalHeightByMinMax(LayoutUnit logicalHeight) const { const RenderStyle& styleToUse = style(); if (!styleToUse.logicalMaxHeight().isUndefined()) { LayoutUnit maxH = computeLogicalHeightUsing(styleToUse.logicalMaxHeight()); if (maxH != -1) logicalHeight = std::min(logicalHeight, maxH); } return std::max(logicalHeight, computeLogicalHeightUsing(styleToUse.logicalMinHeight())); } LayoutUnit RenderBox::constrainContentBoxLogicalHeightByMinMax(LayoutUnit logicalHeight) const { const RenderStyle& styleToUse = style(); if (!styleToUse.logicalMaxHeight().isUndefined()) { LayoutUnit maxH = computeContentLogicalHeight(styleToUse.logicalMaxHeight()); if (maxH != -1) logicalHeight = std::min(logicalHeight, maxH); } return std::max(logicalHeight, computeContentLogicalHeight(styleToUse.logicalMinHeight())); } RoundedRect::Radii RenderBox::borderRadii() const { RenderStyle& style = this->style(); LayoutRect bounds = frameRect(); unsigned borderLeft = style.borderLeftWidth(); unsigned borderTop = style.borderTopWidth(); bounds.moveBy(LayoutPoint(borderLeft, borderTop)); bounds.contract(borderLeft + style.borderRightWidth(), borderTop + style.borderBottomWidth()); return style.getRoundedBorderFor(bounds).radii(); } IntRect RenderBox::absoluteContentBox() const { // This is wrong with transforms and flipped writing modes. IntRect rect = pixelSnappedIntRect(contentBoxRect()); FloatPoint absPos = localToAbsolute(); rect.move(absPos.x(), absPos.y()); return rect; } FloatQuad RenderBox::absoluteContentQuad() const { LayoutRect rect = contentBoxRect(); return localToAbsoluteQuad(FloatRect(rect)); } LayoutRect RenderBox::outlineBoundsForRepaint(const RenderLayerModelObject* repaintContainer, const RenderGeometryMap* geometryMap) const { LayoutRect box = borderBoundingBox(); adjustRectForOutlineAndShadow(box); if (repaintContainer != this) { FloatQuad containerRelativeQuad; if (geometryMap) containerRelativeQuad = geometryMap->mapToContainer(box, repaintContainer); else containerRelativeQuad = localToContainerQuad(FloatRect(box), repaintContainer); box = LayoutRect(containerRelativeQuad.boundingBox()); } // FIXME: layoutDelta needs to be applied in parts before/after transforms and // repaint containers. https://bugs.webkit.org/show_bug.cgi?id=23308 box.move(view().layoutDelta()); return LayoutRect(pixelSnappedForPainting(box, document().deviceScaleFactor())); } void RenderBox::addFocusRingRects(Vector& rects, const LayoutPoint& additionalOffset, const RenderLayerModelObject*) { if (!size().isEmpty()) rects.append(pixelSnappedIntRect(additionalOffset, size())); } LayoutRect RenderBox::reflectionBox() const { LayoutRect result; if (!style().boxReflect()) return result; LayoutRect box = borderBoxRect(); result = box; switch (style().boxReflect()->direction()) { case ReflectionBelow: result.move(0, box.height() + reflectionOffset()); break; case ReflectionAbove: result.move(0, -box.height() - reflectionOffset()); break; case ReflectionLeft: result.move(-box.width() - reflectionOffset(), 0); break; case ReflectionRight: result.move(box.width() + reflectionOffset(), 0); break; } return result; } int RenderBox::reflectionOffset() const { if (!style().boxReflect()) return 0; if (style().boxReflect()->direction() == ReflectionLeft || style().boxReflect()->direction() == ReflectionRight) return valueForLength(style().boxReflect()->offset(), borderBoxRect().width()); return valueForLength(style().boxReflect()->offset(), borderBoxRect().height()); } LayoutRect RenderBox::reflectedRect(const LayoutRect& r) const { if (!style().boxReflect()) return LayoutRect(); LayoutRect box = borderBoxRect(); LayoutRect result = r; switch (style().boxReflect()->direction()) { case ReflectionBelow: result.setY(box.maxY() + reflectionOffset() + (box.maxY() - r.maxY())); break; case ReflectionAbove: result.setY(box.y() - reflectionOffset() - box.height() + (box.maxY() - r.maxY())); break; case ReflectionLeft: result.setX(box.x() - reflectionOffset() - box.width() + (box.maxX() - r.maxX())); break; case ReflectionRight: result.setX(box.maxX() + reflectionOffset() + (box.maxX() - r.maxX())); break; } return result; } bool RenderBox::fixedElementLaysOutRelativeToFrame(const FrameView& frameView) const { return style().position() == FixedPosition && container()->isRenderView() && frameView.fixedElementsLayoutRelativeToFrame(); } bool RenderBox::includeVerticalScrollbarSize() const { return hasOverflowClip() && !layer()->hasOverlayScrollbars() && (style().overflowY() == OSCROLL || style().overflowY() == OAUTO); } bool RenderBox::includeHorizontalScrollbarSize() const { return hasOverflowClip() && !layer()->hasOverlayScrollbars() && (style().overflowX() == OSCROLL || style().overflowX() == OAUTO); } int RenderBox::verticalScrollbarWidth() const { return includeVerticalScrollbarSize() ? layer()->verticalScrollbarWidth() : 0; } int RenderBox::horizontalScrollbarHeight() const { return includeHorizontalScrollbarSize() ? layer()->horizontalScrollbarHeight() : 0; } int RenderBox::instrinsicScrollbarLogicalWidth() const { if (!hasOverflowClip()) return 0; if (isHorizontalWritingMode() && style().overflowY() == OSCROLL) { ASSERT(layer()->hasVerticalScrollbar()); return verticalScrollbarWidth(); } if (!isHorizontalWritingMode() && style().overflowX() == OSCROLL) { ASSERT(layer()->hasHorizontalScrollbar()); return horizontalScrollbarHeight(); } return 0; } bool RenderBox::scrollLayer(ScrollDirection direction, ScrollGranularity granularity, float multiplier, Element** stopElement) { RenderLayer* boxLayer = layer(); if (boxLayer && boxLayer->scroll(direction, granularity, multiplier)) { if (stopElement) *stopElement = element(); return true; } return false; } bool RenderBox::scroll(ScrollDirection direction, ScrollGranularity granularity, float multiplier, Element** stopElement, RenderBox* startBox, const IntPoint& wheelEventAbsolutePoint) { if (scrollLayer(direction, granularity, multiplier, stopElement)) return true; if (stopElement && *stopElement && *stopElement == element()) return true; RenderBlock* nextScrollBlock = containingBlock(); if (nextScrollBlock && nextScrollBlock->isRenderNamedFlowThread()) { ASSERT(startBox); nextScrollBlock = toRenderNamedFlowThread(nextScrollBlock)->fragmentFromAbsolutePointAndBox(wheelEventAbsolutePoint, *startBox); } if (nextScrollBlock && !nextScrollBlock->isRenderView()) return nextScrollBlock->scroll(direction, granularity, multiplier, stopElement, startBox, wheelEventAbsolutePoint); return false; } bool RenderBox::logicalScroll(ScrollLogicalDirection direction, ScrollGranularity granularity, float multiplier, Element** stopElement) { bool scrolled = false; RenderLayer* l = layer(); if (l) { #if PLATFORM(COCOA) // On Mac only we reset the inline direction position when doing a document scroll (e.g., hitting Home/End). if (granularity == ScrollByDocument) scrolled = l->scroll(logicalToPhysical(ScrollInlineDirectionBackward, isHorizontalWritingMode(), style().isFlippedBlocksWritingMode()), ScrollByDocument, multiplier); #endif if (l->scroll(logicalToPhysical(direction, isHorizontalWritingMode(), style().isFlippedBlocksWritingMode()), granularity, multiplier)) scrolled = true; if (scrolled) { if (stopElement) *stopElement = element(); return true; } } if (stopElement && *stopElement && *stopElement == element()) return true; RenderBlock* b = containingBlock(); if (b && !b->isRenderView()) return b->logicalScroll(direction, granularity, multiplier, stopElement); return false; } bool RenderBox::canBeScrolledAndHasScrollableArea() const { return canBeProgramaticallyScrolled() && (scrollHeight() != clientHeight() || scrollWidth() != clientWidth()); } bool RenderBox::canBeProgramaticallyScrolled() const { if (isRenderView()) return true; if (!hasOverflowClip()) return false; bool hasScrollableOverflow = hasScrollableOverflowX() || hasScrollableOverflowY(); if (scrollsOverflow() && hasScrollableOverflow) return true; return element() && element()->hasEditableStyle(); } bool RenderBox::usesCompositedScrolling() const { return hasOverflowClip() && hasLayer() && layer()->usesCompositedScrolling(); } void RenderBox::autoscroll(const IntPoint& position) { if (layer()) layer()->autoscroll(position); } // There are two kinds of renderer that can autoscroll. bool RenderBox::canAutoscroll() const { if (isRenderView()) return view().frameView().isScrollable(); // Check for a box that can be scrolled in its own right. if (canBeScrolledAndHasScrollableArea()) return true; return false; } // If specified point is in border belt, returned offset denotes direction of // scrolling. IntSize RenderBox::calculateAutoscrollDirection(const IntPoint& windowPoint) const { IntRect box(absoluteBoundingBoxRect()); box.move(view().frameView().scrollOffset()); IntRect windowBox = view().frameView().contentsToWindow(box); IntPoint windowAutoscrollPoint = windowPoint; if (windowAutoscrollPoint.x() < windowBox.x() + autoscrollBeltSize) windowAutoscrollPoint.move(-autoscrollBeltSize, 0); else if (windowAutoscrollPoint.x() > windowBox.maxX() - autoscrollBeltSize) windowAutoscrollPoint.move(autoscrollBeltSize, 0); if (windowAutoscrollPoint.y() < windowBox.y() + autoscrollBeltSize) windowAutoscrollPoint.move(0, -autoscrollBeltSize); else if (windowAutoscrollPoint.y() > windowBox.maxY() - autoscrollBeltSize) windowAutoscrollPoint.move(0, autoscrollBeltSize); return windowAutoscrollPoint - windowPoint; } RenderBox* RenderBox::findAutoscrollable(RenderObject* renderer) { while (renderer && !(renderer->isBox() && toRenderBox(renderer)->canAutoscroll())) { if (renderer->isRenderView() && renderer->document().ownerElement()) renderer = renderer->document().ownerElement()->renderer(); else renderer = renderer->parent(); } return renderer && renderer->isBox() ? toRenderBox(renderer) : 0; } void RenderBox::panScroll(const IntPoint& source) { if (layer()) layer()->panScrollFromPoint(source); } bool RenderBox::needsPreferredWidthsRecalculation() const { return style().paddingStart().isPercent() || style().paddingEnd().isPercent(); } IntSize RenderBox::scrolledContentOffset() const { if (!hasOverflowClip()) return IntSize(); ASSERT(hasLayer()); return layer()->scrolledContentOffset(); } LayoutSize RenderBox::cachedSizeForOverflowClip() const { ASSERT(hasOverflowClip()); ASSERT(hasLayer()); return layer()->size(); } void RenderBox::applyCachedClipAndScrollOffsetForRepaint(LayoutRect& paintRect) const { flipForWritingMode(paintRect); paintRect.move(-scrolledContentOffset()); // For overflow:auto/scroll/hidden. // Do not clip scroll layer contents to reduce the number of repaints while scrolling. if (usesCompositedScrolling()) { flipForWritingMode(paintRect); return; } // height() is inaccurate if we're in the middle of a layout of this RenderBox, so use the // layer's size instead. Even if the layer's size is wrong, the layer itself will repaint // anyway if its size does change. LayoutRect clipRect(LayoutPoint(), cachedSizeForOverflowClip()); paintRect = intersection(paintRect, clipRect); flipForWritingMode(paintRect); } void RenderBox::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const { minLogicalWidth = minPreferredLogicalWidth() - borderAndPaddingLogicalWidth(); maxLogicalWidth = maxPreferredLogicalWidth() - borderAndPaddingLogicalWidth(); } LayoutUnit RenderBox::minPreferredLogicalWidth() const { if (preferredLogicalWidthsDirty()) { #ifndef NDEBUG SetLayoutNeededForbiddenScope layoutForbiddenScope(const_cast(this)); #endif const_cast(this)->computePreferredLogicalWidths(); } return m_minPreferredLogicalWidth; } LayoutUnit RenderBox::maxPreferredLogicalWidth() const { if (preferredLogicalWidthsDirty()) { #ifndef NDEBUG SetLayoutNeededForbiddenScope layoutForbiddenScope(const_cast(this)); #endif const_cast(this)->computePreferredLogicalWidths(); } return m_maxPreferredLogicalWidth; } bool RenderBox::hasOverrideHeight() const { return gOverrideHeightMap && gOverrideHeightMap->contains(this); } bool RenderBox::hasOverrideWidth() const { return gOverrideWidthMap && gOverrideWidthMap->contains(this); } void RenderBox::setOverrideLogicalContentHeight(LayoutUnit height) { if (!gOverrideHeightMap) gOverrideHeightMap = new OverrideSizeMap(); gOverrideHeightMap->set(this, height); } void RenderBox::setOverrideLogicalContentWidth(LayoutUnit width) { if (!gOverrideWidthMap) gOverrideWidthMap = new OverrideSizeMap(); gOverrideWidthMap->set(this, width); } void RenderBox::clearOverrideLogicalContentHeight() { if (gOverrideHeightMap) gOverrideHeightMap->remove(this); } void RenderBox::clearOverrideLogicalContentWidth() { if (gOverrideWidthMap) gOverrideWidthMap->remove(this); } void RenderBox::clearOverrideSize() { clearOverrideLogicalContentHeight(); clearOverrideLogicalContentWidth(); } LayoutUnit RenderBox::overrideLogicalContentWidth() const { ASSERT(hasOverrideWidth()); return gOverrideWidthMap->get(this); } LayoutUnit RenderBox::overrideLogicalContentHeight() const { ASSERT(hasOverrideHeight()); return gOverrideHeightMap->get(this); } #if ENABLE(CSS_GRID_LAYOUT) LayoutUnit RenderBox::overrideContainingBlockContentLogicalWidth() const { ASSERT(hasOverrideContainingBlockLogicalWidth()); return gOverrideContainingBlockLogicalWidthMap->get(this); } LayoutUnit RenderBox::overrideContainingBlockContentLogicalHeight() const { ASSERT(hasOverrideContainingBlockLogicalHeight()); return gOverrideContainingBlockLogicalHeightMap->get(this); } bool RenderBox::hasOverrideContainingBlockLogicalWidth() const { return gOverrideContainingBlockLogicalWidthMap && gOverrideContainingBlockLogicalWidthMap->contains(this); } bool RenderBox::hasOverrideContainingBlockLogicalHeight() const { return gOverrideContainingBlockLogicalHeightMap && gOverrideContainingBlockLogicalHeightMap->contains(this); } void RenderBox::setOverrideContainingBlockContentLogicalWidth(LayoutUnit logicalWidth) { if (!gOverrideContainingBlockLogicalWidthMap) gOverrideContainingBlockLogicalWidthMap = new OverrideSizeMap; gOverrideContainingBlockLogicalWidthMap->set(this, logicalWidth); } void RenderBox::setOverrideContainingBlockContentLogicalHeight(LayoutUnit logicalHeight) { if (!gOverrideContainingBlockLogicalHeightMap) gOverrideContainingBlockLogicalHeightMap = new OverrideSizeMap; gOverrideContainingBlockLogicalHeightMap->set(this, logicalHeight); } void RenderBox::clearContainingBlockOverrideSize() { if (gOverrideContainingBlockLogicalWidthMap) gOverrideContainingBlockLogicalWidthMap->remove(this); clearOverrideContainingBlockContentLogicalHeight(); } void RenderBox::clearOverrideContainingBlockContentLogicalHeight() { if (gOverrideContainingBlockLogicalHeightMap) gOverrideContainingBlockLogicalHeightMap->remove(this); } #endif // ENABLE(CSS_GRID_LAYOUT) LayoutUnit RenderBox::adjustBorderBoxLogicalWidthForBoxSizing(LayoutUnit width) const { LayoutUnit bordersPlusPadding = borderAndPaddingLogicalWidth(); if (style().boxSizing() == CONTENT_BOX) return width + bordersPlusPadding; return std::max(width, bordersPlusPadding); } LayoutUnit RenderBox::adjustBorderBoxLogicalHeightForBoxSizing(LayoutUnit height) const { LayoutUnit bordersPlusPadding = borderAndPaddingLogicalHeight(); if (style().boxSizing() == CONTENT_BOX) return height + bordersPlusPadding; return std::max(height, bordersPlusPadding); } LayoutUnit RenderBox::adjustContentBoxLogicalWidthForBoxSizing(LayoutUnit width) const { if (style().boxSizing() == BORDER_BOX) width -= borderAndPaddingLogicalWidth(); return std::max(0, width); } LayoutUnit RenderBox::adjustContentBoxLogicalHeightForBoxSizing(LayoutUnit height) const { if (style().boxSizing() == BORDER_BOX) height -= borderAndPaddingLogicalHeight(); return std::max(0, height); } // Hit Testing bool RenderBox::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset, HitTestAction action) { LayoutPoint adjustedLocation = accumulatedOffset + location(); // Check kids first. for (RenderObject* child = lastChild(); child; child = child->previousSibling()) { if (!child->hasLayer() && child->nodeAtPoint(request, result, locationInContainer, adjustedLocation, action)) { updateHitTestResult(result, locationInContainer.point() - toLayoutSize(adjustedLocation)); return true; } } RenderFlowThread* flowThread = flowThreadContainingBlock(); RenderRegion* regionToUse = flowThread ? toRenderNamedFlowFragment(flowThread->currentRegion()) : nullptr; // If the box is not contained by this region there's no point in going further. if (regionToUse && !flowThread->objectShouldFragmentInFlowRegion(this, regionToUse)) return false; // Check our bounds next. For this purpose always assume that we can only be hit in the // foreground phase (which is true for replaced elements like images). LayoutRect boundsRect = borderBoxRectInRegion(regionToUse); boundsRect.moveBy(adjustedLocation); if (visibleToHitTesting() && action == HitTestForeground && locationInContainer.intersects(boundsRect)) { updateHitTestResult(result, locationInContainer.point() - toLayoutSize(adjustedLocation)); if (!result.addNodeToRectBasedTestResult(element(), request, locationInContainer, boundsRect)) return true; } return false; } // --------------------- painting stuff ------------------------------- void RenderBox::paintRootBoxFillLayers(const PaintInfo& paintInfo) { if (paintInfo.skipRootBackground()) return; auto& rootBackgroundRenderer = rendererForRootBackground(); const FillLayer* bgLayer = rootBackgroundRenderer.style().backgroundLayers(); Color bgColor = rootBackgroundRenderer.style().visitedDependentColor(CSSPropertyBackgroundColor); paintFillLayers(paintInfo, bgColor, bgLayer, view().backgroundRect(this), BackgroundBleedNone, CompositeSourceOver, &rootBackgroundRenderer); } BackgroundBleedAvoidance RenderBox::determineBackgroundBleedAvoidance(GraphicsContext* context) const { if (context->paintingDisabled()) return BackgroundBleedNone; const RenderStyle& style = this->style(); if (!style.hasBackground() || !style.hasBorder() || !style.hasBorderRadius() || borderImageIsLoadedAndCanBeRendered()) return BackgroundBleedNone; AffineTransform ctm = context->getCTM(); FloatSize contextScaling(static_cast(ctm.xScale()), static_cast(ctm.yScale())); // Because RoundedRect uses IntRect internally the inset applied by the // BackgroundBleedShrinkBackground strategy cannot be less than one integer // layout coordinate, even with subpixel layout enabled. To take that into // account, we clamp the contextScaling to 1.0 for the following test so // that borderObscuresBackgroundEdge can only return true if the border // widths are greater than 2 in both layout coordinates and screen // coordinates. // This precaution will become obsolete if RoundedRect is ever promoted to // a sub-pixel representation. if (contextScaling.width() > 1) contextScaling.setWidth(1); if (contextScaling.height() > 1) contextScaling.setHeight(1); if (borderObscuresBackgroundEdge(contextScaling)) return BackgroundBleedShrinkBackground; if (!style.hasAppearance() && borderObscuresBackground() && backgroundHasOpaqueTopLayer()) return BackgroundBleedBackgroundOverBorder; return BackgroundBleedUseTransparencyLayer; } void RenderBox::paintBoxDecorations(PaintInfo& paintInfo, const LayoutPoint& paintOffset) { if (!paintInfo.shouldPaintWithinRoot(*this)) return; LayoutRect paintRect = borderBoxRectInRegion(currentRenderNamedFlowFragment()); paintRect.moveBy(paintOffset); #if PLATFORM(IOS) // Workaround for . Force the painting bounds of checkboxes and radio controls to be square. if (style().appearance() == CheckboxPart || style().appearance() == RadioPart) { int width = std::min(paintRect.width(), paintRect.height()); int height = width; paintRect = IntRect(paintRect.x(), paintRect.y() + (this->height() - height) / 2, width, height); // Vertically center the checkbox, like on desktop } #endif BackgroundBleedAvoidance bleedAvoidance = determineBackgroundBleedAvoidance(paintInfo.context); // FIXME: Should eventually give the theme control over whether the box shadow should paint, since controls could have // custom shadows of their own. if (!boxShadowShouldBeAppliedToBackground(bleedAvoidance)) paintBoxShadow(paintInfo, paintRect, style(), Normal); GraphicsContextStateSaver stateSaver(*paintInfo.context, false); if (bleedAvoidance == BackgroundBleedUseTransparencyLayer) { // To avoid the background color bleeding out behind the border, we'll render background and border // into a transparency layer, and then clip that in one go (which requires setting up the clip before // beginning the layer). stateSaver.save(); paintInfo.context->clipRoundedRect(style().getRoundedBorderFor(paintRect).pixelSnappedRoundedRectForPainting(document().deviceScaleFactor())); paintInfo.context->beginTransparencyLayer(1); } // If we have a native theme appearance, paint that before painting our background. // The theme will tell us whether or not we should also paint the CSS background. ControlStates* controlStates = nullptr; if (style().hasAppearance()) { if (hasControlStatesForRenderer(this)) controlStates = controlStatesForRenderer(this); else { controlStates = new ControlStates(); addControlStatesForRenderer(this, controlStates); } } bool themePainted = style().hasAppearance() && !theme().paint(*this, controlStates, paintInfo, paintRect); if (controlStates && controlStates->needsRepaint()) view().scheduleLazyRepaint(*this); if (!themePainted) { if (bleedAvoidance == BackgroundBleedBackgroundOverBorder) paintBorder(paintInfo, paintRect, style(), bleedAvoidance); paintBackground(paintInfo, paintRect, bleedAvoidance); if (style().hasAppearance()) theme().paintDecorations(*this, paintInfo, paintRect); } paintBoxShadow(paintInfo, paintRect, style(), Inset); // The theme will tell us whether or not we should also paint the CSS border. if (bleedAvoidance != BackgroundBleedBackgroundOverBorder && (!style().hasAppearance() || (!themePainted && theme().paintBorderOnly(*this, paintInfo, paintRect))) && style().hasBorder()) paintBorder(paintInfo, paintRect, style(), bleedAvoidance); if (bleedAvoidance == BackgroundBleedUseTransparencyLayer) paintInfo.context->endTransparencyLayer(); } void RenderBox::paintBackground(const PaintInfo& paintInfo, const LayoutRect& paintRect, BackgroundBleedAvoidance bleedAvoidance) { if (isRoot()) { paintRootBoxFillLayers(paintInfo); return; } if (isBody() && skipBodyBackground(this)) return; if (backgroundIsKnownToBeObscured() && !boxShadowShouldBeAppliedToBackground(bleedAvoidance)) return; paintFillLayers(paintInfo, style().visitedDependentColor(CSSPropertyBackgroundColor), style().backgroundLayers(), paintRect, bleedAvoidance); } bool RenderBox::getBackgroundPaintedExtent(LayoutRect& paintedExtent) const { ASSERT(hasBackground()); LayoutRect backgroundRect = pixelSnappedIntRect(borderBoxRect()); Color backgroundColor = style().visitedDependentColor(CSSPropertyBackgroundColor); if (backgroundColor.isValid() && backgroundColor.alpha()) { paintedExtent = backgroundRect; return true; } if (!style().backgroundLayers()->image() || style().backgroundLayers()->next()) { paintedExtent = backgroundRect; return true; } BackgroundImageGeometry geometry; calculateBackgroundImageGeometry(0, style().backgroundLayers(), backgroundRect, geometry); paintedExtent = geometry.destRect(); return !geometry.hasNonLocalGeometry(); } bool RenderBox::backgroundIsKnownToBeOpaqueInRect(const LayoutRect& localRect) const { if (isBody() && skipBodyBackground(this)) return false; Color backgroundColor = style().visitedDependentColor(CSSPropertyBackgroundColor); if (!backgroundColor.isValid() || backgroundColor.hasAlpha()) return false; // If the element has appearance, it might be painted by theme. // We cannot be sure if theme paints the background opaque. // In this case it is safe to not assume opaqueness. // FIXME: May be ask theme if it paints opaque. if (style().hasAppearance()) return false; // FIXME: Check the opaqueness of background images. if (hasClip() || hasClipPath()) return false; // FIXME: Use rounded rect if border radius is present. if (style().hasBorderRadius()) return false; // FIXME: The background color clip is defined by the last layer. if (style().backgroundLayers()->next()) return false; LayoutRect backgroundRect; switch (style().backgroundClip()) { case BorderFillBox: backgroundRect = borderBoxRect(); break; case PaddingFillBox: backgroundRect = paddingBoxRect(); break; case ContentFillBox: backgroundRect = contentBoxRect(); break; default: break; } return backgroundRect.contains(localRect); } static bool isCandidateForOpaquenessTest(const RenderBox& childBox) { const RenderStyle& childStyle = childBox.style(); if (childStyle.position() != StaticPosition && childBox.containingBlock() != childBox.parent()) return false; if (childStyle.visibility() != VISIBLE) return false; #if ENABLE(CSS_SHAPES) if (childStyle.shapeOutside()) return false; #endif if (!childBox.width() || !childBox.height()) return false; if (RenderLayer* childLayer = childBox.layer()) { if (childLayer->isComposited()) return false; // FIXME: Deal with z-index. if (!childStyle.hasAutoZIndex()) return false; if (childLayer->hasTransform() || childLayer->isTransparent() || childLayer->hasFilter()) return false; } return true; } bool RenderBox::foregroundIsKnownToBeOpaqueInRect(const LayoutRect& localRect, unsigned maxDepthToTest) const { if (!maxDepthToTest) return false; for (auto& childBox : childrenOfType(*this)) { if (!isCandidateForOpaquenessTest(childBox)) continue; LayoutPoint childLocation = childBox.location(); if (childBox.isRelPositioned()) childLocation.move(childBox.relativePositionOffset()); LayoutRect childLocalRect = localRect; childLocalRect.moveBy(-childLocation); if (childLocalRect.y() < 0 || childLocalRect.x() < 0) { // If there is unobscured area above/left of a static positioned box then the rect is probably not covered. if (childBox.style().position() == StaticPosition) return false; continue; } if (childLocalRect.maxY() > childBox.height() || childLocalRect.maxX() > childBox.width()) continue; if (childBox.backgroundIsKnownToBeOpaqueInRect(childLocalRect)) return true; if (childBox.foregroundIsKnownToBeOpaqueInRect(childLocalRect, maxDepthToTest - 1)) return true; } return false; } bool RenderBox::computeBackgroundIsKnownToBeObscured() { // Test to see if the children trivially obscure the background. // FIXME: This test can be much more comprehensive. if (!hasBackground()) return false; // Table and root background painting is special. if (isTable() || isRoot()) return false; LayoutRect backgroundRect; if (!getBackgroundPaintedExtent(backgroundRect)) return false; return foregroundIsKnownToBeOpaqueInRect(backgroundRect, backgroundObscurationTestMaxDepth); } bool RenderBox::backgroundHasOpaqueTopLayer() const { const FillLayer* fillLayer = style().backgroundLayers(); if (!fillLayer || fillLayer->clip() != BorderFillBox) return false; // Clipped with local scrolling if (hasOverflowClip() && fillLayer->attachment() == LocalBackgroundAttachment) return false; if (fillLayer->hasOpaqueImage(*this) && fillLayer->hasRepeatXY() && fillLayer->image()->canRender(this, style().effectiveZoom())) return true; // If there is only one layer and no image, check whether the background color is opaque if (!fillLayer->next() && !fillLayer->hasImage()) { Color bgColor = style().visitedDependentColor(CSSPropertyBackgroundColor); if (bgColor.isValid() && bgColor.alpha() == 255) return true; } return false; } void RenderBox::paintMask(PaintInfo& paintInfo, const LayoutPoint& paintOffset) { if (!paintInfo.shouldPaintWithinRoot(*this) || style().visibility() != VISIBLE || paintInfo.phase != PaintPhaseMask || paintInfo.context->paintingDisabled()) return; LayoutRect paintRect = LayoutRect(paintOffset, size()); paintMaskImages(paintInfo, paintRect); } void RenderBox::paintMaskImages(const PaintInfo& paintInfo, const LayoutRect& paintRect) { // Figure out if we need to push a transparency layer to render our mask. bool pushTransparencyLayer = false; bool compositedMask = hasLayer() && layer()->hasCompositedMask(); bool flattenCompositingLayers = view().frameView().paintBehavior() & PaintBehaviorFlattenCompositingLayers; CompositeOperator compositeOp = CompositeSourceOver; bool allMaskImagesLoaded = true; if (!compositedMask || flattenCompositingLayers) { pushTransparencyLayer = true; StyleImage* maskBoxImage = style().maskBoxImage().image(); const FillLayer* maskLayers = style().maskLayers(); // Don't render a masked element until all the mask images have loaded, to prevent a flash of unmasked content. if (maskBoxImage) allMaskImagesLoaded &= maskBoxImage->isLoaded(); if (maskLayers) allMaskImagesLoaded &= maskLayers->imagesAreLoaded(); paintInfo.context->setCompositeOperation(CompositeDestinationIn); paintInfo.context->beginTransparencyLayer(1); compositeOp = CompositeSourceOver; } if (allMaskImagesLoaded) { paintFillLayers(paintInfo, Color(), style().maskLayers(), paintRect, BackgroundBleedNone, compositeOp); paintNinePieceImage(paintInfo.context, paintRect, style(), style().maskBoxImage(), compositeOp); } if (pushTransparencyLayer) paintInfo.context->endTransparencyLayer(); } LayoutRect RenderBox::maskClipRect() { const NinePieceImage& maskBoxImage = style().maskBoxImage(); if (maskBoxImage.image()) { LayoutRect borderImageRect = borderBoxRect(); // Apply outsets to the border box. borderImageRect.expand(style().maskBoxImageOutsets()); return borderImageRect; } LayoutRect result; LayoutRect borderBox = borderBoxRect(); for (const FillLayer* maskLayer = style().maskLayers(); maskLayer; maskLayer = maskLayer->next()) { if (maskLayer->image()) { BackgroundImageGeometry geometry; // Masks should never have fixed attachment, so it's OK for paintContainer to be null. calculateBackgroundImageGeometry(0, maskLayer, borderBox, geometry); result.unite(geometry.destRect()); } } return result; } void RenderBox::paintFillLayers(const PaintInfo& paintInfo, const Color& c, const FillLayer* fillLayer, const LayoutRect& rect, BackgroundBleedAvoidance bleedAvoidance, CompositeOperator op, RenderElement* backgroundObject) { Vector layers; const FillLayer* curLayer = fillLayer; bool shouldDrawBackgroundInSeparateBuffer = false; while (curLayer) { layers.append(curLayer); // Stop traversal when an opaque layer is encountered. // FIXME : It would be possible for the following occlusion culling test to be more aggressive // on layers with no repeat by testing whether the image covers the layout rect. // Testing that here would imply duplicating a lot of calculations that are currently done in // RenderBoxModelObject::paintFillLayerExtended. A more efficient solution might be to move // the layer recursion into paintFillLayerExtended, or to compute the layer geometry here // and pass it down. if (!shouldDrawBackgroundInSeparateBuffer && curLayer->blendMode() != BlendModeNormal) shouldDrawBackgroundInSeparateBuffer = true; // The clipOccludesNextLayers condition must be evaluated first to avoid short-circuiting. if (curLayer->clipOccludesNextLayers(curLayer == fillLayer) && curLayer->hasOpaqueImage(*this) && curLayer->image()->canRender(this, style().effectiveZoom()) && curLayer->hasRepeatXY() && curLayer->blendMode() == BlendModeNormal) break; curLayer = curLayer->next(); } GraphicsContext* context = paintInfo.context; if (!context) shouldDrawBackgroundInSeparateBuffer = false; BaseBackgroundColorUsage baseBgColorUsage = BaseBackgroundColorUse; if (shouldDrawBackgroundInSeparateBuffer) { paintFillLayer(paintInfo, c, *layers.rbegin(), rect, bleedAvoidance, op, backgroundObject, BaseBackgroundColorOnly); baseBgColorUsage = BaseBackgroundColorSkip; context->beginTransparencyLayer(1); } Vector::const_reverse_iterator topLayer = layers.rend(); for (Vector::const_reverse_iterator it = layers.rbegin(); it != topLayer; ++it) paintFillLayer(paintInfo, c, *it, rect, bleedAvoidance, op, backgroundObject, baseBgColorUsage); if (shouldDrawBackgroundInSeparateBuffer) context->endTransparencyLayer(); } void RenderBox::paintFillLayer(const PaintInfo& paintInfo, const Color& c, const FillLayer* fillLayer, const LayoutRect& rect, BackgroundBleedAvoidance bleedAvoidance, CompositeOperator op, RenderElement* backgroundObject, BaseBackgroundColorUsage baseBgColorUsage) { paintFillLayerExtended(paintInfo, c, fillLayer, rect, bleedAvoidance, 0, LayoutSize(), op, backgroundObject, baseBgColorUsage); } static bool layersUseImage(WrappedImagePtr image, const FillLayer* layers) { for (const FillLayer* curLayer = layers; curLayer; curLayer = curLayer->next()) { if (curLayer->image() && image == curLayer->image()->data()) return true; } return false; } void RenderBox::imageChanged(WrappedImagePtr image, const IntRect*) { if (!parent()) return; if ((style().borderImage().image() && style().borderImage().image()->data() == image) || (style().maskBoxImage().image() && style().maskBoxImage().image()->data() == image)) { repaint(); return; } #if ENABLE(CSS_SHAPES) ShapeValue* shapeOutsideValue = style().shapeOutside(); if (!view().frameView().isInLayout() && isFloating() && shapeOutsideValue && shapeOutsideValue->image() && shapeOutsideValue->image()->data() == image) { ShapeOutsideInfo::ensureInfo(*this).markShapeAsDirty(); markShapeOutsideDependentsForLayout(); } #endif bool didFullRepaint = repaintLayerRectsForImage(image, style().backgroundLayers(), true); if (!didFullRepaint) repaintLayerRectsForImage(image, style().maskLayers(), false); if (!isComposited()) return; if (layer()->hasCompositedMask() && layersUseImage(image, style().maskLayers())) layer()->contentChanged(MaskImageChanged); if (layersUseImage(image, style().backgroundLayers())) layer()->contentChanged(BackgroundImageChanged); } bool RenderBox::repaintLayerRectsForImage(WrappedImagePtr image, const FillLayer* layers, bool drawingBackground) { LayoutRect rendererRect; RenderBox* layerRenderer = 0; for (const FillLayer* curLayer = layers; curLayer; curLayer = curLayer->next()) { if (curLayer->image() && image == curLayer->image()->data() && curLayer->image()->canRender(this, style().effectiveZoom())) { // Now that we know this image is being used, compute the renderer and the rect if we haven't already. bool drawingRootBackground = drawingBackground && (isRoot() || (isBody() && !document().documentElement()->renderer()->hasBackground())); if (!layerRenderer) { if (drawingRootBackground) { layerRenderer = &view(); LayoutUnit rw = toRenderView(*layerRenderer).frameView().contentsWidth(); LayoutUnit rh = toRenderView(*layerRenderer).frameView().contentsHeight(); rendererRect = LayoutRect(-layerRenderer->marginLeft(), -layerRenderer->marginTop(), std::max(layerRenderer->width() + layerRenderer->horizontalMarginExtent() + layerRenderer->borderLeft() + layerRenderer->borderRight(), rw), std::max(layerRenderer->height() + layerRenderer->verticalMarginExtent() + layerRenderer->borderTop() + layerRenderer->borderBottom(), rh)); } else { layerRenderer = this; rendererRect = borderBoxRect(); } } BackgroundImageGeometry geometry; layerRenderer->calculateBackgroundImageGeometry(0, curLayer, rendererRect, geometry); if (geometry.hasNonLocalGeometry()) { // Rather than incur the costs of computing the paintContainer for renderers with fixed backgrounds // in order to get the right destRect, just repaint the entire renderer. layerRenderer->repaint(); return true; } LayoutRect rectToRepaint = geometry.destRect(); bool shouldClipToLayer = true; // If this is the root background layer, we may need to extend the repaintRect if the FrameView has an // extendedBackground. We should only extend the rect if it is already extending the full width or height // of the rendererRect. if (drawingRootBackground && view().frameView().hasExtendedBackgroundRectForPainting()) { shouldClipToLayer = false; IntRect extendedBackgroundRect = view().frameView().extendedBackgroundRectForPainting(); if (rectToRepaint.width() == rendererRect.width()) { rectToRepaint.move(extendedBackgroundRect.x(), 0); rectToRepaint.setWidth(extendedBackgroundRect.width()); } if (rectToRepaint.height() == rendererRect.height()) { rectToRepaint.move(0, extendedBackgroundRect.y()); rectToRepaint.setHeight(extendedBackgroundRect.height()); } } layerRenderer->repaintRectangle(rectToRepaint, shouldClipToLayer); if (geometry.destRect() == rendererRect) return true; } } return false; } bool RenderBox::pushContentsClip(PaintInfo& paintInfo, const LayoutPoint& accumulatedOffset) { if (paintInfo.phase == PaintPhaseBlockBackground || paintInfo.phase == PaintPhaseSelfOutline || paintInfo.phase == PaintPhaseMask) return false; bool isControlClip = hasControlClip(); bool isOverflowClip = hasOverflowClip() && !layer()->isSelfPaintingLayer(); if (!isControlClip && !isOverflowClip) return false; if (paintInfo.phase == PaintPhaseOutline) paintInfo.phase = PaintPhaseChildOutlines; else if (paintInfo.phase == PaintPhaseChildBlockBackground) { paintInfo.phase = PaintPhaseBlockBackground; paintObject(paintInfo, accumulatedOffset); paintInfo.phase = PaintPhaseChildBlockBackgrounds; } float deviceScaleFactor = document().deviceScaleFactor(); FloatRect clipRect = pixelSnappedForPainting((isControlClip ? controlClipRect(accumulatedOffset) : overflowClipRect(accumulatedOffset, currentRenderNamedFlowFragment(), IgnoreOverlayScrollbarSize, paintInfo.phase)), deviceScaleFactor); paintInfo.context->save(); if (style().hasBorderRadius()) paintInfo.context->clipRoundedRect(style().getRoundedInnerBorderFor(LayoutRect(accumulatedOffset, size())).pixelSnappedRoundedRectForPainting(deviceScaleFactor)); paintInfo.context->clip(clipRect); return true; } void RenderBox::popContentsClip(PaintInfo& paintInfo, PaintPhase originalPhase, const LayoutPoint& accumulatedOffset) { ASSERT(hasControlClip() || (hasOverflowClip() && !layer()->isSelfPaintingLayer())); paintInfo.context->restore(); if (originalPhase == PaintPhaseOutline) { paintInfo.phase = PaintPhaseSelfOutline; paintObject(paintInfo, accumulatedOffset); paintInfo.phase = originalPhase; } else if (originalPhase == PaintPhaseChildBlockBackground) paintInfo.phase = originalPhase; } LayoutRect RenderBox::overflowClipRect(const LayoutPoint& location, RenderRegion* region, OverlayScrollbarSizeRelevancy relevancy, PaintPhase) { // FIXME: When overflow-clip (CSS3) is implemented, we'll obtain the property // here. LayoutRect clipRect = borderBoxRectInRegion(region); clipRect.setLocation(location + clipRect.location() + LayoutSize(borderLeft(), borderTop())); clipRect.setSize(clipRect.size() - LayoutSize(borderLeft() + borderRight(), borderTop() + borderBottom())); // Subtract out scrollbars if we have them. if (layer()) { if (style().shouldPlaceBlockDirectionScrollbarOnLogicalLeft()) clipRect.move(layer()->verticalScrollbarWidth(relevancy), 0); clipRect.contract(layer()->verticalScrollbarWidth(relevancy), layer()->horizontalScrollbarHeight(relevancy)); } return clipRect; } LayoutRect RenderBox::clipRect(const LayoutPoint& location, RenderRegion* region) { LayoutRect borderBoxRect = borderBoxRectInRegion(region); LayoutRect clipRect = LayoutRect(borderBoxRect.location() + location, borderBoxRect.size()); if (!style().clipLeft().isAuto()) { LayoutUnit c = valueForLength(style().clipLeft(), borderBoxRect.width()); clipRect.move(c, 0); clipRect.contract(c, 0); } // We don't use the region-specific border box's width and height since clip offsets are (stupidly) specified // from the left and top edges. Therefore it's better to avoid constraining to smaller widths and heights. if (!style().clipRight().isAuto()) clipRect.contract(width() - valueForLength(style().clipRight(), width()), 0); if (!style().clipTop().isAuto()) { LayoutUnit c = valueForLength(style().clipTop(), borderBoxRect.height()); clipRect.move(0, c); clipRect.contract(0, c); } if (!style().clipBottom().isAuto()) clipRect.contract(0, height() - valueForLength(style().clipBottom(), height())); return clipRect; } LayoutUnit RenderBox::shrinkLogicalWidthToAvoidFloats(LayoutUnit childMarginStart, LayoutUnit childMarginEnd, const RenderBlock* cb, RenderRegion* region) const { RenderRegion* containingBlockRegion = 0; LayoutUnit logicalTopPosition = logicalTop(); if (region) { LayoutUnit offsetFromLogicalTopOfRegion = region ? region->logicalTopForFlowThreadContent() - offsetFromLogicalTopOfFirstPage() : LayoutUnit(); logicalTopPosition = std::max(logicalTopPosition, logicalTopPosition + offsetFromLogicalTopOfRegion); containingBlockRegion = cb->clampToStartAndEndRegions(region); } LayoutUnit result = cb->availableLogicalWidthForLineInRegion(logicalTopPosition, false, containingBlockRegion) - childMarginStart - childMarginEnd; // We need to see if margins on either the start side or the end side can contain the floats in question. If they can, // then just using the line width is inaccurate. In the case where a float completely fits, we don't need to use the line // offset at all, but can instead push all the way to the content edge of the containing block. In the case where the float // doesn't fit, we can use the line offset, but we need to grow it by the margin to reflect the fact that the margin was // "consumed" by the float. Negative margins aren't consumed by the float, and so we ignore them. if (childMarginStart > 0) { LayoutUnit startContentSide = cb->startOffsetForContent(containingBlockRegion); LayoutUnit startContentSideWithMargin = startContentSide + childMarginStart; LayoutUnit startOffset = cb->startOffsetForLineInRegion(logicalTopPosition, false, containingBlockRegion); if (startOffset > startContentSideWithMargin) result += childMarginStart; else result += startOffset - startContentSide; } if (childMarginEnd > 0) { LayoutUnit endContentSide = cb->endOffsetForContent(containingBlockRegion); LayoutUnit endContentSideWithMargin = endContentSide + childMarginEnd; LayoutUnit endOffset = cb->endOffsetForLineInRegion(logicalTopPosition, false, containingBlockRegion); if (endOffset > endContentSideWithMargin) result += childMarginEnd; else result += endOffset - endContentSide; } return result; } LayoutUnit RenderBox::containingBlockLogicalWidthForContent() const { #if ENABLE(CSS_GRID_LAYOUT) if (hasOverrideContainingBlockLogicalWidth()) return overrideContainingBlockContentLogicalWidth(); #endif RenderBlock* cb = containingBlock(); return cb->availableLogicalWidth(); } LayoutUnit RenderBox::containingBlockLogicalHeightForContent(AvailableLogicalHeightType heightType) const { #if ENABLE(CSS_GRID_LAYOUT) if (hasOverrideContainingBlockLogicalHeight()) return overrideContainingBlockContentLogicalHeight(); #endif RenderBlock* cb = containingBlock(); return cb->availableLogicalHeight(heightType); } LayoutUnit RenderBox::containingBlockLogicalWidthForContentInRegion(RenderRegion* region) const { if (!region) return containingBlockLogicalWidthForContent(); RenderBlock* cb = containingBlock(); RenderRegion* containingBlockRegion = cb->clampToStartAndEndRegions(region); // FIXME: It's unclear if a region's content should use the containing block's override logical width. // If it should, the following line should call containingBlockLogicalWidthForContent. LayoutUnit result = cb->availableLogicalWidth(); RenderBoxRegionInfo* boxInfo = cb->renderBoxRegionInfo(containingBlockRegion); if (!boxInfo) return result; return std::max(0, result - (cb->logicalWidth() - boxInfo->logicalWidth())); } LayoutUnit RenderBox::containingBlockAvailableLineWidthInRegion(RenderRegion* region) const { RenderBlock* cb = containingBlock(); RenderRegion* containingBlockRegion = 0; LayoutUnit logicalTopPosition = logicalTop(); if (region) { LayoutUnit offsetFromLogicalTopOfRegion = region ? region->logicalTopForFlowThreadContent() - offsetFromLogicalTopOfFirstPage() : LayoutUnit(); logicalTopPosition = std::max(logicalTopPosition, logicalTopPosition + offsetFromLogicalTopOfRegion); containingBlockRegion = cb->clampToStartAndEndRegions(region); } return cb->availableLogicalWidthForLineInRegion(logicalTopPosition, false, containingBlockRegion, availableLogicalHeight(IncludeMarginBorderPadding)); } LayoutUnit RenderBox::perpendicularContainingBlockLogicalHeight() const { #if ENABLE(CSS_GRID_LAYOUT) if (hasOverrideContainingBlockLogicalHeight()) return overrideContainingBlockContentLogicalHeight(); #endif RenderBlock* cb = containingBlock(); if (cb->hasOverrideHeight()) return cb->overrideLogicalContentHeight(); const RenderStyle& containingBlockStyle = cb->style(); Length logicalHeightLength = containingBlockStyle.logicalHeight(); // FIXME: For now just support fixed heights. Eventually should support percentage heights as well. if (!logicalHeightLength.isFixed()) { LayoutUnit fillFallbackExtent = containingBlockStyle.isHorizontalWritingMode() ? view().frameView().visibleHeight() : view().frameView().visibleWidth(); LayoutUnit fillAvailableExtent = containingBlock()->availableLogicalHeight(ExcludeMarginBorderPadding); return std::min(fillAvailableExtent, fillFallbackExtent); } // Use the content box logical height as specified by the style. return cb->adjustContentBoxLogicalHeightForBoxSizing(logicalHeightLength.value()); } void RenderBox::mapLocalToContainer(const RenderLayerModelObject* repaintContainer, TransformState& transformState, MapCoordinatesFlags mode, bool* wasFixed) const { if (repaintContainer == this) return; if (view().layoutStateEnabled() && !repaintContainer) { LayoutState* layoutState = view().layoutState(); LayoutSize offset = layoutState->m_paintOffset + locationOffset(); if (style().hasInFlowPosition() && layer()) offset += layer()->offsetForInFlowPosition(); transformState.move(offset); return; } bool containerSkipped; auto o = container(repaintContainer, &containerSkipped); if (!o) return; bool isFixedPos = style().position() == FixedPosition; bool hasTransform = hasLayer() && layer()->transform(); // If this box has a transform, it acts as a fixed position container for fixed descendants, // and may itself also be fixed position. So propagate 'fixed' up only if this box is fixed position. if (hasTransform && !isFixedPos) mode &= ~IsFixed; else if (isFixedPos) mode |= IsFixed; if (wasFixed) *wasFixed = mode & IsFixed; LayoutSize containerOffset = offsetFromContainer(o, roundedLayoutPoint(transformState.mappedPoint())); bool preserve3D = mode & UseTransforms && (o->style().preserves3D() || style().preserves3D()); if (mode & UseTransforms && shouldUseTransformFromContainer(o)) { TransformationMatrix t; getTransformFromContainer(o, containerOffset, t); transformState.applyTransform(t, preserve3D ? TransformState::AccumulateTransform : TransformState::FlattenTransform); } else transformState.move(containerOffset.width(), containerOffset.height(), preserve3D ? TransformState::AccumulateTransform : TransformState::FlattenTransform); if (containerSkipped) { // There can't be a transform between repaintContainer and o, because transforms create containers, so it should be safe // to just subtract the delta between the repaintContainer and o. LayoutSize containerOffset = repaintContainer->offsetFromAncestorContainer(o); transformState.move(-containerOffset.width(), -containerOffset.height(), preserve3D ? TransformState::AccumulateTransform : TransformState::FlattenTransform); return; } mode &= ~ApplyContainerFlip; // For fixed positioned elements inside out-of-flow named flows, we do not want to // map their position further to regions based on their coordinates inside the named flows. if (!o->isOutOfFlowRenderFlowThread() || !fixedPositionedWithNamedFlowContainingBlock()) o->mapLocalToContainer(repaintContainer, transformState, mode, wasFixed); else o->mapLocalToContainer(toRenderLayerModelObject(o), transformState, mode, wasFixed); } const RenderObject* RenderBox::pushMappingToContainer(const RenderLayerModelObject* ancestorToStopAt, RenderGeometryMap& geometryMap) const { ASSERT(ancestorToStopAt != this); bool ancestorSkipped; auto container = this->container(ancestorToStopAt, &ancestorSkipped); if (!container) return 0; bool isFixedPos = style().position() == FixedPosition; bool hasTransform = hasLayer() && layer()->transform(); LayoutSize adjustmentForSkippedAncestor; if (ancestorSkipped) { // There can't be a transform between repaintContainer and o, because transforms create containers, so it should be safe // to just subtract the delta between the ancestor and o. adjustmentForSkippedAncestor = -ancestorToStopAt->offsetFromAncestorContainer(container); } bool offsetDependsOnPoint = false; LayoutSize containerOffset = offsetFromContainer(container, LayoutPoint(), &offsetDependsOnPoint); bool preserve3D = container->style().preserves3D() || style().preserves3D(); if (shouldUseTransformFromContainer(container)) { TransformationMatrix t; getTransformFromContainer(container, containerOffset, t); t.translateRight(adjustmentForSkippedAncestor.width(), adjustmentForSkippedAncestor.height()); geometryMap.push(this, t, preserve3D, offsetDependsOnPoint, isFixedPos, hasTransform); } else { containerOffset += adjustmentForSkippedAncestor; geometryMap.push(this, containerOffset, preserve3D, offsetDependsOnPoint, isFixedPos, hasTransform); } return ancestorSkipped ? ancestorToStopAt : container; } void RenderBox::mapAbsoluteToLocalPoint(MapCoordinatesFlags mode, TransformState& transformState) const { bool isFixedPos = style().position() == FixedPosition; bool hasTransform = hasLayer() && layer()->transform(); if (hasTransform && !isFixedPos) { // If this box has a transform, it acts as a fixed position container for fixed descendants, // and may itself also be fixed position. So propagate 'fixed' up only if this box is fixed position. mode &= ~IsFixed; } else if (isFixedPos) mode |= IsFixed; RenderBoxModelObject::mapAbsoluteToLocalPoint(mode, transformState); } LayoutSize RenderBox::offsetFromContainer(RenderObject* o, const LayoutPoint&, bool* offsetDependsOnPoint) const { // A region "has" boxes inside it without being their container. ASSERT(o == container() || o->isRenderRegion()); LayoutSize offset; if (isInFlowPositioned()) offset += offsetForInFlowPosition(); if (!isInline() || isReplaced()) offset += topLeftLocationOffset(); if (o->isBox()) offset -= toRenderBox(o)->scrolledContentOffset(); if (style().position() == AbsolutePosition && o->isInFlowPositioned() && o->isRenderInline()) offset += toRenderInline(o)->offsetForInFlowPositionedInline(this); if (offsetDependsOnPoint) *offsetDependsOnPoint |= o->isRenderFlowThread(); return offset; } std::unique_ptr RenderBox::createInlineBox() { return std::make_unique(*this); } void RenderBox::dirtyLineBoxes(bool fullLayout) { if (m_inlineBoxWrapper) { if (fullLayout) { delete m_inlineBoxWrapper; m_inlineBoxWrapper = nullptr; } else m_inlineBoxWrapper->dirtyLineBoxes(); } } void RenderBox::positionLineBox(InlineElementBox& box) { if (isOutOfFlowPositioned()) { // Cache the x position only if we were an INLINE type originally. bool wasInline = style().isOriginalDisplayInlineType(); if (wasInline) { // The value is cached in the xPos of the box. We only need this value if // our object was inline originally, since otherwise it would have ended up underneath // the inlines. RootInlineBox& rootBox = box.root(); rootBox.blockFlow().setStaticInlinePositionForChild(*this, rootBox.lineTopWithLeading(), roundedLayoutUnit(box.logicalLeft())); if (style().hasStaticInlinePosition(box.isHorizontal())) setChildNeedsLayout(MarkOnlyThis); // Just go ahead and mark the positioned object as needing layout, so it will update its position properly. } else { // Our object was a block originally, so we make our normal flow position be // just below the line box (as though all the inlines that came before us got // wrapped in an anonymous block, which is what would have happened had we been // in flow). This value was cached in the y() of the box. layer()->setStaticBlockPosition(box.logicalTop()); if (style().hasStaticBlockPosition(box.isHorizontal())) setChildNeedsLayout(MarkOnlyThis); // Just go ahead and mark the positioned object as needing layout, so it will update its position properly. } // Nuke the box. box.removeFromParent(); delete &box; return; } if (isReplaced()) { setLocation(roundedLayoutPoint(box.topLeft())); setInlineBoxWrapper(&box); } } void RenderBox::deleteLineBoxWrapper() { if (m_inlineBoxWrapper) { if (!documentBeingDestroyed()) m_inlineBoxWrapper->removeFromParent(); delete m_inlineBoxWrapper; m_inlineBoxWrapper = nullptr; } } LayoutRect RenderBox::clippedOverflowRectForRepaint(const RenderLayerModelObject* repaintContainer) const { if (style().visibility() != VISIBLE && !enclosingLayer()->hasVisibleContent()) return LayoutRect(); LayoutRect r = visualOverflowRect(); // FIXME: layoutDelta needs to be applied in parts before/after transforms and // repaint containers. https://bugs.webkit.org/show_bug.cgi?id=23308 r.move(view().layoutDelta()); // We have to use maximalOutlineSize() because a child might have an outline // that projects outside of our overflowRect. ASSERT(style().outlineSize() <= view().maximalOutlineSize()); r.inflate(view().maximalOutlineSize()); computeRectForRepaint(repaintContainer, r); return r; } static inline bool shouldApplyContainersClipAndOffset(const RenderLayerModelObject* repaintContainer, RenderBox* containerBox) { #if PLATFORM(IOS) if (!repaintContainer || repaintContainer != containerBox) return true; return !containerBox->hasLayer() || !containerBox->layer()->usesCompositedScrolling(); #else UNUSED_PARAM(repaintContainer); UNUSED_PARAM(containerBox); return true; #endif } void RenderBox::computeRectForRepaint(const RenderLayerModelObject* repaintContainer, LayoutRect& rect, bool fixed) const { // The rect we compute at each step is shifted by our x/y offset in the parent container's coordinate space. // Only when we cross a writing mode boundary will we have to possibly flipForWritingMode (to convert into a more appropriate // offset corner for the enclosing container). This allows for a fully RL or BT document to repaint // properly even during layout, since the rect remains flipped all the way until the end. // // RenderView::computeRectForRepaint then converts the rect to physical coordinates. We also convert to // physical when we hit a repaintContainer boundary. Therefore the final rect returned is always in the // physical coordinate space of the repaintContainer. const RenderStyle& styleToUse = style(); // LayoutState is only valid for root-relative, non-fixed position repainting if (view().layoutStateEnabled() && !repaintContainer && styleToUse.position() != FixedPosition) { LayoutState* layoutState = view().layoutState(); if (layer() && layer()->transform()) rect = LayoutRect(enclosingRectForPainting(layer()->transform()->mapRect(rect), document().deviceScaleFactor())); // We can't trust the bits on RenderObject, because this might be called while re-resolving style. if (styleToUse.hasInFlowPosition() && layer()) rect.move(layer()->offsetForInFlowPosition()); rect.moveBy(location()); rect.move(layoutState->m_paintOffset); if (layoutState->m_clipped) rect.intersect(layoutState->m_clipRect); return; } if (hasReflection()) rect.unite(reflectedRect(rect)); if (repaintContainer == this) { if (repaintContainer->style().isFlippedBlocksWritingMode()) flipForWritingMode(rect); return; } bool containerSkipped; auto o = container(repaintContainer, &containerSkipped); if (!o) return; EPosition position = styleToUse.position(); // This code isn't necessary for in-flow RenderFlowThreads. // Don't add the location of the region in the flow thread for absolute positioned // elements because their absolute position already pushes them down through // the regions so adding this here and then adding the topLeft again would cause // us to add the height twice. // The same logic applies for elements flowed directly into the flow thread. Their topLeft member // will already contain the portion rect of the region. if (o->isOutOfFlowRenderFlowThread() && position != AbsolutePosition && containingBlock() != flowThreadContainingBlock()) { RenderRegion* firstRegion = nullptr; RenderRegion* lastRegion = nullptr; if (toRenderFlowThread(o)->getRegionRangeForBox(this, firstRegion, lastRegion)) rect.moveBy(firstRegion->flowThreadPortionRect().location()); } if (isWritingModeRoot() && !isOutOfFlowPositioned()) flipForWritingMode(rect); LayoutPoint topLeft = rect.location(); topLeft.move(locationOffset()); // We are now in our parent container's coordinate space. Apply our transform to obtain a bounding box // in the parent's coordinate space that encloses us. if (hasLayer() && layer()->transform()) { fixed = position == FixedPosition; rect = LayoutRect(enclosingRectForPainting(layer()->transform()->mapRect(rect), document().deviceScaleFactor())); topLeft = rect.location(); topLeft.move(locationOffset()); } else if (position == FixedPosition) fixed = true; if (position == AbsolutePosition && o->isInFlowPositioned() && o->isRenderInline()) topLeft += toRenderInline(o)->offsetForInFlowPositionedInline(this); else if (styleToUse.hasInFlowPosition() && layer()) { // Apply the relative position offset when invalidating a rectangle. The layer // is translated, but the render box isn't, so we need to do this to get the // right dirty rect. Since this is called from RenderObject::setStyle, the relative position // flag on the RenderObject has been cleared, so use the one on the style(). topLeft += layer()->offsetForInFlowPosition(); } // FIXME: We ignore the lightweight clipping rect that controls use, since if |o| is in mid-layout, // its controlClipRect will be wrong. For overflow clip we use the values cached by the layer. rect.setLocation(topLeft); if (o->hasOverflowClip()) { RenderBox* containerBox = toRenderBox(o); if (shouldApplyContainersClipAndOffset(repaintContainer, containerBox)) { containerBox->applyCachedClipAndScrollOffsetForRepaint(rect); if (rect.isEmpty()) return; } } if (containerSkipped) { // If the repaintContainer is below o, then we need to map the rect into repaintContainer's coordinates. LayoutSize containerOffset = repaintContainer->offsetFromAncestorContainer(o); rect.move(-containerOffset); return; } o->computeRectForRepaint(repaintContainer, rect, fixed); } void RenderBox::repaintDuringLayoutIfMoved(const LayoutRect& oldRect) { if (oldRect.location() != m_frameRect.location()) { LayoutRect newRect = m_frameRect; // The child moved. Invalidate the object's old and new positions. We have to do this // since the object may not have gotten a layout. m_frameRect = oldRect; repaint(); repaintOverhangingFloats(true); m_frameRect = newRect; repaint(); repaintOverhangingFloats(true); } } void RenderBox::repaintOverhangingFloats(bool) { } void RenderBox::updateLogicalWidth() { LogicalExtentComputedValues computedValues; computeLogicalWidthInRegion(computedValues); setLogicalWidth(computedValues.m_extent); setLogicalLeft(computedValues.m_position); setMarginStart(computedValues.m_margins.m_start); setMarginEnd(computedValues.m_margins.m_end); } void RenderBox::computeLogicalWidthInRegion(LogicalExtentComputedValues& computedValues, RenderRegion* region) const { computedValues.m_extent = logicalWidth(); computedValues.m_position = logicalLeft(); computedValues.m_margins.m_start = marginStart(); computedValues.m_margins.m_end = marginEnd(); if (isOutOfFlowPositioned()) { // FIXME: This calculation is not patched for block-flow yet. // https://bugs.webkit.org/show_bug.cgi?id=46500 computePositionedLogicalWidth(computedValues, region); return; } // If layout is limited to a subtree, the subtree root's logical width does not change. if (element() && view().frameView().layoutRoot(true) == this) return; // The parent box is flexing us, so it has increased or decreased our // width. Use the width from the style context. // FIXME: Account for block-flow in flexible boxes. // https://bugs.webkit.org/show_bug.cgi?id=46418 if (hasOverrideWidth() && (style().borderFit() == BorderFitLines || parent()->isFlexibleBoxIncludingDeprecated())) { computedValues.m_extent = overrideLogicalContentWidth() + borderAndPaddingLogicalWidth(); return; } // FIXME: Account for block-flow in flexible boxes. // https://bugs.webkit.org/show_bug.cgi?id=46418 bool inVerticalBox = parent()->isDeprecatedFlexibleBox() && (parent()->style().boxOrient() == VERTICAL); bool stretching = (parent()->style().boxAlign() == BSTRETCH); bool treatAsReplaced = shouldComputeSizeAsReplaced() && (!inVerticalBox || !stretching); const RenderStyle& styleToUse = style(); Length logicalWidthLength = treatAsReplaced ? Length(computeReplacedLogicalWidth(), Fixed) : styleToUse.logicalWidth(); RenderBlock* cb = containingBlock(); LayoutUnit containerLogicalWidth = std::max(0, containingBlockLogicalWidthForContentInRegion(region)); bool hasPerpendicularContainingBlock = cb->isHorizontalWritingMode() != isHorizontalWritingMode(); if (isInline() && !isInlineBlockOrInlineTable()) { // just calculate margins computedValues.m_margins.m_start = minimumValueForLength(styleToUse.marginStart(), containerLogicalWidth); computedValues.m_margins.m_end = minimumValueForLength(styleToUse.marginEnd(), containerLogicalWidth); if (treatAsReplaced) computedValues.m_extent = std::max(floatValueForLength(logicalWidthLength, 0) + borderAndPaddingLogicalWidth(), minPreferredLogicalWidth()); return; } // Width calculations if (treatAsReplaced) computedValues.m_extent = logicalWidthLength.value() + borderAndPaddingLogicalWidth(); else { LayoutUnit containerWidthInInlineDirection = containerLogicalWidth; if (hasPerpendicularContainingBlock) containerWidthInInlineDirection = perpendicularContainingBlockLogicalHeight(); LayoutUnit preferredWidth = computeLogicalWidthInRegionUsing(MainOrPreferredSize, styleToUse.logicalWidth(), containerWidthInInlineDirection, cb, region); computedValues.m_extent = constrainLogicalWidthInRegionByMinMax(preferredWidth, containerWidthInInlineDirection, cb, region); } // Margin calculations. if (hasPerpendicularContainingBlock || isFloating() || isInline()) { computedValues.m_margins.m_start = minimumValueForLength(styleToUse.marginStart(), containerLogicalWidth); computedValues.m_margins.m_end = minimumValueForLength(styleToUse.marginEnd(), containerLogicalWidth); } else { LayoutUnit containerLogicalWidthForAutoMargins = containerLogicalWidth; if (avoidsFloats() && cb->containsFloats()) containerLogicalWidthForAutoMargins = containingBlockAvailableLineWidthInRegion(region); bool hasInvertedDirection = cb->style().isLeftToRightDirection() != style().isLeftToRightDirection(); computeInlineDirectionMargins(cb, containerLogicalWidthForAutoMargins, computedValues.m_extent, hasInvertedDirection ? computedValues.m_margins.m_end : computedValues.m_margins.m_start, hasInvertedDirection ? computedValues.m_margins.m_start : computedValues.m_margins.m_end); } if (!hasPerpendicularContainingBlock && containerLogicalWidth && containerLogicalWidth != (computedValues.m_extent + computedValues.m_margins.m_start + computedValues.m_margins.m_end) && !isFloating() && !isInline() && !cb->isFlexibleBoxIncludingDeprecated() #if ENABLE(CSS_GRID_LAYOUT) && !cb->isRenderGrid() #endif ) { LayoutUnit newMargin = containerLogicalWidth - computedValues.m_extent - cb->marginStartForChild(*this); bool hasInvertedDirection = cb->style().isLeftToRightDirection() != style().isLeftToRightDirection(); if (hasInvertedDirection) computedValues.m_margins.m_start = newMargin; else computedValues.m_margins.m_end = newMargin; } } LayoutUnit RenderBox::fillAvailableMeasure(LayoutUnit availableLogicalWidth) const { LayoutUnit marginStart = 0; LayoutUnit marginEnd = 0; return fillAvailableMeasure(availableLogicalWidth, marginStart, marginEnd); } LayoutUnit RenderBox::fillAvailableMeasure(LayoutUnit availableLogicalWidth, LayoutUnit& marginStart, LayoutUnit& marginEnd) const { marginStart = minimumValueForLength(style().marginStart(), availableLogicalWidth); marginEnd = minimumValueForLength(style().marginEnd(), availableLogicalWidth); return availableLogicalWidth - marginStart - marginEnd; } LayoutUnit RenderBox::computeIntrinsicLogicalWidthUsing(Length logicalWidthLength, LayoutUnit availableLogicalWidth, LayoutUnit borderAndPadding) const { if (logicalWidthLength.type() == FillAvailable) return fillAvailableMeasure(availableLogicalWidth); LayoutUnit minLogicalWidth = 0; LayoutUnit maxLogicalWidth = 0; computeIntrinsicLogicalWidths(minLogicalWidth, maxLogicalWidth); if (logicalWidthLength.type() == MinContent) return minLogicalWidth + borderAndPadding; if (logicalWidthLength.type() == MaxContent) return maxLogicalWidth + borderAndPadding; if (logicalWidthLength.type() == FitContent) { minLogicalWidth += borderAndPadding; maxLogicalWidth += borderAndPadding; return std::max(minLogicalWidth, std::min(maxLogicalWidth, fillAvailableMeasure(availableLogicalWidth))); } ASSERT_NOT_REACHED(); return 0; } LayoutUnit RenderBox::computeLogicalWidthInRegionUsing(SizeType widthType, Length logicalWidth, LayoutUnit availableLogicalWidth, const RenderBlock* cb, RenderRegion* region) const { if (!logicalWidth.isIntrinsicOrAuto()) { // FIXME: If the containing block flow is perpendicular to our direction we need to use the available logical height instead. return adjustBorderBoxLogicalWidthForBoxSizing(valueForLength(logicalWidth, availableLogicalWidth)); } if (logicalWidth.isIntrinsic()) return computeIntrinsicLogicalWidthUsing(logicalWidth, availableLogicalWidth, borderAndPaddingLogicalWidth()); LayoutUnit marginStart = 0; LayoutUnit marginEnd = 0; LayoutUnit logicalWidthResult = fillAvailableMeasure(availableLogicalWidth, marginStart, marginEnd); if (shrinkToAvoidFloats() && cb->containsFloats()) logicalWidthResult = std::min(logicalWidthResult, shrinkLogicalWidthToAvoidFloats(marginStart, marginEnd, cb, region)); if (widthType == MainOrPreferredSize && sizesLogicalWidthToFitContent(widthType)) return std::max(minPreferredLogicalWidth(), std::min(maxPreferredLogicalWidth(), logicalWidthResult)); return logicalWidthResult; } static bool flexItemHasStretchAlignment(const RenderBox& flexitem) { auto parent = flexitem.parent(); return flexitem.style().alignSelf() == AlignStretch || (flexitem.style().alignSelf() == AlignAuto && parent->style().alignItems() == AlignStretch); } static bool isStretchingColumnFlexItem(const RenderBox& flexitem) { auto parent = flexitem.parent(); if (parent->isDeprecatedFlexibleBox() && parent->style().boxOrient() == VERTICAL && parent->style().boxAlign() == BSTRETCH) return true; // We don't stretch multiline flexboxes because they need to apply line spacing (align-content) first. if (parent->isFlexibleBox() && parent->style().flexWrap() == FlexNoWrap && parent->style().isColumnFlexDirection() && flexItemHasStretchAlignment(flexitem)) return true; return false; } bool RenderBox::sizesLogicalWidthToFitContent(SizeType widthType) const { // Marquees in WinIE are like a mixture of blocks and inline-blocks. They size as though they're blocks, // but they allow text to sit on the same line as the marquee. if (isFloating() || (isInlineBlockOrInlineTable() && !isHTMLMarquee())) return true; // This code may look a bit strange. Basically width:intrinsic should clamp the size when testing both // min-width and width. max-width is only clamped if it is also intrinsic. Length logicalWidth = (widthType == MaxSize) ? style().logicalMaxWidth() : style().logicalWidth(); if (logicalWidth.type() == Intrinsic) return true; // Children of a horizontal marquee do not fill the container by default. // FIXME: Need to deal with MAUTO value properly. It could be vertical. // FIXME: Think about block-flow here. Need to find out how marquee direction relates to // block-flow (as well as how marquee overflow should relate to block flow). // https://bugs.webkit.org/show_bug.cgi?id=46472 if (parent()->style().overflowX() == OMARQUEE) { EMarqueeDirection dir = parent()->style().marqueeDirection(); if (dir == MAUTO || dir == MFORWARD || dir == MBACKWARD || dir == MLEFT || dir == MRIGHT) return true; } // Flexible box items should shrink wrap, so we lay them out at their intrinsic widths. // In the case of columns that have a stretch alignment, we go ahead and layout at the // stretched size to avoid an extra layout when applying alignment. if (parent()->isFlexibleBox()) { // For multiline columns, we need to apply align-content first, so we can't stretch now. if (!parent()->style().isColumnFlexDirection() || parent()->style().flexWrap() != FlexNoWrap) return true; if (!flexItemHasStretchAlignment(*this)) return true; } // Flexible horizontal boxes lay out children at their intrinsic widths. Also vertical boxes // that don't stretch their kids lay out their children at their intrinsic widths. // FIXME: Think about block-flow here. // https://bugs.webkit.org/show_bug.cgi?id=46473 if (parent()->isDeprecatedFlexibleBox() && (parent()->style().boxOrient() == HORIZONTAL || parent()->style().boxAlign() != BSTRETCH)) return true; // Button, input, select, textarea, and legend treat width value of 'auto' as 'intrinsic' unless it's in a // stretching column flexbox. // FIXME: Think about block-flow here. // https://bugs.webkit.org/show_bug.cgi?id=46473 if (logicalWidth.type() == Auto && !isStretchingColumnFlexItem(*this) && element() && (isHTMLInputElement(element()) || element()->hasTagName(selectTag) || element()->hasTagName(buttonTag) || isHTMLTextAreaElement(element()) || element()->hasTagName(legendTag))) return true; if (isHorizontalWritingMode() != containingBlock()->isHorizontalWritingMode()) return true; return false; } void RenderBox::computeInlineDirectionMargins(RenderBlock* containingBlock, LayoutUnit containerWidth, LayoutUnit childWidth, LayoutUnit& marginStart, LayoutUnit& marginEnd) const { const RenderStyle& containingBlockStyle = containingBlock->style(); Length marginStartLength = style().marginStartUsing(&containingBlockStyle); Length marginEndLength = style().marginEndUsing(&containingBlockStyle); if (isFloating() || isInline()) { // Inline blocks/tables and floats don't have their margins increased. marginStart = minimumValueForLength(marginStartLength, containerWidth); marginEnd = minimumValueForLength(marginEndLength, containerWidth); return; } // Case One: The object is being centered in the containing block's available logical width. if ((marginStartLength.isAuto() && marginEndLength.isAuto() && childWidth < containerWidth) || (!marginStartLength.isAuto() && !marginEndLength.isAuto() && containingBlock->style().textAlign() == WEBKIT_CENTER)) { // Other browsers center the margin box for align=center elements so we match them here. LayoutUnit marginStartWidth = minimumValueForLength(marginStartLength, containerWidth); LayoutUnit marginEndWidth = minimumValueForLength(marginEndLength, containerWidth); LayoutUnit centeredMarginBoxStart = std::max(0, (containerWidth - childWidth - marginStartWidth - marginEndWidth) / 2); marginStart = centeredMarginBoxStart + marginStartWidth; marginEnd = containerWidth - childWidth - marginStart + marginEndWidth; return; } // Case Two: The object is being pushed to the start of the containing block's available logical width. if (marginEndLength.isAuto() && childWidth < containerWidth) { marginStart = valueForLength(marginStartLength, containerWidth); marginEnd = containerWidth - childWidth - marginStart; return; } // Case Three: The object is being pushed to the end of the containing block's available logical width. bool pushToEndFromTextAlign = !marginEndLength.isAuto() && ((!containingBlockStyle.isLeftToRightDirection() && containingBlockStyle.textAlign() == WEBKIT_LEFT) || (containingBlockStyle.isLeftToRightDirection() && containingBlockStyle.textAlign() == WEBKIT_RIGHT)); if ((marginStartLength.isAuto() && childWidth < containerWidth) || pushToEndFromTextAlign) { marginEnd = valueForLength(marginEndLength, containerWidth); marginStart = containerWidth - childWidth - marginEnd; return; } // Case Four: Either no auto margins, or our width is >= the container width (css2.1, 10.3.3). In that case // auto margins will just turn into 0. marginStart = minimumValueForLength(marginStartLength, containerWidth); marginEnd = minimumValueForLength(marginEndLength, containerWidth); } RenderBoxRegionInfo* RenderBox::renderBoxRegionInfo(RenderRegion* region, RenderBoxRegionInfoFlags cacheFlag) const { // Make sure nobody is trying to call this with a null region. if (!region) return 0; // If we have computed our width in this region already, it will be cached, and we can // just return it. RenderBoxRegionInfo* boxInfo = region->renderBoxRegionInfo(this); if (boxInfo && cacheFlag == CacheRenderBoxRegionInfo) return boxInfo; // No cached value was found, so we have to compute our insets in this region. // FIXME: For now we limit this computation to normal RenderBlocks. Future patches will expand // support to cover all boxes. RenderFlowThread* flowThread = flowThreadContainingBlock(); if (isRenderFlowThread() || !flowThread || !canHaveBoxInfoInRegion() || flowThread->style().writingMode() != style().writingMode()) return 0; LogicalExtentComputedValues computedValues; computeLogicalWidthInRegion(computedValues, region); // Now determine the insets based off where this object is supposed to be positioned. RenderBlock* cb = containingBlock(); RenderRegion* clampedContainingBlockRegion = cb->clampToStartAndEndRegions(region); RenderBoxRegionInfo* containingBlockInfo = cb->renderBoxRegionInfo(clampedContainingBlockRegion); LayoutUnit containingBlockLogicalWidth = cb->logicalWidth(); LayoutUnit containingBlockLogicalWidthInRegion = containingBlockInfo ? containingBlockInfo->logicalWidth() : containingBlockLogicalWidth; LayoutUnit marginStartInRegion = computedValues.m_margins.m_start; LayoutUnit startMarginDelta = marginStartInRegion - marginStart(); LayoutUnit logicalWidthInRegion = computedValues.m_extent; LayoutUnit logicalLeftInRegion = computedValues.m_position; LayoutUnit widthDelta = logicalWidthInRegion - logicalWidth(); LayoutUnit logicalLeftDelta = isOutOfFlowPositioned() ? logicalLeftInRegion - logicalLeft() : startMarginDelta; LayoutUnit logicalRightInRegion = containingBlockLogicalWidthInRegion - (logicalLeftInRegion + logicalWidthInRegion); LayoutUnit oldLogicalRight = containingBlockLogicalWidth - (logicalLeft() + logicalWidth()); LayoutUnit logicalRightDelta = isOutOfFlowPositioned() ? logicalRightInRegion - oldLogicalRight : startMarginDelta; LayoutUnit logicalLeftOffset = 0; if (!isOutOfFlowPositioned() && avoidsFloats() && cb->containsFloats()) { LayoutUnit startPositionDelta = cb->computeStartPositionDeltaForChildAvoidingFloats(*this, marginStartInRegion, region); if (cb->style().isLeftToRightDirection()) logicalLeftDelta += startPositionDelta; else logicalRightDelta += startPositionDelta; } if (cb->style().isLeftToRightDirection()) logicalLeftOffset += logicalLeftDelta; else logicalLeftOffset -= (widthDelta + logicalRightDelta); LayoutUnit logicalRightOffset = logicalWidth() - (logicalLeftOffset + logicalWidthInRegion); bool isShifted = (containingBlockInfo && containingBlockInfo->isShifted()) || (style().isLeftToRightDirection() && logicalLeftOffset) || (!style().isLeftToRightDirection() && logicalRightOffset); // FIXME: Although it's unlikely, these boxes can go outside our bounds, and so we will need to incorporate them into overflow. if (cacheFlag == CacheRenderBoxRegionInfo) return region->setRenderBoxRegionInfo(this, logicalLeftOffset, logicalWidthInRegion, isShifted); return new RenderBoxRegionInfo(logicalLeftOffset, logicalWidthInRegion, isShifted); } static bool shouldFlipBeforeAfterMargins(const RenderStyle& containingBlockStyle, const RenderStyle* childStyle) { ASSERT(containingBlockStyle.isHorizontalWritingMode() != childStyle->isHorizontalWritingMode()); WritingMode childWritingMode = childStyle->writingMode(); bool shouldFlip = false; switch (containingBlockStyle.writingMode()) { case TopToBottomWritingMode: shouldFlip = (childWritingMode == RightToLeftWritingMode); break; case BottomToTopWritingMode: shouldFlip = (childWritingMode == RightToLeftWritingMode); break; case RightToLeftWritingMode: shouldFlip = (childWritingMode == BottomToTopWritingMode); break; case LeftToRightWritingMode: shouldFlip = (childWritingMode == BottomToTopWritingMode); break; } if (!containingBlockStyle.isLeftToRightDirection()) shouldFlip = !shouldFlip; return shouldFlip; } void RenderBox::updateLogicalHeight() { LogicalExtentComputedValues computedValues; computeLogicalHeight(logicalHeight(), logicalTop(), computedValues); setLogicalHeight(computedValues.m_extent); setLogicalTop(computedValues.m_position); setMarginBefore(computedValues.m_margins.m_before); setMarginAfter(computedValues.m_margins.m_after); } void RenderBox::computeLogicalHeight(LayoutUnit logicalHeight, LayoutUnit logicalTop, LogicalExtentComputedValues& computedValues) const { computedValues.m_extent = logicalHeight; computedValues.m_position = logicalTop; // Cell height is managed by the table and inline non-replaced elements do not support a height property. if (isTableCell() || (isInline() && !isReplaced())) return; Length h; if (isOutOfFlowPositioned()) computePositionedLogicalHeight(computedValues); else { RenderBlock* cb = containingBlock(); bool hasPerpendicularContainingBlock = cb->isHorizontalWritingMode() != isHorizontalWritingMode(); if (!hasPerpendicularContainingBlock) { bool shouldFlipBeforeAfter = cb->style().writingMode() != style().writingMode(); computeBlockDirectionMargins(cb, shouldFlipBeforeAfter ? computedValues.m_margins.m_after : computedValues.m_margins.m_before, shouldFlipBeforeAfter ? computedValues.m_margins.m_before : computedValues.m_margins.m_after); } // For tables, calculate margins only. if (isTable()) { if (hasPerpendicularContainingBlock) { bool shouldFlipBeforeAfter = shouldFlipBeforeAfterMargins(cb->style(), &style()); computeInlineDirectionMargins(cb, containingBlockLogicalWidthForContent(), computedValues.m_extent, shouldFlipBeforeAfter ? computedValues.m_margins.m_after : computedValues.m_margins.m_before, shouldFlipBeforeAfter ? computedValues.m_margins.m_before : computedValues.m_margins.m_after); } return; } // FIXME: Account for block-flow in flexible boxes. // https://bugs.webkit.org/show_bug.cgi?id=46418 bool inHorizontalBox = parent()->isDeprecatedFlexibleBox() && parent()->style().boxOrient() == HORIZONTAL; bool stretching = parent()->style().boxAlign() == BSTRETCH; bool treatAsReplaced = shouldComputeSizeAsReplaced() && (!inHorizontalBox || !stretching); bool checkMinMaxHeight = false; // The parent box is flexing us, so it has increased or decreased our height. We have to // grab our cached flexible height. // FIXME: Account for block-flow in flexible boxes. // https://bugs.webkit.org/show_bug.cgi?id=46418 if (hasOverrideHeight() && parent()->isFlexibleBoxIncludingDeprecated()) h = Length(overrideLogicalContentHeight(), Fixed); else if (treatAsReplaced) h = Length(computeReplacedLogicalHeight(), Fixed); else { h = style().logicalHeight(); checkMinMaxHeight = true; } // Block children of horizontal flexible boxes fill the height of the box. // FIXME: Account for block-flow in flexible boxes. // https://bugs.webkit.org/show_bug.cgi?id=46418 if (h.isAuto() && parent()->isDeprecatedFlexibleBox() && parent()->style().boxOrient() == HORIZONTAL && parent()->isStretchingChildren()) { h = Length(parentBox()->contentLogicalHeight() - marginBefore() - marginAfter() - borderAndPaddingLogicalHeight(), Fixed); checkMinMaxHeight = false; } LayoutUnit heightResult; if (checkMinMaxHeight) { heightResult = computeLogicalHeightUsing(style().logicalHeight()); if (heightResult == -1) heightResult = computedValues.m_extent; heightResult = constrainLogicalHeightByMinMax(heightResult); } else { // The only times we don't check min/max height are when a fixed length has // been given as an override. Just use that. The value has already been adjusted // for box-sizing. heightResult = h.value() + borderAndPaddingLogicalHeight(); } computedValues.m_extent = heightResult; if (hasPerpendicularContainingBlock) { bool shouldFlipBeforeAfter = shouldFlipBeforeAfterMargins(cb->style(), &style()); computeInlineDirectionMargins(cb, containingBlockLogicalWidthForContent(), heightResult, shouldFlipBeforeAfter ? computedValues.m_margins.m_after : computedValues.m_margins.m_before, shouldFlipBeforeAfter ? computedValues.m_margins.m_before : computedValues.m_margins.m_after); } } // WinIE quirk: The block always fills the entire canvas in quirks mode. The always fills the // block in quirks mode. Only apply this quirk if the block is normal flow and no height // is specified. When we're printing, we also need this quirk if the body or root has a percentage // height since we don't set a height in RenderView when we're printing. So without this quirk, the // height has nothing to be a percentage of, and it ends up being 0. That is bad. bool paginatedContentNeedsBaseHeight = document().printing() && h.isPercent() && (isRoot() || (isBody() && document().documentElement()->renderer()->style().logicalHeight().isPercent())) && !isInline(); if (stretchesToViewport() || paginatedContentNeedsBaseHeight) { LayoutUnit margins = collapsedMarginBefore() + collapsedMarginAfter(); LayoutUnit visibleHeight = view().pageOrViewLogicalHeight(); if (isRoot()) computedValues.m_extent = std::max(computedValues.m_extent, visibleHeight - margins); else { LayoutUnit marginsBordersPadding = margins + parentBox()->marginBefore() + parentBox()->marginAfter() + parentBox()->borderAndPaddingLogicalHeight(); computedValues.m_extent = std::max(computedValues.m_extent, visibleHeight - marginsBordersPadding); } } } LayoutUnit RenderBox::computeLogicalHeightUsing(const Length& height) const { LayoutUnit logicalHeight = computeContentAndScrollbarLogicalHeightUsing(height); if (logicalHeight != -1) logicalHeight = adjustBorderBoxLogicalHeightForBoxSizing(logicalHeight); return logicalHeight; } LayoutUnit RenderBox::computeContentLogicalHeight(const Length& height) const { LayoutUnit heightIncludingScrollbar = computeContentAndScrollbarLogicalHeightUsing(height); if (heightIncludingScrollbar == -1) return -1; return std::max(0, adjustContentBoxLogicalHeightForBoxSizing(heightIncludingScrollbar) - scrollbarLogicalHeight()); } LayoutUnit RenderBox::computeContentAndScrollbarLogicalHeightUsing(const Length& height) const { if (height.isFixed()) return height.value(); if (height.isPercent()) return computePercentageLogicalHeight(height); return -1; } bool RenderBox::skipContainingBlockForPercentHeightCalculation(const RenderBox* containingBlock, bool isPerpendicularWritingMode) const { // Flow threads for multicol or paged overflow should be skipped. They are invisible to the DOM, // and percent heights of children should be resolved against the multicol or paged container. if (containingBlock->isInFlowRenderFlowThread() && !isPerpendicularWritingMode) return true; // For quirks mode and anonymous blocks, we skip auto-height containingBlocks when computing percentages. // For standards mode, we treat the percentage as auto if it has an auto-height containing block. if (!document().inQuirksMode() && !containingBlock->isAnonymousBlock()) return false; return !containingBlock->isTableCell() && !containingBlock->isOutOfFlowPositioned() && containingBlock->style().logicalHeight().isAuto() && isHorizontalWritingMode() == containingBlock->isHorizontalWritingMode(); } LayoutUnit RenderBox::computePercentageLogicalHeight(const Length& height) const { LayoutUnit availableHeight = -1; bool skippedAutoHeightContainingBlock = false; RenderBlock* cb = containingBlock(); const RenderBox* containingBlockChild = this; LayoutUnit rootMarginBorderPaddingHeight = 0; bool isHorizontal = isHorizontalWritingMode(); while (!cb->isRenderView() && skipContainingBlockForPercentHeightCalculation(cb, isHorizontal != cb->isHorizontalWritingMode())) { if (cb->isBody() || cb->isRoot()) rootMarginBorderPaddingHeight += cb->marginBefore() + cb->marginAfter() + cb->borderAndPaddingLogicalHeight(); skippedAutoHeightContainingBlock = true; containingBlockChild = cb; cb = cb->containingBlock(); cb->addPercentHeightDescendant(const_cast(*this)); } const RenderStyle& cbstyle = cb->style(); // A positioned element that specified both top/bottom or that specifies height should be treated as though it has a height // explicitly specified that can be used for any percentage computations. bool isOutOfFlowPositionedWithSpecifiedHeight = cb->isOutOfFlowPositioned() && (!cbstyle.logicalHeight().isAuto() || (!cbstyle.logicalTop().isAuto() && !cbstyle.logicalBottom().isAuto())); bool includeBorderPadding = isTable(); if (isHorizontal != cb->isHorizontalWritingMode()) availableHeight = containingBlockChild->containingBlockLogicalWidthForContent(); #if ENABLE(CSS_GRID_LAYOUT) else if (hasOverrideContainingBlockLogicalHeight()) availableHeight = overrideContainingBlockContentLogicalHeight(); #endif else if (cb->isTableCell()) { if (!skippedAutoHeightContainingBlock) { // Table cells violate what the CSS spec says to do with heights. Basically we // don't care if the cell specified a height or not. We just always make ourselves // be a percentage of the cell's current content height. if (!cb->hasOverrideHeight()) { // Normally we would let the cell size intrinsically, but scrolling overflow has to be // treated differently, since WinIE lets scrolled overflow regions shrink as needed. // While we can't get all cases right, we can at least detect when the cell has a specified // height or when the table has a specified height. In these cases we want to initially have // no size and allow the flexing of the table or the cell to its specified height to cause us // to grow to fill the space. This could end up being wrong in some cases, but it is // preferable to the alternative (sizing intrinsically and making the row end up too big). RenderTableCell* cell = toRenderTableCell(cb); if (scrollsOverflowY() && (!cell->style().logicalHeight().isAuto() || !cell->table()->style().logicalHeight().isAuto())) return 0; return -1; } availableHeight = cb->overrideLogicalContentHeight(); includeBorderPadding = true; } } else if (cbstyle.logicalHeight().isFixed()) { LayoutUnit contentBoxHeight = cb->adjustContentBoxLogicalHeightForBoxSizing(cbstyle.logicalHeight().value()); availableHeight = std::max(0, cb->constrainContentBoxLogicalHeightByMinMax(contentBoxHeight - cb->scrollbarLogicalHeight())); } else if (cbstyle.logicalHeight().isPercent() && !isOutOfFlowPositionedWithSpecifiedHeight) { // We need to recur and compute the percentage height for our containing block. LayoutUnit heightWithScrollbar = cb->computePercentageLogicalHeight(cbstyle.logicalHeight()); if (heightWithScrollbar != -1) { LayoutUnit contentBoxHeightWithScrollbar = cb->adjustContentBoxLogicalHeightForBoxSizing(heightWithScrollbar); // We need to adjust for min/max height because this method does not // handle the min/max of the current block, its caller does. So the // return value from the recursive call will not have been adjusted // yet. LayoutUnit contentBoxHeight = cb->constrainContentBoxLogicalHeightByMinMax(contentBoxHeightWithScrollbar - cb->scrollbarLogicalHeight()); availableHeight = std::max(0, contentBoxHeight); } } else if (isOutOfFlowPositionedWithSpecifiedHeight) { // Don't allow this to affect the block' height() member variable, since this // can get called while the block is still laying out its kids. LogicalExtentComputedValues computedValues; cb->computeLogicalHeight(cb->logicalHeight(), 0, computedValues); availableHeight = computedValues.m_extent - cb->borderAndPaddingLogicalHeight() - cb->scrollbarLogicalHeight(); } else if (cb->isRenderView()) availableHeight = view().pageOrViewLogicalHeight(); if (availableHeight == -1) return availableHeight; availableHeight -= rootMarginBorderPaddingHeight; LayoutUnit result = valueForLength(height, availableHeight); if (includeBorderPadding) { // FIXME: Table cells should default to box-sizing: border-box so we can avoid this hack. // It is necessary to use the border-box to match WinIE's broken // box model. This is essential for sizing inside // table cells using percentage heights. result -= borderAndPaddingLogicalHeight(); return std::max(0, result); } return result; } LayoutUnit RenderBox::computeReplacedLogicalWidth(ShouldComputePreferred shouldComputePreferred) const { return computeReplacedLogicalWidthRespectingMinMaxWidth(computeReplacedLogicalWidthUsing(style().logicalWidth()), shouldComputePreferred); } LayoutUnit RenderBox::computeReplacedLogicalWidthRespectingMinMaxWidth(LayoutUnit logicalWidth, ShouldComputePreferred shouldComputePreferred) const { LayoutUnit minLogicalWidth = (shouldComputePreferred == ComputePreferred && style().logicalMinWidth().isPercent()) || style().logicalMinWidth().isUndefined() ? logicalWidth : computeReplacedLogicalWidthUsing(style().logicalMinWidth()); LayoutUnit maxLogicalWidth = (shouldComputePreferred == ComputePreferred && style().logicalMaxWidth().isPercent()) || style().logicalMaxWidth().isUndefined() ? logicalWidth : computeReplacedLogicalWidthUsing(style().logicalMaxWidth()); return std::max(minLogicalWidth, std::min(logicalWidth, maxLogicalWidth)); } LayoutUnit RenderBox::computeReplacedLogicalWidthUsing(Length logicalWidth) const { switch (logicalWidth.type()) { case Fixed: return adjustContentBoxLogicalWidthForBoxSizing(logicalWidth.value()); case MinContent: case MaxContent: { // MinContent/MaxContent don't need the availableLogicalWidth argument. LayoutUnit availableLogicalWidth = 0; return computeIntrinsicLogicalWidthUsing(logicalWidth, availableLogicalWidth, borderAndPaddingLogicalWidth()) - borderAndPaddingLogicalWidth(); } case FitContent: case FillAvailable: case Percent: case Calculated: { // FIXME: containingBlockLogicalWidthForContent() is wrong if the replaced element's block-flow is perpendicular to the // containing block's block-flow. // https://bugs.webkit.org/show_bug.cgi?id=46496 const LayoutUnit cw = isOutOfFlowPositioned() ? containingBlockLogicalWidthForPositioned(toRenderBoxModelObject(container())) : containingBlockLogicalWidthForContent(); Length containerLogicalWidth = containingBlock()->style().logicalWidth(); // FIXME: Handle cases when containing block width is calculated or viewport percent. // https://bugs.webkit.org/show_bug.cgi?id=91071 if (logicalWidth.isIntrinsic()) return computeIntrinsicLogicalWidthUsing(logicalWidth, cw, borderAndPaddingLogicalWidth()) - borderAndPaddingLogicalWidth(); if (cw > 0 || (!cw && (containerLogicalWidth.isFixed() || containerLogicalWidth.isPercent()))) return adjustContentBoxLogicalWidthForBoxSizing(minimumValueForLength(logicalWidth, cw)); } FALLTHROUGH; case Intrinsic: case MinIntrinsic: case Auto: case Relative: case Undefined: return intrinsicLogicalWidth(); } ASSERT_NOT_REACHED(); return 0; } LayoutUnit RenderBox::computeReplacedLogicalHeight() const { return computeReplacedLogicalHeightRespectingMinMaxHeight(computeReplacedLogicalHeightUsing(style().logicalHeight())); } LayoutUnit RenderBox::computeReplacedLogicalHeightRespectingMinMaxHeight(LayoutUnit logicalHeight) const { LayoutUnit minLogicalHeight = computeReplacedLogicalHeightUsing(style().logicalMinHeight()); LayoutUnit maxLogicalHeight = style().logicalMaxHeight().isUndefined() ? logicalHeight : computeReplacedLogicalHeightUsing(style().logicalMaxHeight()); return std::max(minLogicalHeight, std::min(logicalHeight, maxLogicalHeight)); } LayoutUnit RenderBox::computeReplacedLogicalHeightUsing(Length logicalHeight) const { switch (logicalHeight.type()) { case Fixed: return adjustContentBoxLogicalHeightForBoxSizing(logicalHeight.value()); case Percent: case Calculated: { auto cb = isOutOfFlowPositioned() ? container() : containingBlock(); while (cb->isAnonymous() && !cb->isRenderView()) { cb = cb->containingBlock(); toRenderBlock(cb)->addPercentHeightDescendant(const_cast(*this)); } // FIXME: This calculation is not patched for block-flow yet. // https://bugs.webkit.org/show_bug.cgi?id=46500 if (cb->isOutOfFlowPositioned() && cb->style().height().isAuto() && !(cb->style().top().isAuto() || cb->style().bottom().isAuto())) { ASSERT_WITH_SECURITY_IMPLICATION(cb->isRenderBlock()); RenderBlock* block = toRenderBlock(cb); LogicalExtentComputedValues computedValues; block->computeLogicalHeight(block->logicalHeight(), 0, computedValues); LayoutUnit newContentHeight = computedValues.m_extent - block->borderAndPaddingLogicalHeight() - block->scrollbarLogicalHeight(); LayoutUnit newHeight = block->adjustContentBoxLogicalHeightForBoxSizing(newContentHeight); return adjustContentBoxLogicalHeightForBoxSizing(valueForLength(logicalHeight, newHeight)); } // FIXME: availableLogicalHeight() is wrong if the replaced element's block-flow is perpendicular to the // containing block's block-flow. // https://bugs.webkit.org/show_bug.cgi?id=46496 LayoutUnit availableHeight; if (isOutOfFlowPositioned()) availableHeight = containingBlockLogicalHeightForPositioned(toRenderBoxModelObject(cb)); else { availableHeight = containingBlockLogicalHeightForContent(IncludeMarginBorderPadding); // It is necessary to use the border-box to match WinIE's broken // box model. This is essential for sizing inside // table cells using percentage heights. // FIXME: This needs to be made block-flow-aware. If the cell and image are perpendicular block-flows, this isn't right. // https://bugs.webkit.org/show_bug.cgi?id=46997 while (cb && !cb->isRenderView() && (cb->style().logicalHeight().isAuto() || cb->style().logicalHeight().isPercent())) { if (cb->isTableCell()) { // Don't let table cells squeeze percent-height replaced elements // availableHeight = std::max(availableHeight, intrinsicLogicalHeight()); return valueForLength(logicalHeight, availableHeight - borderAndPaddingLogicalHeight()); } toRenderBlock(cb)->addPercentHeightDescendant(const_cast(*this)); cb = cb->containingBlock(); } } return adjustContentBoxLogicalHeightForBoxSizing(valueForLength(logicalHeight, availableHeight)); } default: return intrinsicLogicalHeight(); } } LayoutUnit RenderBox::availableLogicalHeight(AvailableLogicalHeightType heightType) const { return constrainLogicalHeightByMinMax(availableLogicalHeightUsing(style().logicalHeight(), heightType)); } LayoutUnit RenderBox::availableLogicalHeightUsing(const Length& h, AvailableLogicalHeightType heightType) const { // We need to stop here, since we don't want to increase the height of the table // artificially. We're going to rely on this cell getting expanded to some new // height, and then when we lay out again we'll use the calculation below. if (isTableCell() && (h.isAuto() || h.isPercent())) { if (hasOverrideHeight()) return overrideLogicalContentHeight(); return logicalHeight() - borderAndPaddingLogicalHeight(); } if (h.isPercent() && isOutOfFlowPositioned() && !isRenderFlowThread()) { // FIXME: This is wrong if the containingBlock has a perpendicular writing mode. LayoutUnit availableHeight = containingBlockLogicalHeightForPositioned(containingBlock()); return adjustContentBoxLogicalHeightForBoxSizing(valueForLength(h, availableHeight)); } LayoutUnit heightIncludingScrollbar = computeContentAndScrollbarLogicalHeightUsing(h); if (heightIncludingScrollbar != -1) return std::max(0, adjustContentBoxLogicalHeightForBoxSizing(heightIncludingScrollbar) - scrollbarLogicalHeight()); // FIXME: Check logicalTop/logicalBottom here to correctly handle vertical writing-mode. // https://bugs.webkit.org/show_bug.cgi?id=46500 if (isRenderBlock() && isOutOfFlowPositioned() && style().height().isAuto() && !(style().top().isAuto() || style().bottom().isAuto())) { RenderBlock* block = const_cast(toRenderBlock(this)); LogicalExtentComputedValues computedValues; block->computeLogicalHeight(block->logicalHeight(), 0, computedValues); LayoutUnit newContentHeight = computedValues.m_extent - block->borderAndPaddingLogicalHeight() - block->scrollbarLogicalHeight(); return adjustContentBoxLogicalHeightForBoxSizing(newContentHeight); } // FIXME: This is wrong if the containingBlock has a perpendicular writing mode. LayoutUnit availableHeight = containingBlockLogicalHeightForContent(heightType); if (heightType == ExcludeMarginBorderPadding) { // FIXME: Margin collapsing hasn't happened yet, so this incorrectly removes collapsed margins. availableHeight -= marginBefore() + marginAfter() + borderAndPaddingLogicalHeight(); } return availableHeight; } void RenderBox::computeBlockDirectionMargins(const RenderBlock* containingBlock, LayoutUnit& marginBefore, LayoutUnit& marginAfter) const { if (isTableCell()) { // FIXME: Not right if we allow cells to have different directionality than the table. If we do allow this, though, // we may just do it with an extra anonymous block inside the cell. marginBefore = 0; marginAfter = 0; return; } // Margins are calculated with respect to the logical width of // the containing block (8.3) LayoutUnit cw = containingBlockLogicalWidthForContent(); const RenderStyle& containingBlockStyle = containingBlock->style(); marginBefore = minimumValueForLength(style().marginBeforeUsing(&containingBlockStyle), cw); marginAfter = minimumValueForLength(style().marginAfterUsing(&containingBlockStyle), cw); } void RenderBox::computeAndSetBlockDirectionMargins(const RenderBlock* containingBlock) { LayoutUnit marginBefore; LayoutUnit marginAfter; computeBlockDirectionMargins(containingBlock, marginBefore, marginAfter); containingBlock->setMarginBeforeForChild(*this, marginBefore); containingBlock->setMarginAfterForChild(*this, marginAfter); } LayoutUnit RenderBox::containingBlockLogicalWidthForPositioned(const RenderBoxModelObject* containingBlock, RenderRegion* region, bool checkForPerpendicularWritingMode) const { if (checkForPerpendicularWritingMode && containingBlock->isHorizontalWritingMode() != isHorizontalWritingMode()) return containingBlockLogicalHeightForPositioned(containingBlock, false); if (containingBlock->isBox()) { bool isFixedPosition = style().position() == FixedPosition; RenderFlowThread* flowThread = flowThreadContainingBlock(); if (!flowThread) { if (isFixedPosition && containingBlock->isRenderView()) return toRenderView(containingBlock)->clientLogicalWidthForFixedPosition(); return toRenderBox(containingBlock)->clientLogicalWidth(); } if (isFixedPosition && containingBlock->isRenderNamedFlowThread()) return containingBlock->view().clientLogicalWidth(); if (!containingBlock->isRenderBlock()) return toRenderBox(*containingBlock).clientLogicalWidth(); const RenderBlock* cb = toRenderBlock(containingBlock); RenderBoxRegionInfo* boxInfo = 0; if (!region) { if (containingBlock->isRenderFlowThread() && !checkForPerpendicularWritingMode) return toRenderFlowThread(containingBlock)->contentLogicalWidthOfFirstRegion(); if (isWritingModeRoot()) { LayoutUnit cbPageOffset = cb->offsetFromLogicalTopOfFirstPage(); RenderRegion* cbRegion = cb->regionAtBlockOffset(cbPageOffset); if (cbRegion) boxInfo = cb->renderBoxRegionInfo(cbRegion); } } else if (region && flowThread->isHorizontalWritingMode() == containingBlock->isHorizontalWritingMode()) { RenderRegion* containingBlockRegion = cb->clampToStartAndEndRegions(region); boxInfo = cb->renderBoxRegionInfo(containingBlockRegion); } return (boxInfo) ? std::max(0, cb->clientLogicalWidth() - (cb->logicalWidth() - boxInfo->logicalWidth())) : cb->clientLogicalWidth(); } ASSERT(containingBlock->isRenderInline() && containingBlock->isInFlowPositioned()); const RenderInline* flow = toRenderInline(containingBlock); InlineFlowBox* first = flow->firstLineBox(); InlineFlowBox* last = flow->lastLineBox(); // If the containing block is empty, return a width of 0. if (!first || !last) return 0; LayoutUnit fromLeft; LayoutUnit fromRight; if (containingBlock->style().isLeftToRightDirection()) { fromLeft = first->logicalLeft() + first->borderLogicalLeft(); fromRight = last->logicalLeft() + last->logicalWidth() - last->borderLogicalRight(); } else { fromRight = first->logicalLeft() + first->logicalWidth() - first->borderLogicalRight(); fromLeft = last->logicalLeft() + last->borderLogicalLeft(); } return std::max(0, fromRight - fromLeft); } LayoutUnit RenderBox::containingBlockLogicalHeightForPositioned(const RenderBoxModelObject* containingBlock, bool checkForPerpendicularWritingMode) const { if (checkForPerpendicularWritingMode && containingBlock->isHorizontalWritingMode() != isHorizontalWritingMode()) return containingBlockLogicalWidthForPositioned(containingBlock, 0, false); if (containingBlock->isBox()) { bool isFixedPosition = style().position() == FixedPosition; if (isFixedPosition && containingBlock->isRenderView()) return toRenderView(containingBlock)->clientLogicalHeightForFixedPosition(); const RenderBlock* cb = containingBlock->isRenderBlock() ? toRenderBlock(containingBlock) : containingBlock->containingBlock(); LayoutUnit result = cb->clientLogicalHeight(); RenderFlowThread* flowThread = flowThreadContainingBlock(); if (flowThread && containingBlock->isRenderFlowThread() && flowThread->isHorizontalWritingMode() == containingBlock->isHorizontalWritingMode()) { if (containingBlock->isRenderNamedFlowThread() && isFixedPosition) return containingBlock->view().clientLogicalHeight(); return toRenderFlowThread(containingBlock)->contentLogicalHeightOfFirstRegion(); } return result; } ASSERT(containingBlock->isRenderInline() && containingBlock->isInFlowPositioned()); const RenderInline* flow = toRenderInline(containingBlock); InlineFlowBox* first = flow->firstLineBox(); InlineFlowBox* last = flow->lastLineBox(); // If the containing block is empty, return a height of 0. if (!first || !last) return 0; LayoutUnit heightResult; LayoutRect boundingBox = flow->linesBoundingBox(); if (containingBlock->isHorizontalWritingMode()) heightResult = boundingBox.height(); else heightResult = boundingBox.width(); heightResult -= (containingBlock->borderBefore() + containingBlock->borderAfter()); return heightResult; } static void computeInlineStaticDistance(Length& logicalLeft, Length& logicalRight, const RenderBox* child, const RenderBoxModelObject* containerBlock, LayoutUnit containerLogicalWidth, RenderRegion* region) { if (!logicalLeft.isAuto() || !logicalRight.isAuto()) return; // FIXME: The static distance computation has not been patched for mixed writing modes yet. if (child->parent()->style().direction() == LTR) { LayoutUnit staticPosition = child->layer()->staticInlinePosition() - containerBlock->borderLogicalLeft(); for (auto curr = child->parent(); curr && curr != containerBlock; curr = curr->container()) { if (curr->isBox()) { staticPosition += toRenderBox(curr)->logicalLeft(); if (region && toRenderBox(curr)->isRenderBlock()) { const RenderBlock* cb = toRenderBlock(curr); region = cb->clampToStartAndEndRegions(region); RenderBoxRegionInfo* boxInfo = cb->renderBoxRegionInfo(region); if (boxInfo) staticPosition += boxInfo->logicalLeft(); } } } logicalLeft.setValue(Fixed, staticPosition); } else { RenderBox& enclosingBox = child->parent()->enclosingBox(); LayoutUnit staticPosition = child->layer()->staticInlinePosition() + containerLogicalWidth + containerBlock->borderLogicalLeft(); for (RenderElement* curr = &enclosingBox; curr; curr = curr->container()) { if (curr->isBox()) { if (curr != containerBlock) staticPosition -= toRenderBox(curr)->logicalLeft(); if (curr == &enclosingBox) staticPosition -= enclosingBox.logicalWidth(); if (region && curr->isRenderBlock()) { const RenderBlock* cb = toRenderBlock(curr); region = cb->clampToStartAndEndRegions(region); RenderBoxRegionInfo* boxInfo = cb->renderBoxRegionInfo(region); if (boxInfo) { if (curr != containerBlock) staticPosition -= cb->logicalWidth() - (boxInfo->logicalLeft() + boxInfo->logicalWidth()); if (curr == &enclosingBox) staticPosition += enclosingBox.logicalWidth() - boxInfo->logicalWidth(); } } } if (curr == containerBlock) break; } logicalRight.setValue(Fixed, staticPosition); } } void RenderBox::computePositionedLogicalWidth(LogicalExtentComputedValues& computedValues, RenderRegion* region) const { if (isReplaced()) { // FIXME: Positioned replaced elements inside a flow thread are not working properly // with variable width regions (see https://bugs.webkit.org/show_bug.cgi?id=69896 ). computePositionedLogicalWidthReplaced(computedValues); return; } // QUESTIONS // FIXME 1: Should we still deal with these the cases of 'left' or 'right' having // the type 'static' in determining whether to calculate the static distance? // NOTE: 'static' is not a legal value for 'left' or 'right' as of CSS 2.1. // FIXME 2: Can perhaps optimize out cases when max-width/min-width are greater // than or less than the computed width(). Be careful of box-sizing and // percentage issues. // The following is based off of the W3C Working Draft from April 11, 2006 of // CSS 2.1: Section 10.3.7 "Absolutely positioned, non-replaced elements" // // (block-style-comments in this function and in computePositionedLogicalWidthUsing() // correspond to text from the spec) // We don't use containingBlock(), since we may be positioned by an enclosing // relative positioned inline. const RenderBoxModelObject* containerBlock = toRenderBoxModelObject(container()); const LayoutUnit containerLogicalWidth = containingBlockLogicalWidthForPositioned(containerBlock, region); // Use the container block's direction except when calculating the static distance // This conforms with the reference results for abspos-replaced-width-margin-000.htm // of the CSS 2.1 test suite TextDirection containerDirection = containerBlock->style().direction(); bool isHorizontal = isHorizontalWritingMode(); const LayoutUnit bordersPlusPadding = borderAndPaddingLogicalWidth(); const Length marginLogicalLeft = isHorizontal ? style().marginLeft() : style().marginTop(); const Length marginLogicalRight = isHorizontal ? style().marginRight() : style().marginBottom(); Length logicalLeftLength = style().logicalLeft(); Length logicalRightLength = style().logicalRight(); /*---------------------------------------------------------------------------*\ * For the purposes of this section and the next, the term "static position" * (of an element) refers, roughly, to the position an element would have had * in the normal flow. More precisely: * * * The static position for 'left' is the distance from the left edge of the * containing block to the left margin edge of a hypothetical box that would * have been the first box of the element if its 'position' property had * been 'static' and 'float' had been 'none'. The value is negative if the * hypothetical box is to the left of the containing block. * * The static position for 'right' is the distance from the right edge of the * containing block to the right margin edge of the same hypothetical box as * above. The value is positive if the hypothetical box is to the left of the * containing block's edge. * * But rather than actually calculating the dimensions of that hypothetical box, * user agents are free to make a guess at its probable position. * * For the purposes of calculating the static position, the containing block of * fixed positioned elements is the initial containing block instead of the * viewport, and all scrollable boxes should be assumed to be scrolled to their * origin. \*---------------------------------------------------------------------------*/ // see FIXME 1 // Calculate the static distance if needed. computeInlineStaticDistance(logicalLeftLength, logicalRightLength, this, containerBlock, containerLogicalWidth, region); // Calculate constraint equation values for 'width' case. computePositionedLogicalWidthUsing(style().logicalWidth(), containerBlock, containerDirection, containerLogicalWidth, bordersPlusPadding, logicalLeftLength, logicalRightLength, marginLogicalLeft, marginLogicalRight, computedValues); // Calculate constraint equation values for 'max-width' case. if (!style().logicalMaxWidth().isUndefined()) { LogicalExtentComputedValues maxValues; computePositionedLogicalWidthUsing(style().logicalMaxWidth(), containerBlock, containerDirection, containerLogicalWidth, bordersPlusPadding, logicalLeftLength, logicalRightLength, marginLogicalLeft, marginLogicalRight, maxValues); if (computedValues.m_extent > maxValues.m_extent) { computedValues.m_extent = maxValues.m_extent; computedValues.m_position = maxValues.m_position; computedValues.m_margins.m_start = maxValues.m_margins.m_start; computedValues.m_margins.m_end = maxValues.m_margins.m_end; } } // Calculate constraint equation values for 'min-width' case. if (!style().logicalMinWidth().isZero() || style().logicalMinWidth().isIntrinsic()) { LogicalExtentComputedValues minValues; computePositionedLogicalWidthUsing(style().logicalMinWidth(), containerBlock, containerDirection, containerLogicalWidth, bordersPlusPadding, logicalLeftLength, logicalRightLength, marginLogicalLeft, marginLogicalRight, minValues); if (computedValues.m_extent < minValues.m_extent) { computedValues.m_extent = minValues.m_extent; computedValues.m_position = minValues.m_position; computedValues.m_margins.m_start = minValues.m_margins.m_start; computedValues.m_margins.m_end = minValues.m_margins.m_end; } } computedValues.m_extent += bordersPlusPadding; // Adjust logicalLeft if we need to for the flipped version of our writing mode in regions. // FIXME: Add support for other types of objects as containerBlock, not only RenderBlock. RenderFlowThread* flowThread = flowThreadContainingBlock(); if (flowThread && !region && isWritingModeRoot() && isHorizontalWritingMode() == containerBlock->isHorizontalWritingMode() && containerBlock->isRenderBlock()) { ASSERT(containerBlock->canHaveBoxInfoInRegion()); LayoutUnit logicalLeftPos = computedValues.m_position; const RenderBlock* cb = toRenderBlock(containerBlock); LayoutUnit cbPageOffset = cb->offsetFromLogicalTopOfFirstPage(); RenderRegion* cbRegion = cb->regionAtBlockOffset(cbPageOffset); if (cbRegion) { RenderBoxRegionInfo* boxInfo = cb->renderBoxRegionInfo(cbRegion); if (boxInfo) { logicalLeftPos += boxInfo->logicalLeft(); computedValues.m_position = logicalLeftPos; } } } } static void computeLogicalLeftPositionedOffset(LayoutUnit& logicalLeftPos, const RenderBox* child, LayoutUnit logicalWidthValue, const RenderBoxModelObject* containerBlock, LayoutUnit containerLogicalWidth) { // Deal with differing writing modes here. Our offset needs to be in the containing block's coordinate space. If the containing block is flipped // along this axis, then we need to flip the coordinate. This can only happen if the containing block is both a flipped mode and perpendicular to us. if (containerBlock->isHorizontalWritingMode() != child->isHorizontalWritingMode() && containerBlock->style().isFlippedBlocksWritingMode()) { logicalLeftPos = containerLogicalWidth - logicalWidthValue - logicalLeftPos; logicalLeftPos += (child->isHorizontalWritingMode() ? containerBlock->borderRight() : containerBlock->borderBottom()); } else logicalLeftPos += (child->isHorizontalWritingMode() ? containerBlock->borderLeft() : containerBlock->borderTop()); } void RenderBox::computePositionedLogicalWidthUsing(Length logicalWidth, const RenderBoxModelObject* containerBlock, TextDirection containerDirection, LayoutUnit containerLogicalWidth, LayoutUnit bordersPlusPadding, Length logicalLeft, Length logicalRight, Length marginLogicalLeft, Length marginLogicalRight, LogicalExtentComputedValues& computedValues) const { if (logicalWidth.isIntrinsic()) logicalWidth = Length(computeIntrinsicLogicalWidthUsing(logicalWidth, containerLogicalWidth, bordersPlusPadding) - bordersPlusPadding, Fixed); // 'left' and 'right' cannot both be 'auto' because one would of been // converted to the static position already ASSERT(!(logicalLeft.isAuto() && logicalRight.isAuto())); LayoutUnit logicalLeftValue = 0; const LayoutUnit containerRelativeLogicalWidth = containingBlockLogicalWidthForPositioned(containerBlock, 0, false); bool logicalWidthIsAuto = logicalWidth.isIntrinsicOrAuto(); bool logicalLeftIsAuto = logicalLeft.isAuto(); bool logicalRightIsAuto = logicalRight.isAuto(); LayoutUnit& marginLogicalLeftValue = style().isLeftToRightDirection() ? computedValues.m_margins.m_start : computedValues.m_margins.m_end; LayoutUnit& marginLogicalRightValue = style().isLeftToRightDirection() ? computedValues.m_margins.m_end : computedValues.m_margins.m_start; if (!logicalLeftIsAuto && !logicalWidthIsAuto && !logicalRightIsAuto) { /*-----------------------------------------------------------------------*\ * If none of the three is 'auto': If both 'margin-left' and 'margin- * right' are 'auto', solve the equation under the extra constraint that * the two margins get equal values, unless this would make them negative, * in which case when direction of the containing block is 'ltr' ('rtl'), * set 'margin-left' ('margin-right') to zero and solve for 'margin-right' * ('margin-left'). If one of 'margin-left' or 'margin-right' is 'auto', * solve the equation for that value. If the values are over-constrained, * ignore the value for 'left' (in case the 'direction' property of the * containing block is 'rtl') or 'right' (in case 'direction' is 'ltr') * and solve for that value. \*-----------------------------------------------------------------------*/ // NOTE: It is not necessary to solve for 'right' in the over constrained // case because the value is not used for any further calculations. logicalLeftValue = valueForLength(logicalLeft, containerLogicalWidth); computedValues.m_extent = adjustContentBoxLogicalWidthForBoxSizing(valueForLength(logicalWidth, containerLogicalWidth)); const LayoutUnit availableSpace = containerLogicalWidth - (logicalLeftValue + computedValues.m_extent + valueForLength(logicalRight, containerLogicalWidth) + bordersPlusPadding); // Margins are now the only unknown if (marginLogicalLeft.isAuto() && marginLogicalRight.isAuto()) { // Both margins auto, solve for equality if (availableSpace >= 0) { marginLogicalLeftValue = availableSpace / 2; // split the difference marginLogicalRightValue = availableSpace - marginLogicalLeftValue; // account for odd valued differences } else { // Use the containing block's direction rather than the parent block's // per CSS 2.1 reference test abspos-non-replaced-width-margin-000. if (containerDirection == LTR) { marginLogicalLeftValue = 0; marginLogicalRightValue = availableSpace; // will be negative } else { marginLogicalLeftValue = availableSpace; // will be negative marginLogicalRightValue = 0; } } } else if (marginLogicalLeft.isAuto()) { // Solve for left margin marginLogicalRightValue = valueForLength(marginLogicalRight, containerRelativeLogicalWidth); marginLogicalLeftValue = availableSpace - marginLogicalRightValue; } else if (marginLogicalRight.isAuto()) { // Solve for right margin marginLogicalLeftValue = valueForLength(marginLogicalLeft, containerRelativeLogicalWidth); marginLogicalRightValue = availableSpace - marginLogicalLeftValue; } else { // Over-constrained, solve for left if direction is RTL marginLogicalLeftValue = valueForLength(marginLogicalLeft, containerRelativeLogicalWidth); marginLogicalRightValue = valueForLength(marginLogicalRight, containerRelativeLogicalWidth); // Use the containing block's direction rather than the parent block's // per CSS 2.1 reference test abspos-non-replaced-width-margin-000. if (containerDirection == RTL) logicalLeftValue = (availableSpace + logicalLeftValue) - marginLogicalLeftValue - marginLogicalRightValue; } } else { /*--------------------------------------------------------------------*\ * Otherwise, set 'auto' values for 'margin-left' and 'margin-right' * to 0, and pick the one of the following six rules that applies. * * 1. 'left' and 'width' are 'auto' and 'right' is not 'auto', then the * width is shrink-to-fit. Then solve for 'left' * * OMIT RULE 2 AS IT SHOULD NEVER BE HIT * ------------------------------------------------------------------ * 2. 'left' and 'right' are 'auto' and 'width' is not 'auto', then if * the 'direction' property of the containing block is 'ltr' set * 'left' to the static position, otherwise set 'right' to the * static position. Then solve for 'left' (if 'direction is 'rtl') * or 'right' (if 'direction' is 'ltr'). * ------------------------------------------------------------------ * * 3. 'width' and 'right' are 'auto' and 'left' is not 'auto', then the * width is shrink-to-fit . Then solve for 'right' * 4. 'left' is 'auto', 'width' and 'right' are not 'auto', then solve * for 'left' * 5. 'width' is 'auto', 'left' and 'right' are not 'auto', then solve * for 'width' * 6. 'right' is 'auto', 'left' and 'width' are not 'auto', then solve * for 'right' * * Calculation of the shrink-to-fit width is similar to calculating the * width of a table cell using the automatic table layout algorithm. * Roughly: calculate the preferred width by formatting the content * without breaking lines other than where explicit line breaks occur, * and also calculate the preferred minimum width, e.g., by trying all * possible line breaks. CSS 2.1 does not define the exact algorithm. * Thirdly, calculate the available width: this is found by solving * for 'width' after setting 'left' (in case 1) or 'right' (in case 3) * to 0. * * Then the shrink-to-fit width is: * min(max(preferred minimum width, available width), preferred width). \*--------------------------------------------------------------------*/ // NOTE: For rules 3 and 6 it is not necessary to solve for 'right' // because the value is not used for any further calculations. // Calculate margins, 'auto' margins are ignored. marginLogicalLeftValue = minimumValueForLength(marginLogicalLeft, containerRelativeLogicalWidth); marginLogicalRightValue = minimumValueForLength(marginLogicalRight, containerRelativeLogicalWidth); const LayoutUnit availableSpace = containerLogicalWidth - (marginLogicalLeftValue + marginLogicalRightValue + bordersPlusPadding); // FIXME: Is there a faster way to find the correct case? // Use rule/case that applies. if (logicalLeftIsAuto && logicalWidthIsAuto && !logicalRightIsAuto) { // RULE 1: (use shrink-to-fit for width, and solve of left) LayoutUnit logicalRightValue = valueForLength(logicalRight, containerLogicalWidth); // FIXME: would it be better to have shrink-to-fit in one step? LayoutUnit preferredWidth = maxPreferredLogicalWidth() - bordersPlusPadding; LayoutUnit preferredMinWidth = minPreferredLogicalWidth() - bordersPlusPadding; LayoutUnit availableWidth = availableSpace - logicalRightValue; computedValues.m_extent = std::min(std::max(preferredMinWidth, availableWidth), preferredWidth); logicalLeftValue = availableSpace - (computedValues.m_extent + logicalRightValue); } else if (!logicalLeftIsAuto && logicalWidthIsAuto && logicalRightIsAuto) { // RULE 3: (use shrink-to-fit for width, and no need solve of right) logicalLeftValue = valueForLength(logicalLeft, containerLogicalWidth); // FIXME: would it be better to have shrink-to-fit in one step? LayoutUnit preferredWidth = maxPreferredLogicalWidth() - bordersPlusPadding; LayoutUnit preferredMinWidth = minPreferredLogicalWidth() - bordersPlusPadding; LayoutUnit availableWidth = availableSpace - logicalLeftValue; computedValues.m_extent = std::min(std::max(preferredMinWidth, availableWidth), preferredWidth); } else if (logicalLeftIsAuto && !logicalWidthIsAuto && !logicalRightIsAuto) { // RULE 4: (solve for left) computedValues.m_extent = adjustContentBoxLogicalWidthForBoxSizing(valueForLength(logicalWidth, containerLogicalWidth)); logicalLeftValue = availableSpace - (computedValues.m_extent + valueForLength(logicalRight, containerLogicalWidth)); } else if (!logicalLeftIsAuto && logicalWidthIsAuto && !logicalRightIsAuto) { // RULE 5: (solve for width) logicalLeftValue = valueForLength(logicalLeft, containerLogicalWidth); computedValues.m_extent = availableSpace - (logicalLeftValue + valueForLength(logicalRight, containerLogicalWidth)); } else if (!logicalLeftIsAuto && !logicalWidthIsAuto && logicalRightIsAuto) { // RULE 6: (no need solve for right) logicalLeftValue = valueForLength(logicalLeft, containerLogicalWidth); computedValues.m_extent = adjustContentBoxLogicalWidthForBoxSizing(valueForLength(logicalWidth, containerLogicalWidth)); } } // Use computed values to calculate the horizontal position. // FIXME: This hack is needed to calculate the logical left position for a 'rtl' relatively // positioned, inline because right now, it is using the logical left position // of the first line box when really it should use the last line box. When // this is fixed elsewhere, this block should be removed. if (containerBlock->isRenderInline() && !containerBlock->style().isLeftToRightDirection()) { const RenderInline* flow = toRenderInline(containerBlock); InlineFlowBox* firstLine = flow->firstLineBox(); InlineFlowBox* lastLine = flow->lastLineBox(); if (firstLine && lastLine && firstLine != lastLine) { computedValues.m_position = logicalLeftValue + marginLogicalLeftValue + lastLine->borderLogicalLeft() + (lastLine->logicalLeft() - firstLine->logicalLeft()); return; } } computedValues.m_position = logicalLeftValue + marginLogicalLeftValue; computeLogicalLeftPositionedOffset(computedValues.m_position, this, computedValues.m_extent, containerBlock, containerLogicalWidth); } static void computeBlockStaticDistance(Length& logicalTop, Length& logicalBottom, const RenderBox* child, const RenderBoxModelObject* containerBlock) { if (!logicalTop.isAuto() || !logicalBottom.isAuto()) return; // FIXME: The static distance computation has not been patched for mixed writing modes. LayoutUnit staticLogicalTop = child->layer()->staticBlockPosition() - containerBlock->borderBefore(); for (RenderElement* curr = child->parent(); curr && curr != containerBlock; curr = curr->container()) { if (curr->isBox() && !curr->isTableRow()) staticLogicalTop += toRenderBox(curr)->logicalTop(); } logicalTop.setValue(Fixed, staticLogicalTop); } void RenderBox::computePositionedLogicalHeight(LogicalExtentComputedValues& computedValues) const { if (isReplaced()) { computePositionedLogicalHeightReplaced(computedValues); return; } // The following is based off of the W3C Working Draft from April 11, 2006 of // CSS 2.1: Section 10.6.4 "Absolutely positioned, non-replaced elements" // // (block-style-comments in this function and in computePositionedLogicalHeightUsing() // correspond to text from the spec) // We don't use containingBlock(), since we may be positioned by an enclosing relpositioned inline. const RenderBoxModelObject* containerBlock = toRenderBoxModelObject(container()); const LayoutUnit containerLogicalHeight = containingBlockLogicalHeightForPositioned(containerBlock); const RenderStyle& styleToUse = style(); const LayoutUnit bordersPlusPadding = borderAndPaddingLogicalHeight(); const Length marginBefore = styleToUse.marginBefore(); const Length marginAfter = styleToUse.marginAfter(); Length logicalTopLength = styleToUse.logicalTop(); Length logicalBottomLength = styleToUse.logicalBottom(); /*---------------------------------------------------------------------------*\ * For the purposes of this section and the next, the term "static position" * (of an element) refers, roughly, to the position an element would have had * in the normal flow. More precisely, the static position for 'top' is the * distance from the top edge of the containing block to the top margin edge * of a hypothetical box that would have been the first box of the element if * its 'position' property had been 'static' and 'float' had been 'none'. The * value is negative if the hypothetical box is above the containing block. * * But rather than actually calculating the dimensions of that hypothetical * box, user agents are free to make a guess at its probable position. * * For the purposes of calculating the static position, the containing block * of fixed positioned elements is the initial containing block instead of * the viewport. \*---------------------------------------------------------------------------*/ // see FIXME 1 // Calculate the static distance if needed. computeBlockStaticDistance(logicalTopLength, logicalBottomLength, this, containerBlock); // Calculate constraint equation values for 'height' case. LayoutUnit logicalHeight = computedValues.m_extent; computePositionedLogicalHeightUsing(styleToUse.logicalHeight(), containerBlock, containerLogicalHeight, bordersPlusPadding, logicalHeight, logicalTopLength, logicalBottomLength, marginBefore, marginAfter, computedValues); // Avoid doing any work in the common case (where the values of min-height and max-height are their defaults). // see FIXME 2 // Calculate constraint equation values for 'max-height' case. if (!styleToUse.logicalMaxHeight().isUndefined()) { LogicalExtentComputedValues maxValues; computePositionedLogicalHeightUsing(styleToUse.logicalMaxHeight(), containerBlock, containerLogicalHeight, bordersPlusPadding, logicalHeight, logicalTopLength, logicalBottomLength, marginBefore, marginAfter, maxValues); if (computedValues.m_extent > maxValues.m_extent) { computedValues.m_extent = maxValues.m_extent; computedValues.m_position = maxValues.m_position; computedValues.m_margins.m_before = maxValues.m_margins.m_before; computedValues.m_margins.m_after = maxValues.m_margins.m_after; } } // Calculate constraint equation values for 'min-height' case. if (!styleToUse.logicalMinHeight().isZero()) { LogicalExtentComputedValues minValues; computePositionedLogicalHeightUsing(styleToUse.logicalMinHeight(), containerBlock, containerLogicalHeight, bordersPlusPadding, logicalHeight, logicalTopLength, logicalBottomLength, marginBefore, marginAfter, minValues); if (computedValues.m_extent < minValues.m_extent) { computedValues.m_extent = minValues.m_extent; computedValues.m_position = minValues.m_position; computedValues.m_margins.m_before = minValues.m_margins.m_before; computedValues.m_margins.m_after = minValues.m_margins.m_after; } } // Set final height value. computedValues.m_extent += bordersPlusPadding; // Adjust logicalTop if we need to for perpendicular writing modes in regions. // FIXME: Add support for other types of objects as containerBlock, not only RenderBlock. RenderFlowThread* flowThread = flowThreadContainingBlock(); if (flowThread && isHorizontalWritingMode() != containerBlock->isHorizontalWritingMode() && containerBlock->isRenderBlock()) { ASSERT(containerBlock->canHaveBoxInfoInRegion()); LayoutUnit logicalTopPos = computedValues.m_position; const RenderBlock* cb = toRenderBlock(containerBlock); LayoutUnit cbPageOffset = cb->offsetFromLogicalTopOfFirstPage() - logicalLeft(); RenderRegion* cbRegion = cb->regionAtBlockOffset(cbPageOffset); if (cbRegion) { RenderBoxRegionInfo* boxInfo = cb->renderBoxRegionInfo(cbRegion); if (boxInfo) { logicalTopPos += boxInfo->logicalLeft(); computedValues.m_position = logicalTopPos; } } } } static void computeLogicalTopPositionedOffset(LayoutUnit& logicalTopPos, const RenderBox* child, LayoutUnit logicalHeightValue, const RenderBoxModelObject* containerBlock, LayoutUnit containerLogicalHeight) { // Deal with differing writing modes here. Our offset needs to be in the containing block's coordinate space. If the containing block is flipped // along this axis, then we need to flip the coordinate. This can only happen if the containing block is both a flipped mode and perpendicular to us. if ((child->style().isFlippedBlocksWritingMode() && child->isHorizontalWritingMode() != containerBlock->isHorizontalWritingMode()) || (child->style().isFlippedBlocksWritingMode() != containerBlock->style().isFlippedBlocksWritingMode() && child->isHorizontalWritingMode() == containerBlock->isHorizontalWritingMode())) logicalTopPos = containerLogicalHeight - logicalHeightValue - logicalTopPos; // Our offset is from the logical bottom edge in a flipped environment, e.g., right for vertical-rl and bottom for horizontal-bt. if (containerBlock->style().isFlippedBlocksWritingMode() && child->isHorizontalWritingMode() == containerBlock->isHorizontalWritingMode()) { if (child->isHorizontalWritingMode()) logicalTopPos += containerBlock->borderBottom(); else logicalTopPos += containerBlock->borderRight(); } else { if (child->isHorizontalWritingMode()) logicalTopPos += containerBlock->borderTop(); else logicalTopPos += containerBlock->borderLeft(); } } void RenderBox::computePositionedLogicalHeightUsing(Length logicalHeightLength, const RenderBoxModelObject* containerBlock, LayoutUnit containerLogicalHeight, LayoutUnit bordersPlusPadding, LayoutUnit logicalHeight, Length logicalTop, Length logicalBottom, Length marginBefore, Length marginAfter, LogicalExtentComputedValues& computedValues) const { // 'top' and 'bottom' cannot both be 'auto' because 'top would of been // converted to the static position in computePositionedLogicalHeight() ASSERT(!(logicalTop.isAuto() && logicalBottom.isAuto())); LayoutUnit logicalHeightValue; LayoutUnit contentLogicalHeight = logicalHeight - bordersPlusPadding; const LayoutUnit containerRelativeLogicalWidth = containingBlockLogicalWidthForPositioned(containerBlock, 0, false); LayoutUnit logicalTopValue = 0; LayoutUnit resolvedLogicalHeight = 0; bool logicalHeightIsAuto = logicalHeightLength.isAuto(); bool logicalTopIsAuto = logicalTop.isAuto(); bool logicalBottomIsAuto = logicalBottom.isAuto(); // Height is never unsolved for tables. if (isTable()) { resolvedLogicalHeight = contentLogicalHeight; logicalHeightIsAuto = false; } else resolvedLogicalHeight = adjustContentBoxLogicalHeightForBoxSizing(valueForLength(logicalHeightLength, containerLogicalHeight)); if (!logicalTopIsAuto && !logicalHeightIsAuto && !logicalBottomIsAuto) { /*-----------------------------------------------------------------------*\ * If none of the three are 'auto': If both 'margin-top' and 'margin- * bottom' are 'auto', solve the equation under the extra constraint that * the two margins get equal values. If one of 'margin-top' or 'margin- * bottom' is 'auto', solve the equation for that value. If the values * are over-constrained, ignore the value for 'bottom' and solve for that * value. \*-----------------------------------------------------------------------*/ // NOTE: It is not necessary to solve for 'bottom' in the over constrained // case because the value is not used for any further calculations. logicalHeightValue = resolvedLogicalHeight; logicalTopValue = valueForLength(logicalTop, containerLogicalHeight); const LayoutUnit availableSpace = containerLogicalHeight - (logicalTopValue + logicalHeightValue + valueForLength(logicalBottom, containerLogicalHeight) + bordersPlusPadding); // Margins are now the only unknown if (marginBefore.isAuto() && marginAfter.isAuto()) { // Both margins auto, solve for equality // NOTE: This may result in negative values. computedValues.m_margins.m_before = availableSpace / 2; // split the difference computedValues.m_margins.m_after = availableSpace - computedValues.m_margins.m_before; // account for odd valued differences } else if (marginBefore.isAuto()) { // Solve for top margin computedValues.m_margins.m_after = valueForLength(marginAfter, containerRelativeLogicalWidth); computedValues.m_margins.m_before = availableSpace - computedValues.m_margins.m_after; } else if (marginAfter.isAuto()) { // Solve for bottom margin computedValues.m_margins.m_before = valueForLength(marginBefore, containerRelativeLogicalWidth); computedValues.m_margins.m_after = availableSpace - computedValues.m_margins.m_before; } else { // Over-constrained, (no need solve for bottom) computedValues.m_margins.m_before = valueForLength(marginBefore, containerRelativeLogicalWidth); computedValues.m_margins.m_after = valueForLength(marginAfter, containerRelativeLogicalWidth); } } else { /*--------------------------------------------------------------------*\ * Otherwise, set 'auto' values for 'margin-top' and 'margin-bottom' * to 0, and pick the one of the following six rules that applies. * * 1. 'top' and 'height' are 'auto' and 'bottom' is not 'auto', then * the height is based on the content, and solve for 'top'. * * OMIT RULE 2 AS IT SHOULD NEVER BE HIT * ------------------------------------------------------------------ * 2. 'top' and 'bottom' are 'auto' and 'height' is not 'auto', then * set 'top' to the static position, and solve for 'bottom'. * ------------------------------------------------------------------ * * 3. 'height' and 'bottom' are 'auto' and 'top' is not 'auto', then * the height is based on the content, and solve for 'bottom'. * 4. 'top' is 'auto', 'height' and 'bottom' are not 'auto', and * solve for 'top'. * 5. 'height' is 'auto', 'top' and 'bottom' are not 'auto', and * solve for 'height'. * 6. 'bottom' is 'auto', 'top' and 'height' are not 'auto', and * solve for 'bottom'. \*--------------------------------------------------------------------*/ // NOTE: For rules 3 and 6 it is not necessary to solve for 'bottom' // because the value is not used for any further calculations. // Calculate margins, 'auto' margins are ignored. computedValues.m_margins.m_before = minimumValueForLength(marginBefore, containerRelativeLogicalWidth); computedValues.m_margins.m_after = minimumValueForLength(marginAfter, containerRelativeLogicalWidth); const LayoutUnit availableSpace = containerLogicalHeight - (computedValues.m_margins.m_before + computedValues.m_margins.m_after + bordersPlusPadding); // Use rule/case that applies. if (logicalTopIsAuto && logicalHeightIsAuto && !logicalBottomIsAuto) { // RULE 1: (height is content based, solve of top) logicalHeightValue = contentLogicalHeight; logicalTopValue = availableSpace - (logicalHeightValue + valueForLength(logicalBottom, containerLogicalHeight)); } else if (!logicalTopIsAuto && logicalHeightIsAuto && logicalBottomIsAuto) { // RULE 3: (height is content based, no need solve of bottom) logicalTopValue = valueForLength(logicalTop, containerLogicalHeight); logicalHeightValue = contentLogicalHeight; } else if (logicalTopIsAuto && !logicalHeightIsAuto && !logicalBottomIsAuto) { // RULE 4: (solve of top) logicalHeightValue = resolvedLogicalHeight; logicalTopValue = availableSpace - (logicalHeightValue + valueForLength(logicalBottom, containerLogicalHeight)); } else if (!logicalTopIsAuto && logicalHeightIsAuto && !logicalBottomIsAuto) { // RULE 5: (solve of height) logicalTopValue = valueForLength(logicalTop, containerLogicalHeight); logicalHeightValue = std::max(0, availableSpace - (logicalTopValue + valueForLength(logicalBottom, containerLogicalHeight))); } else if (!logicalTopIsAuto && !logicalHeightIsAuto && logicalBottomIsAuto) { // RULE 6: (no need solve of bottom) logicalHeightValue = resolvedLogicalHeight; logicalTopValue = valueForLength(logicalTop, containerLogicalHeight); } } computedValues.m_extent = logicalHeightValue; // Use computed values to calculate the vertical position. computedValues.m_position = logicalTopValue + computedValues.m_margins.m_before; computeLogicalTopPositionedOffset(computedValues.m_position, this, logicalHeightValue, containerBlock, containerLogicalHeight); } void RenderBox::computePositionedLogicalWidthReplaced(LogicalExtentComputedValues& computedValues) const { // The following is based off of the W3C Working Draft from April 11, 2006 of // CSS 2.1: Section 10.3.8 "Absolutely positioned, replaced elements" // // (block-style-comments in this function correspond to text from the spec and // the numbers correspond to numbers in spec) // We don't use containingBlock(), since we may be positioned by an enclosing // relative positioned inline. const RenderBoxModelObject* containerBlock = toRenderBoxModelObject(container()); const LayoutUnit containerLogicalWidth = containingBlockLogicalWidthForPositioned(containerBlock); const LayoutUnit containerRelativeLogicalWidth = containingBlockLogicalWidthForPositioned(containerBlock, 0, false); // To match WinIE, in quirks mode use the parent's 'direction' property // instead of the the container block's. TextDirection containerDirection = containerBlock->style().direction(); // Variables to solve. bool isHorizontal = isHorizontalWritingMode(); Length logicalLeft = style().logicalLeft(); Length logicalRight = style().logicalRight(); Length marginLogicalLeft = isHorizontal ? style().marginLeft() : style().marginTop(); Length marginLogicalRight = isHorizontal ? style().marginRight() : style().marginBottom(); LayoutUnit& marginLogicalLeftAlias = style().isLeftToRightDirection() ? computedValues.m_margins.m_start : computedValues.m_margins.m_end; LayoutUnit& marginLogicalRightAlias = style().isLeftToRightDirection() ? computedValues.m_margins.m_end : computedValues.m_margins.m_start; /*-----------------------------------------------------------------------*\ * 1. The used value of 'width' is determined as for inline replaced * elements. \*-----------------------------------------------------------------------*/ // NOTE: This value of width is final in that the min/max width calculations // are dealt with in computeReplacedWidth(). This means that the steps to produce // correct max/min in the non-replaced version, are not necessary. computedValues.m_extent = computeReplacedLogicalWidth() + borderAndPaddingLogicalWidth(); const LayoutUnit availableSpace = containerLogicalWidth - computedValues.m_extent; /*-----------------------------------------------------------------------*\ * 2. If both 'left' and 'right' have the value 'auto', then if 'direction' * of the containing block is 'ltr', set 'left' to the static position; * else if 'direction' is 'rtl', set 'right' to the static position. \*-----------------------------------------------------------------------*/ // see FIXME 1 computeInlineStaticDistance(logicalLeft, logicalRight, this, containerBlock, containerLogicalWidth, 0); // FIXME: Pass the region. /*-----------------------------------------------------------------------*\ * 3. If 'left' or 'right' are 'auto', replace any 'auto' on 'margin-left' * or 'margin-right' with '0'. \*-----------------------------------------------------------------------*/ if (logicalLeft.isAuto() || logicalRight.isAuto()) { if (marginLogicalLeft.isAuto()) marginLogicalLeft.setValue(Fixed, 0); if (marginLogicalRight.isAuto()) marginLogicalRight.setValue(Fixed, 0); } /*-----------------------------------------------------------------------*\ * 4. If at this point both 'margin-left' and 'margin-right' are still * 'auto', solve the equation under the extra constraint that the two * margins must get equal values, unless this would make them negative, * in which case when the direction of the containing block is 'ltr' * ('rtl'), set 'margin-left' ('margin-right') to zero and solve for * 'margin-right' ('margin-left'). \*-----------------------------------------------------------------------*/ LayoutUnit logicalLeftValue = 0; LayoutUnit logicalRightValue = 0; if (marginLogicalLeft.isAuto() && marginLogicalRight.isAuto()) { // 'left' and 'right' cannot be 'auto' due to step 3 ASSERT(!(logicalLeft.isAuto() && logicalRight.isAuto())); logicalLeftValue = valueForLength(logicalLeft, containerLogicalWidth); logicalRightValue = valueForLength(logicalRight, containerLogicalWidth); LayoutUnit difference = availableSpace - (logicalLeftValue + logicalRightValue); if (difference > 0) { marginLogicalLeftAlias = difference / 2; // split the difference marginLogicalRightAlias = difference - marginLogicalLeftAlias; // account for odd valued differences } else { // Use the containing block's direction rather than the parent block's // per CSS 2.1 reference test abspos-replaced-width-margin-000. if (containerDirection == LTR) { marginLogicalLeftAlias = 0; marginLogicalRightAlias = difference; // will be negative } else { marginLogicalLeftAlias = difference; // will be negative marginLogicalRightAlias = 0; } } /*-----------------------------------------------------------------------*\ * 5. If at this point there is an 'auto' left, solve the equation for * that value. \*-----------------------------------------------------------------------*/ } else if (logicalLeft.isAuto()) { marginLogicalLeftAlias = valueForLength(marginLogicalLeft, containerRelativeLogicalWidth); marginLogicalRightAlias = valueForLength(marginLogicalRight, containerRelativeLogicalWidth); logicalRightValue = valueForLength(logicalRight, containerLogicalWidth); // Solve for 'left' logicalLeftValue = availableSpace - (logicalRightValue + marginLogicalLeftAlias + marginLogicalRightAlias); } else if (logicalRight.isAuto()) { marginLogicalLeftAlias = valueForLength(marginLogicalLeft, containerRelativeLogicalWidth); marginLogicalRightAlias = valueForLength(marginLogicalRight, containerRelativeLogicalWidth); logicalLeftValue = valueForLength(logicalLeft, containerLogicalWidth); // Solve for 'right' logicalRightValue = availableSpace - (logicalLeftValue + marginLogicalLeftAlias + marginLogicalRightAlias); } else if (marginLogicalLeft.isAuto()) { marginLogicalRightAlias = valueForLength(marginLogicalRight, containerRelativeLogicalWidth); logicalLeftValue = valueForLength(logicalLeft, containerLogicalWidth); logicalRightValue = valueForLength(logicalRight, containerLogicalWidth); // Solve for 'margin-left' marginLogicalLeftAlias = availableSpace - (logicalLeftValue + logicalRightValue + marginLogicalRightAlias); } else if (marginLogicalRight.isAuto()) { marginLogicalLeftAlias = valueForLength(marginLogicalLeft, containerRelativeLogicalWidth); logicalLeftValue = valueForLength(logicalLeft, containerLogicalWidth); logicalRightValue = valueForLength(logicalRight, containerLogicalWidth); // Solve for 'margin-right' marginLogicalRightAlias = availableSpace - (logicalLeftValue + logicalRightValue + marginLogicalLeftAlias); } else { // Nothing is 'auto', just calculate the values. marginLogicalLeftAlias = valueForLength(marginLogicalLeft, containerRelativeLogicalWidth); marginLogicalRightAlias = valueForLength(marginLogicalRight, containerRelativeLogicalWidth); logicalRightValue = valueForLength(logicalRight, containerLogicalWidth); logicalLeftValue = valueForLength(logicalLeft, containerLogicalWidth); // If the containing block is right-to-left, then push the left position as far to the right as possible if (containerDirection == RTL) { int totalLogicalWidth = computedValues.m_extent + logicalLeftValue + logicalRightValue + marginLogicalLeftAlias + marginLogicalRightAlias; logicalLeftValue = containerLogicalWidth - (totalLogicalWidth - logicalLeftValue); } } /*-----------------------------------------------------------------------*\ * 6. If at this point the values are over-constrained, ignore the value * for either 'left' (in case the 'direction' property of the * containing block is 'rtl') or 'right' (in case 'direction' is * 'ltr') and solve for that value. \*-----------------------------------------------------------------------*/ // NOTE: Constraints imposed by the width of the containing block and its content have already been accounted for above. // FIXME: Deal with differing writing modes here. Our offset needs to be in the containing block's coordinate space, so that // can make the result here rather complicated to compute. // Use computed values to calculate the horizontal position. // FIXME: This hack is needed to calculate the logical left position for a 'rtl' relatively // positioned, inline containing block because right now, it is using the logical left position // of the first line box when really it should use the last line box. When // this is fixed elsewhere, this block should be removed. if (containerBlock->isRenderInline() && !containerBlock->style().isLeftToRightDirection()) { const RenderInline* flow = toRenderInline(containerBlock); InlineFlowBox* firstLine = flow->firstLineBox(); InlineFlowBox* lastLine = flow->lastLineBox(); if (firstLine && lastLine && firstLine != lastLine) { computedValues.m_position = logicalLeftValue + marginLogicalLeftAlias + lastLine->borderLogicalLeft() + (lastLine->logicalLeft() - firstLine->logicalLeft()); return; } } LayoutUnit logicalLeftPos = logicalLeftValue + marginLogicalLeftAlias; computeLogicalLeftPositionedOffset(logicalLeftPos, this, computedValues.m_extent, containerBlock, containerLogicalWidth); computedValues.m_position = logicalLeftPos; } void RenderBox::computePositionedLogicalHeightReplaced(LogicalExtentComputedValues& computedValues) const { // The following is based off of the W3C Working Draft from April 11, 2006 of // CSS 2.1: Section 10.6.5 "Absolutely positioned, replaced elements" // // (block-style-comments in this function correspond to text from the spec and // the numbers correspond to numbers in spec) // We don't use containingBlock(), since we may be positioned by an enclosing relpositioned inline. const RenderBoxModelObject* containerBlock = toRenderBoxModelObject(container()); const LayoutUnit containerLogicalHeight = containingBlockLogicalHeightForPositioned(containerBlock); const LayoutUnit containerRelativeLogicalWidth = containingBlockLogicalWidthForPositioned(containerBlock, 0, false); // Variables to solve. Length marginBefore = style().marginBefore(); Length marginAfter = style().marginAfter(); LayoutUnit& marginBeforeAlias = computedValues.m_margins.m_before; LayoutUnit& marginAfterAlias = computedValues.m_margins.m_after; Length logicalTop = style().logicalTop(); Length logicalBottom = style().logicalBottom(); /*-----------------------------------------------------------------------*\ * 1. The used value of 'height' is determined as for inline replaced * elements. \*-----------------------------------------------------------------------*/ // NOTE: This value of height is final in that the min/max height calculations // are dealt with in computeReplacedHeight(). This means that the steps to produce // correct max/min in the non-replaced version, are not necessary. computedValues.m_extent = computeReplacedLogicalHeight() + borderAndPaddingLogicalHeight(); const LayoutUnit availableSpace = containerLogicalHeight - computedValues.m_extent; /*-----------------------------------------------------------------------*\ * 2. If both 'top' and 'bottom' have the value 'auto', replace 'top' * with the element's static position. \*-----------------------------------------------------------------------*/ // see FIXME 1 computeBlockStaticDistance(logicalTop, logicalBottom, this, containerBlock); /*-----------------------------------------------------------------------*\ * 3. If 'bottom' is 'auto', replace any 'auto' on 'margin-top' or * 'margin-bottom' with '0'. \*-----------------------------------------------------------------------*/ // FIXME: The spec. says that this step should only be taken when bottom is // auto, but if only top is auto, this makes step 4 impossible. if (logicalTop.isAuto() || logicalBottom.isAuto()) { if (marginBefore.isAuto()) marginBefore.setValue(Fixed, 0); if (marginAfter.isAuto()) marginAfter.setValue(Fixed, 0); } /*-----------------------------------------------------------------------*\ * 4. If at this point both 'margin-top' and 'margin-bottom' are still * 'auto', solve the equation under the extra constraint that the two * margins must get equal values. \*-----------------------------------------------------------------------*/ LayoutUnit logicalTopValue = 0; LayoutUnit logicalBottomValue = 0; if (marginBefore.isAuto() && marginAfter.isAuto()) { // 'top' and 'bottom' cannot be 'auto' due to step 2 and 3 combined. ASSERT(!(logicalTop.isAuto() || logicalBottom.isAuto())); logicalTopValue = valueForLength(logicalTop, containerLogicalHeight); logicalBottomValue = valueForLength(logicalBottom, containerLogicalHeight); LayoutUnit difference = availableSpace - (logicalTopValue + logicalBottomValue); // NOTE: This may result in negative values. marginBeforeAlias = difference / 2; // split the difference marginAfterAlias = difference - marginBeforeAlias; // account for odd valued differences /*-----------------------------------------------------------------------*\ * 5. If at this point there is only one 'auto' left, solve the equation * for that value. \*-----------------------------------------------------------------------*/ } else if (logicalTop.isAuto()) { marginBeforeAlias = valueForLength(marginBefore, containerRelativeLogicalWidth); marginAfterAlias = valueForLength(marginAfter, containerRelativeLogicalWidth); logicalBottomValue = valueForLength(logicalBottom, containerLogicalHeight); // Solve for 'top' logicalTopValue = availableSpace - (logicalBottomValue + marginBeforeAlias + marginAfterAlias); } else if (logicalBottom.isAuto()) { marginBeforeAlias = valueForLength(marginBefore, containerRelativeLogicalWidth); marginAfterAlias = valueForLength(marginAfter, containerRelativeLogicalWidth); logicalTopValue = valueForLength(logicalTop, containerLogicalHeight); // Solve for 'bottom' // NOTE: It is not necessary to solve for 'bottom' because we don't ever // use the value. } else if (marginBefore.isAuto()) { marginAfterAlias = valueForLength(marginAfter, containerRelativeLogicalWidth); logicalTopValue = valueForLength(logicalTop, containerLogicalHeight); logicalBottomValue = valueForLength(logicalBottom, containerLogicalHeight); // Solve for 'margin-top' marginBeforeAlias = availableSpace - (logicalTopValue + logicalBottomValue + marginAfterAlias); } else if (marginAfter.isAuto()) { marginBeforeAlias = valueForLength(marginBefore, containerRelativeLogicalWidth); logicalTopValue = valueForLength(logicalTop, containerLogicalHeight); logicalBottomValue = valueForLength(logicalBottom, containerLogicalHeight); // Solve for 'margin-bottom' marginAfterAlias = availableSpace - (logicalTopValue + logicalBottomValue + marginBeforeAlias); } else { // Nothing is 'auto', just calculate the values. marginBeforeAlias = valueForLength(marginBefore, containerRelativeLogicalWidth); marginAfterAlias = valueForLength(marginAfter, containerRelativeLogicalWidth); logicalTopValue = valueForLength(logicalTop, containerLogicalHeight); // NOTE: It is not necessary to solve for 'bottom' because we don't ever // use the value. } /*-----------------------------------------------------------------------*\ * 6. If at this point the values are over-constrained, ignore the value * for 'bottom' and solve for that value. \*-----------------------------------------------------------------------*/ // NOTE: It is not necessary to do this step because we don't end up using // the value of 'bottom' regardless of whether the values are over-constrained // or not. // Use computed values to calculate the vertical position. LayoutUnit logicalTopPos = logicalTopValue + marginBeforeAlias; computeLogicalTopPositionedOffset(logicalTopPos, this, computedValues.m_extent, containerBlock, containerLogicalHeight); computedValues.m_position = logicalTopPos; } LayoutRect RenderBox::localCaretRect(InlineBox* box, int caretOffset, LayoutUnit* extraWidthToEndOfLine) { // VisiblePositions at offsets inside containers either a) refer to the positions before/after // those containers (tables and select elements) or b) refer to the position inside an empty block. // They never refer to children. // FIXME: Paint the carets inside empty blocks differently than the carets before/after elements. LayoutRect rect(location(), LayoutSize(caretWidth, height())); bool ltr = box ? box->isLeftToRightDirection() : style().isLeftToRightDirection(); if ((!caretOffset) ^ ltr) rect.move(LayoutSize(width() - caretWidth, 0)); if (box) { const RootInlineBox& rootBox = box->root(); LayoutUnit top = rootBox.lineTop(); rect.setY(top); rect.setHeight(rootBox.lineBottom() - top); } // If height of box is smaller than font height, use the latter one, // otherwise the caret might become invisible. // // Also, if the box is not a replaced element, always use the font height. // This prevents the "big caret" bug described in: // Deleting all content in a document can result in giant tall-as-window insertion point // // FIXME: ignoring :first-line, missing good reason to take care of LayoutUnit fontHeight = style().fontMetrics().height(); if (fontHeight > rect.height() || (!isReplaced() && !isTable())) rect.setHeight(fontHeight); if (extraWidthToEndOfLine) *extraWidthToEndOfLine = x() + width() - rect.maxX(); // Move to local coords rect.moveBy(-location()); // FIXME: Border/padding should be added for all elements but this workaround // is needed because we use offsets inside an "atomic" element to represent // positions before and after the element in deprecated editing offsets. if (element() && !(editingIgnoresContent(element()) || isRenderedTable(element()))) { rect.setX(rect.x() + borderLeft() + paddingLeft()); rect.setY(rect.y() + paddingTop() + borderTop()); } if (!isHorizontalWritingMode()) return rect.transposedRect(); return rect; } VisiblePosition RenderBox::positionForPoint(const LayoutPoint& point, const RenderRegion* region) { // no children...return this render object's element, if there is one, and offset 0 if (!firstChild()) return createVisiblePosition(nonPseudoElement() ? firstPositionInOrBeforeNode(nonPseudoElement()) : Position()); if (isTable() && nonPseudoElement()) { LayoutUnit right = contentWidth() + horizontalBorderAndPaddingExtent(); LayoutUnit bottom = contentHeight() + verticalBorderAndPaddingExtent(); if (point.x() < 0 || point.x() > right || point.y() < 0 || point.y() > bottom) { if (point.x() <= right / 2) return createVisiblePosition(firstPositionInOrBeforeNode(nonPseudoElement())); return createVisiblePosition(lastPositionInOrAfterNode(nonPseudoElement())); } } // Pass off to the closest child. LayoutUnit minDist = LayoutUnit::max(); RenderBox* closestRenderer = 0; LayoutPoint adjustedPoint = point; if (isTableRow()) adjustedPoint.moveBy(location()); for (RenderObject* renderObject = firstChild(); renderObject; renderObject = renderObject->nextSibling()) { if (!renderObject->isBox()) continue; if (isRenderFlowThread()) { ASSERT(region); if (!toRenderFlowThread(this)->objectShouldFragmentInFlowRegion(renderObject, region)) continue; } RenderBox* renderer = toRenderBox(renderObject); if ((!renderer->firstChild() && !renderer->isInline() && !renderer->isRenderBlockFlow() ) || renderer->style().visibility() != VISIBLE) continue; LayoutUnit top = renderer->borderTop() + renderer->paddingTop() + (isTableRow() ? LayoutUnit() : renderer->y()); LayoutUnit bottom = top + renderer->contentHeight(); LayoutUnit left = renderer->borderLeft() + renderer->paddingLeft() + (isTableRow() ? LayoutUnit() : renderer->x()); LayoutUnit right = left + renderer->contentWidth(); if (point.x() <= right && point.x() >= left && point.y() <= top && point.y() >= bottom) { if (renderer->isTableRow()) return renderer->positionForPoint(point + adjustedPoint - renderer->locationOffset(), region); return renderer->positionForPoint(point - renderer->locationOffset(), region); } // Find the distance from (x, y) to the box. Split the space around the box into 8 pieces // and use a different compare depending on which piece (x, y) is in. LayoutPoint cmp; if (point.x() > right) { if (point.y() < top) cmp = LayoutPoint(right, top); else if (point.y() > bottom) cmp = LayoutPoint(right, bottom); else cmp = LayoutPoint(right, point.y()); } else if (point.x() < left) { if (point.y() < top) cmp = LayoutPoint(left, top); else if (point.y() > bottom) cmp = LayoutPoint(left, bottom); else cmp = LayoutPoint(left, point.y()); } else { if (point.y() < top) cmp = LayoutPoint(point.x(), top); else cmp = LayoutPoint(point.x(), bottom); } LayoutSize difference = cmp - point; LayoutUnit dist = difference.width() * difference.width() + difference.height() * difference.height(); if (dist < minDist) { closestRenderer = renderer; minDist = dist; } } if (closestRenderer) return closestRenderer->positionForPoint(adjustedPoint - closestRenderer->locationOffset(), region); return createVisiblePosition(firstPositionInOrBeforeNode(nonPseudoElement())); } bool RenderBox::shrinkToAvoidFloats() const { // Floating objects don't shrink. Objects that don't avoid floats don't shrink. Marquees don't shrink. if ((isInline() && !isHTMLMarquee()) || !avoidsFloats() || isFloating()) return false; // Only auto width objects can possibly shrink to avoid floats. return style().width().isAuto(); } bool RenderBox::avoidsFloats() const { return isReplaced() || hasOverflowClip() || isHR() || isLegend() || isWritingModeRoot() || isFlexItemIncludingDeprecated(); } void RenderBox::addVisualEffectOverflow() { if (!style().boxShadow() && !style().hasBorderImageOutsets()) return; LayoutRect borderBox = borderBoxRect(); addVisualOverflow(applyVisualEffectOverflow(borderBox)); RenderFlowThread* flowThread = flowThreadContainingBlock(); if (flowThread) flowThread->addRegionsVisualEffectOverflow(this); } LayoutRect RenderBox::applyVisualEffectOverflow(const LayoutRect& borderBox) const { bool isFlipped = style().isFlippedBlocksWritingMode(); bool isHorizontal = isHorizontalWritingMode(); LayoutUnit overflowMinX = borderBox.x(); LayoutUnit overflowMaxX = borderBox.maxX(); LayoutUnit overflowMinY = borderBox.y(); LayoutUnit overflowMaxY = borderBox.maxY(); // Compute box-shadow overflow first. if (style().boxShadow()) { LayoutUnit shadowLeft; LayoutUnit shadowRight; LayoutUnit shadowTop; LayoutUnit shadowBottom; style().getBoxShadowExtent(shadowTop, shadowRight, shadowBottom, shadowLeft); // In flipped blocks writing modes such as vertical-rl, the physical right shadow value is actually at the lower x-coordinate. overflowMinX = borderBox.x() + ((!isFlipped || isHorizontal) ? shadowLeft : -shadowRight); overflowMaxX = borderBox.maxX() + ((!isFlipped || isHorizontal) ? shadowRight : -shadowLeft); overflowMinY = borderBox.y() + ((!isFlipped || !isHorizontal) ? shadowTop : -shadowBottom); overflowMaxY = borderBox.maxY() + ((!isFlipped || !isHorizontal) ? shadowBottom : -shadowTop); } // Now compute border-image-outset overflow. if (style().hasBorderImageOutsets()) { LayoutBoxExtent borderOutsets = style().borderImageOutsets(); // In flipped blocks writing modes, the physical sides are inverted. For example in vertical-rl, the right // border is at the lower x coordinate value. overflowMinX = std::min(overflowMinX, borderBox.x() - ((!isFlipped || isHorizontal) ? borderOutsets.left() : borderOutsets.right())); overflowMaxX = std::max(overflowMaxX, borderBox.maxX() + ((!isFlipped || isHorizontal) ? borderOutsets.right() : borderOutsets.left())); overflowMinY = std::min(overflowMinY, borderBox.y() - ((!isFlipped || !isHorizontal) ? borderOutsets.top() : borderOutsets.bottom())); overflowMaxY = std::max(overflowMaxY, borderBox.maxY() + ((!isFlipped || !isHorizontal) ? borderOutsets.bottom() : borderOutsets.top())); } // Add in the final overflow with shadows and outsets combined. return LayoutRect(overflowMinX, overflowMinY, overflowMaxX - overflowMinX, overflowMaxY - overflowMinY); } void RenderBox::addOverflowFromChild(RenderBox* child, const LayoutSize& delta) { // Never allow flow threads to propagate overflow up to a parent. if (child->isRenderFlowThread()) return; RenderFlowThread* flowThread = flowThreadContainingBlock(); if (flowThread) flowThread->addRegionsOverflowFromChild(this, child, delta); // Only propagate layout overflow from the child if the child isn't clipping its overflow. If it is, then // its overflow is internal to it, and we don't care about it. layoutOverflowRectForPropagation takes care of this // and just propagates the border box rect instead. LayoutRect childLayoutOverflowRect = child->layoutOverflowRectForPropagation(&style()); childLayoutOverflowRect.move(delta); addLayoutOverflow(childLayoutOverflowRect); // Add in visual overflow from the child. Even if the child clips its overflow, it may still // have visual overflow of its own set from box shadows or reflections. It is unnecessary to propagate this // overflow if we are clipping our own overflow. if (child->hasSelfPaintingLayer() || hasOverflowClip()) return; LayoutRect childVisualOverflowRect = child->visualOverflowRectForPropagation(&style()); childVisualOverflowRect.move(delta); addVisualOverflow(childVisualOverflowRect); } void RenderBox::addLayoutOverflow(const LayoutRect& rect) { LayoutRect clientBox = flippedClientBoxRect(); if (clientBox.contains(rect) || rect.isEmpty()) return; // For overflow clip objects, we don't want to propagate overflow into unreachable areas. LayoutRect overflowRect(rect); if (hasOverflowClip() || isRenderView()) { // Overflow is in the block's coordinate space and thus is flipped for horizontal-bt and vertical-rl // writing modes. At this stage that is actually a simplification, since we can treat horizontal-tb/bt as the same // and vertical-lr/rl as the same. bool hasTopOverflow = isTopLayoutOverflowAllowed(); bool hasLeftOverflow = isLeftLayoutOverflowAllowed(); if (!hasTopOverflow) overflowRect.shiftYEdgeTo(std::max(overflowRect.y(), clientBox.y())); else overflowRect.shiftMaxYEdgeTo(std::min(overflowRect.maxY(), clientBox.maxY())); if (!hasLeftOverflow) overflowRect.shiftXEdgeTo(std::max(overflowRect.x(), clientBox.x())); else overflowRect.shiftMaxXEdgeTo(std::min(overflowRect.maxX(), clientBox.maxX())); // Now re-test with the adjusted rectangle and see if it has become unreachable or fully // contained. if (clientBox.contains(overflowRect) || overflowRect.isEmpty()) return; } if (!m_overflow) m_overflow = adoptRef(new RenderOverflow(clientBox, borderBoxRect())); m_overflow->addLayoutOverflow(overflowRect); } void RenderBox::addVisualOverflow(const LayoutRect& rect) { LayoutRect borderBox = borderBoxRect(); if (borderBox.contains(rect) || rect.isEmpty()) return; if (!m_overflow) m_overflow = adoptRef(new RenderOverflow(flippedClientBoxRect(), borderBox)); m_overflow->addVisualOverflow(rect); } void RenderBox::clearOverflow() { m_overflow.clear(); RenderFlowThread* flowThread = flowThreadContainingBlock(); if (flowThread) flowThread->clearRegionsOverflow(this); } inline static bool percentageLogicalHeightIsResolvable(const RenderBox* box) { return RenderBox::percentageLogicalHeightIsResolvableFromBlock(box->containingBlock(), box->isOutOfFlowPositioned()); } bool RenderBox::percentageLogicalHeightIsResolvableFromBlock(const RenderBlock* containingBlock, bool isOutOfFlowPositioned) { // In quirks mode, blocks with auto height are skipped, and we keep looking for an enclosing // block that may have a specified height and then use it. In strict mode, this violates the // specification, which states that percentage heights just revert to auto if the containing // block has an auto height. We still skip anonymous containing blocks in both modes, though, and look // only at explicit containers. const RenderBlock* cb = containingBlock; bool inQuirksMode = cb->document().inQuirksMode(); while (!cb->isRenderView() && !cb->isBody() && !cb->isTableCell() && !cb->isOutOfFlowPositioned() && cb->style().logicalHeight().isAuto()) { if (!inQuirksMode && !cb->isAnonymousBlock()) break; cb = cb->containingBlock(); } // A positioned element that specified both top/bottom or that specifies height should be treated as though it has a height // explicitly specified that can be used for any percentage computations. // FIXME: We can't just check top/bottom here. // https://bugs.webkit.org/show_bug.cgi?id=46500 bool isOutOfFlowPositionedWithSpecifiedHeight = cb->isOutOfFlowPositioned() && (!cb->style().logicalHeight().isAuto() || (!cb->style().top().isAuto() && !cb->style().bottom().isAuto())); // Table cells violate what the CSS spec says to do with heights. Basically we // don't care if the cell specified a height or not. We just always make ourselves // be a percentage of the cell's current content height. if (cb->isTableCell()) return true; // Otherwise we only use our percentage height if our containing block had a specified // height. if (cb->style().logicalHeight().isFixed()) return true; if (cb->style().logicalHeight().isPercent() && !isOutOfFlowPositionedWithSpecifiedHeight) return percentageLogicalHeightIsResolvableFromBlock(cb->containingBlock(), cb->isOutOfFlowPositioned()); if (cb->isRenderView() || inQuirksMode || isOutOfFlowPositionedWithSpecifiedHeight) return true; if (cb->isRoot() && isOutOfFlowPositioned) { // Match the positioned objects behavior, which is that positioned objects will fill their viewport // always. Note we could only hit this case by recurring into computePercentageLogicalHeight on a positioned containing block. return true; } return false; } bool RenderBox::hasUnsplittableScrollingOverflow() const { // We will paginate as long as we don't scroll overflow in the pagination direction. bool isHorizontal = isHorizontalWritingMode(); if ((isHorizontal && !scrollsOverflowY()) || (!isHorizontal && !scrollsOverflowX())) return false; // We do have overflow. We'll still be willing to paginate as long as the block // has auto logical height, auto or undefined max-logical-height and a zero or auto min-logical-height. // Note this is just a heuristic, and it's still possible to have overflow under these // conditions, but it should work out to be good enough for common cases. Paginating overflow // with scrollbars present is not the end of the world and is what we used to do in the old model anyway. return !style().logicalHeight().isIntrinsicOrAuto() || (!style().logicalMaxHeight().isIntrinsicOrAuto() && !style().logicalMaxHeight().isUndefined() && (!style().logicalMaxHeight().isPercent() || percentageLogicalHeightIsResolvable(this))) || (!style().logicalMinHeight().isIntrinsicOrAuto() && style().logicalMinHeight().isPositive() && (!style().logicalMinHeight().isPercent() || percentageLogicalHeightIsResolvable(this))); } bool RenderBox::isUnsplittableForPagination() const { return isReplaced() || hasUnsplittableScrollingOverflow() || (parent() && isWritingModeRoot()) || isRenderNamedFlowFragmentContainer() || fixedPositionedWithNamedFlowContainingBlock(); } LayoutUnit RenderBox::lineHeight(bool /*firstLine*/, LineDirectionMode direction, LinePositionMode /*linePositionMode*/) const { if (isReplaced()) return direction == HorizontalLine ? m_marginBox.top() + height() + m_marginBox.bottom() : m_marginBox.right() + width() + m_marginBox.left(); return 0; } int RenderBox::baselinePosition(FontBaseline baselineType, bool /*firstLine*/, LineDirectionMode direction, LinePositionMode /*linePositionMode*/) const { if (isReplaced()) { int result = direction == HorizontalLine ? m_marginBox.top() + height() + m_marginBox.bottom() : m_marginBox.right() + width() + m_marginBox.left(); if (baselineType == AlphabeticBaseline) return result; return result - result / 2; } return 0; } RenderLayer* RenderBox::enclosingFloatPaintingLayer() const { for (auto& box : lineageOfType(*this)) { if (box.layer() && box.layer()->isSelfPaintingLayer()) return box.layer(); } return nullptr; } LayoutRect RenderBox::logicalVisualOverflowRectForPropagation(RenderStyle* parentStyle) const { LayoutRect rect = visualOverflowRectForPropagation(parentStyle); if (!parentStyle->isHorizontalWritingMode()) return rect.transposedRect(); return rect; } LayoutRect RenderBox::visualOverflowRectForPropagation(RenderStyle* parentStyle) const { // If the writing modes of the child and parent match, then we don't have to // do anything fancy. Just return the result. LayoutRect rect = visualOverflowRect(); if (parentStyle->writingMode() == style().writingMode()) return rect; // We are putting ourselves into our parent's coordinate space. If there is a flipped block mismatch // in a particular axis, then we have to flip the rect along that axis. if (style().writingMode() == RightToLeftWritingMode || parentStyle->writingMode() == RightToLeftWritingMode) rect.setX(width() - rect.maxX()); else if (style().writingMode() == BottomToTopWritingMode || parentStyle->writingMode() == BottomToTopWritingMode) rect.setY(height() - rect.maxY()); return rect; } LayoutRect RenderBox::logicalLayoutOverflowRectForPropagation(RenderStyle* parentStyle) const { LayoutRect rect = layoutOverflowRectForPropagation(parentStyle); if (!parentStyle->isHorizontalWritingMode()) return rect.transposedRect(); return rect; } LayoutRect RenderBox::layoutOverflowRectForPropagation(RenderStyle* parentStyle) const { // Only propagate interior layout overflow if we don't clip it. LayoutRect rect = borderBoxRect(); if (!hasOverflowClip()) rect.unite(layoutOverflowRect()); bool hasTransform = hasLayer() && layer()->transform(); #if PLATFORM(IOS) if (isInFlowPositioned() || (hasTransform && document().settings()->shouldTransformsAffectOverflow())) { #else if (isInFlowPositioned() || hasTransform) { #endif // If we are relatively positioned or if we have a transform, then we have to convert // this rectangle into physical coordinates, apply relative positioning and transforms // to it, and then convert it back. flipForWritingMode(rect); if (hasTransform) rect = layer()->currentTransform().mapRect(rect); if (isInFlowPositioned()) rect.move(offsetForInFlowPosition()); // Now we need to flip back. flipForWritingMode(rect); } // If the writing modes of the child and parent match, then we don't have to // do anything fancy. Just return the result. if (parentStyle->writingMode() == style().writingMode()) return rect; // We are putting ourselves into our parent's coordinate space. If there is a flipped block mismatch // in a particular axis, then we have to flip the rect along that axis. if (style().writingMode() == RightToLeftWritingMode || parentStyle->writingMode() == RightToLeftWritingMode) rect.setX(width() - rect.maxX()); else if (style().writingMode() == BottomToTopWritingMode || parentStyle->writingMode() == BottomToTopWritingMode) rect.setY(height() - rect.maxY()); return rect; } LayoutRect RenderBox::flippedClientBoxRect() const { // Because of the special coodinate system used for overflow rectangles (not quite logical, not // quite physical), we need to flip the block progression coordinate in vertical-rl and // horizontal-bt writing modes. Apart from that, this method does the same as clientBoxRect(). LayoutUnit left = borderLeft(); LayoutUnit top = borderTop(); LayoutUnit right = borderRight(); LayoutUnit bottom = borderBottom(); // Calculate physical padding box. LayoutRect rect(left, top, width() - left - right, height() - top - bottom); // Flip block progression axis if writing mode is vertical-rl or horizontal-bt. flipForWritingMode(rect); // Subtract space occupied by scrollbars. They are at their physical edge in this coordinate // system, so order is important here: first flip, then subtract scrollbars. rect.contract(verticalScrollbarWidth(), horizontalScrollbarHeight()); return rect; } LayoutRect RenderBox::overflowRectForPaintRejection(RenderNamedFlowFragment* namedFlowFragment) const { LayoutRect overflowRect = visualOverflowRect(); // When using regions, some boxes might have their frame rect relative to the flow thread, which could // cause the paint rejection algorithm to prevent them from painting when using different width regions. // e.g. an absolutely positioned box with bottom:0px and right:0px would have it's frameRect.x relative // to the flow thread, not the last region (in which it will end up because of bottom:0px) if (namedFlowFragment && namedFlowFragment->isValid()) { RenderFlowThread* flowThread = namedFlowFragment->flowThread(); RenderRegion* startRegion = nullptr; RenderRegion* endRegion = nullptr; if (flowThread->getRegionRangeForBox(this, startRegion, endRegion)) overflowRect.unite(namedFlowFragment->visualOverflowRectForBox(this)); } if (!m_overflow || !usesCompositedScrolling()) return overflowRect; overflowRect.unite(layoutOverflowRect()); overflowRect.move(-scrolledContentOffset()); return overflowRect; } LayoutUnit RenderBox::offsetLeft() const { return adjustedPositionRelativeToOffsetParent(topLeftLocation()).x(); } LayoutUnit RenderBox::offsetTop() const { return adjustedPositionRelativeToOffsetParent(topLeftLocation()).y(); } LayoutPoint RenderBox::flipForWritingModeForChild(const RenderBox* child, const LayoutPoint& point) const { if (!style().isFlippedBlocksWritingMode()) return point; // The child is going to add in its x() and y(), so we have to make sure it ends up in // the right place. if (isHorizontalWritingMode()) return LayoutPoint(point.x(), point.y() + height() - child->height() - (2 * child->y())); return LayoutPoint(point.x() + width() - child->width() - (2 * child->x()), point.y()); } void RenderBox::flipForWritingMode(LayoutRect& rect) const { if (!style().isFlippedBlocksWritingMode()) return; if (isHorizontalWritingMode()) rect.setY(height() - rect.maxY()); else rect.setX(width() - rect.maxX()); } LayoutUnit RenderBox::flipForWritingMode(LayoutUnit position) const { if (!style().isFlippedBlocksWritingMode()) return position; return logicalHeight() - position; } LayoutPoint RenderBox::flipForWritingMode(const LayoutPoint& position) const { if (!style().isFlippedBlocksWritingMode()) return position; return isHorizontalWritingMode() ? LayoutPoint(position.x(), height() - position.y()) : LayoutPoint(width() - position.x(), position.y()); } LayoutSize RenderBox::flipForWritingMode(const LayoutSize& offset) const { if (!style().isFlippedBlocksWritingMode()) return offset; return isHorizontalWritingMode() ? LayoutSize(offset.width(), height() - offset.height()) : LayoutSize(width() - offset.width(), offset.height()); } FloatPoint RenderBox::flipForWritingMode(const FloatPoint& position) const { if (!style().isFlippedBlocksWritingMode()) return position; return isHorizontalWritingMode() ? FloatPoint(position.x(), height() - position.y()) : FloatPoint(width() - position.x(), position.y()); } void RenderBox::flipForWritingMode(FloatRect& rect) const { if (!style().isFlippedBlocksWritingMode()) return; if (isHorizontalWritingMode()) rect.setY(height() - rect.maxY()); else rect.setX(width() - rect.maxX()); } LayoutPoint RenderBox::topLeftLocation() const { RenderBlock* containerBlock = containingBlock(); if (!containerBlock || containerBlock == this) return location(); return containerBlock->flipForWritingModeForChild(this, location()); } LayoutSize RenderBox::topLeftLocationOffset() const { RenderBlock* containerBlock = containingBlock(); if (!containerBlock || containerBlock == this) return locationOffset(); LayoutRect rect(frameRect()); containerBlock->flipForWritingMode(rect); // FIXME: This is wrong if we are an absolutely positioned object enclosed by a relative-positioned inline. return LayoutSize(rect.x(), rect.y()); } bool RenderBox::hasRelativeDimensions() const { return style().height().isPercent() || style().width().isPercent() || style().maxHeight().isPercent() || style().maxWidth().isPercent() || style().minHeight().isPercent() || style().minWidth().isPercent(); } bool RenderBox::hasRelativeLogicalHeight() const { return style().logicalHeight().isPercent() || style().logicalMinHeight().isPercent() || style().logicalMaxHeight().isPercent(); } static void markBoxForRelayoutAfterSplit(RenderBox* box) { // FIXME: The table code should handle that automatically. If not, // we should fix it and remove the table part checks. if (box->isTable()) { // Because we may have added some sections with already computed column structures, we need to // sync the table structure with them now. This avoids crashes when adding new cells to the table. toRenderTable(box)->forceSectionsRecalc(); } else if (box->isTableSection()) toRenderTableSection(box)->setNeedsCellRecalc(); box->setNeedsLayoutAndPrefWidthsRecalc(); } RenderObject* RenderBox::splitAnonymousBoxesAroundChild(RenderObject* beforeChild) { bool didSplitParentAnonymousBoxes = false; while (beforeChild->parent() != this) { RenderBox* boxToSplit = toRenderBox(beforeChild->parent()); if (boxToSplit->firstChild() != beforeChild && boxToSplit->isAnonymous()) { didSplitParentAnonymousBoxes = true; // We have to split the parent box into two boxes and move children // from |beforeChild| to end into the new post box. RenderBox* postBox = boxToSplit->createAnonymousBoxWithSameTypeAs(this); postBox->setChildrenInline(boxToSplit->childrenInline()); RenderBox* parentBox = toRenderBox(boxToSplit->parent()); // We need to invalidate the |parentBox| before inserting the new node // so that the table repainting logic knows the structure is dirty. // See for example RenderTableCell:clippedOverflowRectForRepaint. markBoxForRelayoutAfterSplit(parentBox); parentBox->insertChildInternal(postBox, boxToSplit->nextSibling(), NotifyChildren); boxToSplit->moveChildrenTo(postBox, beforeChild, 0, true); markBoxForRelayoutAfterSplit(boxToSplit); markBoxForRelayoutAfterSplit(postBox); beforeChild = postBox; } else beforeChild = boxToSplit; } if (didSplitParentAnonymousBoxes) markBoxForRelayoutAfterSplit(this); ASSERT(beforeChild->parent() == this); return beforeChild; } LayoutUnit RenderBox::offsetFromLogicalTopOfFirstPage() const { LayoutState* layoutState = view().layoutState(); if ((layoutState && !layoutState->isPaginated()) || (!layoutState && !flowThreadContainingBlock())) return 0; RenderBlock* containerBlock = containingBlock(); return containerBlock->offsetFromLogicalTopOfFirstPage() + logicalTop(); } } // namespace WebCore