/* * Copyright (C) 2008, 2009, 2010, 2012, 2013, 2014 Apple Inc. All rights reserved. * Copyright (C) 2008 Cameron Zwarich * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "CodeBlock.h" #include "BytecodeGenerator.h" #include "BytecodeUseDef.h" #include "CallLinkStatus.h" #include "DFGCapabilities.h" #include "DFGCommon.h" #include "DFGDriver.h" #include "DFGJITCode.h" #include "DFGWorklist.h" #include "Debugger.h" #include "Interpreter.h" #include "JIT.h" #include "JITStubs.h" #include "JSActivation.h" #include "JSCJSValue.h" #include "JSFunction.h" #include "JSNameScope.h" #include "LLIntEntrypoint.h" #include "LowLevelInterpreter.h" #include "JSCInlines.h" #include "PolymorphicGetByIdList.h" #include "PolymorphicPutByIdList.h" #include "ProfilerDatabase.h" #include "ReduceWhitespace.h" #include "Repatch.h" #include "RepatchBuffer.h" #include "SlotVisitorInlines.h" #include "UnlinkedInstructionStream.h" #include #include #include #include #if ENABLE(DFG_JIT) #include "DFGOperations.h" #endif #if ENABLE(FTL_JIT) #include "FTLJITCode.h" #endif namespace JSC { CString CodeBlock::inferredName() const { switch (codeType()) { case GlobalCode: return ""; case EvalCode: return ""; case FunctionCode: return jsCast(ownerExecutable())->inferredName().utf8(); default: CRASH(); return CString("", 0); } } bool CodeBlock::hasHash() const { return !!m_hash; } bool CodeBlock::isSafeToComputeHash() const { return !isCompilationThread(); } CodeBlockHash CodeBlock::hash() const { if (!m_hash) { RELEASE_ASSERT(isSafeToComputeHash()); m_hash = CodeBlockHash(ownerExecutable()->source(), specializationKind()); } return m_hash; } CString CodeBlock::sourceCodeForTools() const { if (codeType() != FunctionCode) return ownerExecutable()->source().toUTF8(); SourceProvider* provider = source(); FunctionExecutable* executable = jsCast(ownerExecutable()); UnlinkedFunctionExecutable* unlinked = executable->unlinkedExecutable(); unsigned unlinkedStartOffset = unlinked->startOffset(); unsigned linkedStartOffset = executable->source().startOffset(); int delta = linkedStartOffset - unlinkedStartOffset; unsigned rangeStart = delta + unlinked->unlinkedFunctionNameStart(); unsigned rangeEnd = delta + unlinked->startOffset() + unlinked->sourceLength(); return toCString( "function ", provider->source().impl()->utf8ForRange(rangeStart, rangeEnd - rangeStart)); } CString CodeBlock::sourceCodeOnOneLine() const { return reduceWhitespace(sourceCodeForTools()); } CString CodeBlock::hashAsStringIfPossible() const { if (hasHash() || isSafeToComputeHash()) return toCString(hash()); return ""; } void CodeBlock::dumpAssumingJITType(PrintStream& out, JITCode::JITType jitType) const { out.print(inferredName(), "#", hashAsStringIfPossible()); out.print(":[", RawPointer(this), "->"); if (!!m_alternative) out.print(RawPointer(m_alternative.get()), "->"); out.print(RawPointer(ownerExecutable()), ", ", jitType, codeType()); if (codeType() == FunctionCode) out.print(specializationKind()); out.print(", ", instructionCount()); if (this->jitType() == JITCode::BaselineJIT && m_shouldAlwaysBeInlined) out.print(" (SABI)"); if (ownerExecutable()->neverInline()) out.print(" (NeverInline)"); if (ownerExecutable()->isStrictMode()) out.print(" (StrictMode)"); if (this->jitType() == JITCode::BaselineJIT && m_didFailFTLCompilation) out.print(" (FTLFail)"); if (this->jitType() == JITCode::BaselineJIT && m_hasBeenCompiledWithFTL) out.print(" (HadFTLReplacement)"); out.print("]"); } void CodeBlock::dump(PrintStream& out) const { dumpAssumingJITType(out, jitType()); } static CString constantName(int k, JSValue value) { return toCString(value, "(@k", k - FirstConstantRegisterIndex, ")"); } static CString idName(int id0, const Identifier& ident) { return toCString(ident.impl(), "(@id", id0, ")"); } CString CodeBlock::registerName(int r) const { if (r == missingThisObjectMarker()) return ""; if (isConstantRegisterIndex(r)) return constantName(r, getConstant(r)); if (operandIsArgument(r)) { if (!VirtualRegister(r).toArgument()) return "this"; return toCString("arg", VirtualRegister(r).toArgument()); } return toCString("loc", VirtualRegister(r).toLocal()); } static CString regexpToSourceString(RegExp* regExp) { char postfix[5] = { '/', 0, 0, 0, 0 }; int index = 1; if (regExp->global()) postfix[index++] = 'g'; if (regExp->ignoreCase()) postfix[index++] = 'i'; if (regExp->multiline()) postfix[index] = 'm'; return toCString("/", regExp->pattern().impl(), postfix); } static CString regexpName(int re, RegExp* regexp) { return toCString(regexpToSourceString(regexp), "(@re", re, ")"); } NEVER_INLINE static const char* debugHookName(int debugHookID) { switch (static_cast(debugHookID)) { case DidEnterCallFrame: return "didEnterCallFrame"; case WillLeaveCallFrame: return "willLeaveCallFrame"; case WillExecuteStatement: return "willExecuteStatement"; case WillExecuteProgram: return "willExecuteProgram"; case DidExecuteProgram: return "didExecuteProgram"; case DidReachBreakpoint: return "didReachBreakpoint"; } RELEASE_ASSERT_NOT_REACHED(); return ""; } void CodeBlock::printUnaryOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op) { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, op); out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); } void CodeBlock::printBinaryOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op) { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, op); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); } void CodeBlock::printConditionalJump(PrintStream& out, ExecState* exec, const Instruction*, const Instruction*& it, int location, const char* op) { int r0 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, op); out.printf("%s, %d(->%d)", registerName(r0).data(), offset, location + offset); } void CodeBlock::printGetByIdOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it) { const char* op; switch (exec->interpreter()->getOpcodeID(it->u.opcode)) { case op_get_by_id: op = "get_by_id"; break; case op_get_by_id_out_of_line: op = "get_by_id_out_of_line"; break; case op_get_array_length: op = "array_length"; break; default: RELEASE_ASSERT_NOT_REACHED(); op = 0; } int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, op); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data()); it += 4; // Increment up to the value profiler. } static void dumpStructure(PrintStream& out, const char* name, ExecState* exec, Structure* structure, const Identifier& ident) { if (!structure) return; out.printf("%s = %p", name, structure); PropertyOffset offset = structure->getConcurrently(exec->vm(), ident.impl()); if (offset != invalidOffset) out.printf(" (offset = %d)", offset); } #if ENABLE(JIT) // unused when not ENABLE(JIT), leading to silly warnings static void dumpChain(PrintStream& out, ExecState* exec, StructureChain* chain, const Identifier& ident) { out.printf("chain = %p: [", chain); bool first = true; for (WriteBarrier* currentStructure = chain->head(); *currentStructure; ++currentStructure) { if (first) first = false; else out.printf(", "); dumpStructure(out, "struct", exec, currentStructure->get(), ident); } out.printf("]"); } #endif void CodeBlock::printGetByIdCacheStatus(PrintStream& out, ExecState* exec, int location, const StubInfoMap& map) { Instruction* instruction = instructions().begin() + location; const Identifier& ident = identifier(instruction[3].u.operand); UNUSED_PARAM(ident); // tell the compiler to shut up in certain platform configurations. if (exec->interpreter()->getOpcodeID(instruction[0].u.opcode) == op_get_array_length) out.printf(" llint(array_length)"); else if (Structure* structure = instruction[4].u.structure.get()) { out.printf(" llint("); dumpStructure(out, "struct", exec, structure, ident); out.printf(")"); } #if ENABLE(JIT) if (StructureStubInfo* stubPtr = map.get(CodeOrigin(location))) { StructureStubInfo& stubInfo = *stubPtr; if (stubInfo.resetByGC) out.print(" (Reset By GC)"); if (stubInfo.seen) { out.printf(" jit("); Structure* baseStructure = 0; Structure* prototypeStructure = 0; StructureChain* chain = 0; PolymorphicGetByIdList* list = 0; switch (stubInfo.accessType) { case access_get_by_id_self: out.printf("self"); baseStructure = stubInfo.u.getByIdSelf.baseObjectStructure.get(); break; case access_get_by_id_chain: out.printf("chain"); baseStructure = stubInfo.u.getByIdChain.baseObjectStructure.get(); chain = stubInfo.u.getByIdChain.chain.get(); break; case access_get_by_id_list: out.printf("list"); list = stubInfo.u.getByIdList.list; break; case access_unset: out.printf("unset"); break; default: RELEASE_ASSERT_NOT_REACHED(); break; } if (baseStructure) { out.printf(", "); dumpStructure(out, "struct", exec, baseStructure, ident); } if (prototypeStructure) { out.printf(", "); dumpStructure(out, "prototypeStruct", exec, baseStructure, ident); } if (chain) { out.printf(", "); dumpChain(out, exec, chain, ident); } if (list) { out.printf(", list = %p: [", list); for (unsigned i = 0; i < list->size(); ++i) { if (i) out.printf(", "); out.printf("("); dumpStructure(out, "base", exec, list->at(i).structure(), ident); if (list->at(i).chain()) { out.printf(", "); dumpChain(out, exec, list->at(i).chain(), ident); } out.printf(")"); } out.printf("]"); } out.printf(")"); } } #else UNUSED_PARAM(map); #endif } void CodeBlock::printCallOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op, CacheDumpMode cacheDumpMode, bool& hasPrintedProfiling, const CallLinkInfoMap& map) { int dst = (++it)->u.operand; int func = (++it)->u.operand; int argCount = (++it)->u.operand; int registerOffset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, op); out.printf("%s, %s, %d, %d", registerName(dst).data(), registerName(func).data(), argCount, registerOffset); if (cacheDumpMode == DumpCaches) { LLIntCallLinkInfo* callLinkInfo = it[1].u.callLinkInfo; if (callLinkInfo->lastSeenCallee) { out.printf( " llint(%p, exec %p)", callLinkInfo->lastSeenCallee.get(), callLinkInfo->lastSeenCallee->executable()); } #if ENABLE(JIT) if (CallLinkInfo* info = map.get(CodeOrigin(location))) { JSFunction* target = info->lastSeenCallee.get(); if (target) out.printf(" jit(%p, exec %p)", target, target->executable()); } out.print(" status(", CallLinkStatus::computeFor(this, location, map), ")"); #else UNUSED_PARAM(map); #endif } ++it; ++it; dumpArrayProfiling(out, it, hasPrintedProfiling); dumpValueProfiling(out, it, hasPrintedProfiling); } void CodeBlock::printPutByIdOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op) { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, op); out.printf("%s, %s, %s", registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data()); it += 5; } void CodeBlock::dumpBytecode(PrintStream& out) { // We only use the ExecState* for things that don't actually lead to JS execution, // like converting a JSString to a String. Hence the globalExec is appropriate. ExecState* exec = m_globalObject->globalExec(); size_t instructionCount = 0; for (size_t i = 0; i < instructions().size(); i += opcodeLengths[exec->interpreter()->getOpcodeID(instructions()[i].u.opcode)]) ++instructionCount; out.print(*this); out.printf( ": %lu m_instructions; %lu bytes; %d parameter(s); %d callee register(s); %d variable(s)", static_cast(instructions().size()), static_cast(instructions().size() * sizeof(Instruction)), m_numParameters, m_numCalleeRegisters, m_numVars); if (symbolTable() && symbolTable()->captureCount()) { out.printf( "; %d captured var(s) (from r%d to r%d, inclusive)", symbolTable()->captureCount(), symbolTable()->captureStart(), symbolTable()->captureEnd() + 1); } if (usesArguments()) { out.printf( "; uses arguments, in r%d, r%d", argumentsRegister().offset(), unmodifiedArgumentsRegister(argumentsRegister()).offset()); } if (needsActivation() && codeType() == FunctionCode) out.printf("; activation in r%d", activationRegister().offset()); out.printf("\n"); StubInfoMap stubInfos; CallLinkInfoMap callLinkInfos; getStubInfoMap(stubInfos); getCallLinkInfoMap(callLinkInfos); const Instruction* begin = instructions().begin(); const Instruction* end = instructions().end(); for (const Instruction* it = begin; it != end; ++it) dumpBytecode(out, exec, begin, it, stubInfos, callLinkInfos); if (numberOfIdentifiers()) { out.printf("\nIdentifiers:\n"); size_t i = 0; do { out.printf(" id%u = %s\n", static_cast(i), identifier(i).string().utf8().data()); ++i; } while (i != numberOfIdentifiers()); } if (!m_constantRegisters.isEmpty()) { out.printf("\nConstants:\n"); size_t i = 0; do { out.printf(" k%u = %s\n", static_cast(i), toCString(m_constantRegisters[i].get()).data()); ++i; } while (i < m_constantRegisters.size()); } if (size_t count = m_unlinkedCode->numberOfRegExps()) { out.printf("\nm_regexps:\n"); size_t i = 0; do { out.printf(" re%u = %s\n", static_cast(i), regexpToSourceString(m_unlinkedCode->regexp(i)).data()); ++i; } while (i < count); } if (m_rareData && !m_rareData->m_exceptionHandlers.isEmpty()) { out.printf("\nException Handlers:\n"); unsigned i = 0; do { out.printf("\t %d: { start: [%4d] end: [%4d] target: [%4d] depth: [%4d] }\n", i + 1, m_rareData->m_exceptionHandlers[i].start, m_rareData->m_exceptionHandlers[i].end, m_rareData->m_exceptionHandlers[i].target, m_rareData->m_exceptionHandlers[i].scopeDepth); ++i; } while (i < m_rareData->m_exceptionHandlers.size()); } if (m_rareData && !m_rareData->m_switchJumpTables.isEmpty()) { out.printf("Switch Jump Tables:\n"); unsigned i = 0; do { out.printf(" %1d = {\n", i); int entry = 0; Vector::const_iterator end = m_rareData->m_switchJumpTables[i].branchOffsets.end(); for (Vector::const_iterator iter = m_rareData->m_switchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) { if (!*iter) continue; out.printf("\t\t%4d => %04d\n", entry + m_rareData->m_switchJumpTables[i].min, *iter); } out.printf(" }\n"); ++i; } while (i < m_rareData->m_switchJumpTables.size()); } if (m_rareData && !m_rareData->m_stringSwitchJumpTables.isEmpty()) { out.printf("\nString Switch Jump Tables:\n"); unsigned i = 0; do { out.printf(" %1d = {\n", i); StringJumpTable::StringOffsetTable::const_iterator end = m_rareData->m_stringSwitchJumpTables[i].offsetTable.end(); for (StringJumpTable::StringOffsetTable::const_iterator iter = m_rareData->m_stringSwitchJumpTables[i].offsetTable.begin(); iter != end; ++iter) out.printf("\t\t\"%s\" => %04d\n", iter->key->utf8().data(), iter->value.branchOffset); out.printf(" }\n"); ++i; } while (i < m_rareData->m_stringSwitchJumpTables.size()); } out.printf("\n"); } void CodeBlock::beginDumpProfiling(PrintStream& out, bool& hasPrintedProfiling) { if (hasPrintedProfiling) { out.print("; "); return; } out.print(" "); hasPrintedProfiling = true; } void CodeBlock::dumpValueProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling) { ConcurrentJITLocker locker(m_lock); ++it; CString description = it->u.profile->briefDescription(locker); if (!description.length()) return; beginDumpProfiling(out, hasPrintedProfiling); out.print(description); } void CodeBlock::dumpArrayProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling) { ConcurrentJITLocker locker(m_lock); ++it; if (!it->u.arrayProfile) return; CString description = it->u.arrayProfile->briefDescription(locker, this); if (!description.length()) return; beginDumpProfiling(out, hasPrintedProfiling); out.print(description); } void CodeBlock::dumpRareCaseProfile(PrintStream& out, const char* name, RareCaseProfile* profile, bool& hasPrintedProfiling) { if (!profile || !profile->m_counter) return; beginDumpProfiling(out, hasPrintedProfiling); out.print(name, profile->m_counter); } void CodeBlock::printLocationAndOp(PrintStream& out, ExecState*, int location, const Instruction*&, const char* op) { out.printf("[%4d] %-17s ", location, op); } void CodeBlock::printLocationOpAndRegisterOperand(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op, int operand) { printLocationAndOp(out, exec, location, it, op); out.printf("%s", registerName(operand).data()); } void CodeBlock::dumpBytecode( PrintStream& out, ExecState* exec, const Instruction* begin, const Instruction*& it, const StubInfoMap& stubInfos, const CallLinkInfoMap& callLinkInfos) { int location = it - begin; bool hasPrintedProfiling = false; OpcodeID opcode = exec->interpreter()->getOpcodeID(it->u.opcode); switch (opcode) { case op_enter: { printLocationAndOp(out, exec, location, it, "enter"); break; } case op_touch_entry: { printLocationAndOp(out, exec, location, it, "touch_entry"); break; } case op_create_activation: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "create_activation", r0); break; } case op_create_arguments: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "create_arguments", r0); break; } case op_init_lazy_reg: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "init_lazy_reg", r0); break; } case op_get_callee: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "get_callee", r0); ++it; break; } case op_create_this: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; unsigned inferredInlineCapacity = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "create_this"); out.printf("%s, %s, %u", registerName(r0).data(), registerName(r1).data(), inferredInlineCapacity); break; } case op_to_this: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "to_this", r0); Structure* structure = (++it)->u.structure.get(); if (structure) out.print(" cache(struct = ", RawPointer(structure), ")"); break; } case op_new_object: { int r0 = (++it)->u.operand; unsigned inferredInlineCapacity = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "new_object"); out.printf("%s, %u", registerName(r0).data(), inferredInlineCapacity); ++it; // Skip object allocation profile. break; } case op_new_array: { int dst = (++it)->u.operand; int argv = (++it)->u.operand; int argc = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "new_array"); out.printf("%s, %s, %d", registerName(dst).data(), registerName(argv).data(), argc); ++it; // Skip array allocation profile. break; } case op_new_array_with_size: { int dst = (++it)->u.operand; int length = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "new_array_with_size"); out.printf("%s, %s", registerName(dst).data(), registerName(length).data()); ++it; // Skip array allocation profile. break; } case op_new_array_buffer: { int dst = (++it)->u.operand; int argv = (++it)->u.operand; int argc = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "new_array_buffer"); out.printf("%s, %d, %d", registerName(dst).data(), argv, argc); ++it; // Skip array allocation profile. break; } case op_new_regexp: { int r0 = (++it)->u.operand; int re0 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "new_regexp"); out.printf("%s, ", registerName(r0).data()); if (r0 >=0 && r0 < (int)m_unlinkedCode->numberOfRegExps()) out.printf("%s", regexpName(re0, regexp(re0)).data()); else out.printf("bad_regexp(%d)", re0); break; } case op_mov: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "mov"); out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); break; } case op_captured_mov: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "captured_mov"); out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); ++it; break; } case op_not: { printUnaryOp(out, exec, location, it, "not"); break; } case op_eq: { printBinaryOp(out, exec, location, it, "eq"); break; } case op_eq_null: { printUnaryOp(out, exec, location, it, "eq_null"); break; } case op_neq: { printBinaryOp(out, exec, location, it, "neq"); break; } case op_neq_null: { printUnaryOp(out, exec, location, it, "neq_null"); break; } case op_stricteq: { printBinaryOp(out, exec, location, it, "stricteq"); break; } case op_nstricteq: { printBinaryOp(out, exec, location, it, "nstricteq"); break; } case op_less: { printBinaryOp(out, exec, location, it, "less"); break; } case op_lesseq: { printBinaryOp(out, exec, location, it, "lesseq"); break; } case op_greater: { printBinaryOp(out, exec, location, it, "greater"); break; } case op_greatereq: { printBinaryOp(out, exec, location, it, "greatereq"); break; } case op_inc: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "inc", r0); break; } case op_dec: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "dec", r0); break; } case op_to_number: { printUnaryOp(out, exec, location, it, "to_number"); break; } case op_negate: { printUnaryOp(out, exec, location, it, "negate"); break; } case op_add: { printBinaryOp(out, exec, location, it, "add"); ++it; break; } case op_mul: { printBinaryOp(out, exec, location, it, "mul"); ++it; break; } case op_div: { printBinaryOp(out, exec, location, it, "div"); ++it; break; } case op_mod: { printBinaryOp(out, exec, location, it, "mod"); break; } case op_sub: { printBinaryOp(out, exec, location, it, "sub"); ++it; break; } case op_lshift: { printBinaryOp(out, exec, location, it, "lshift"); break; } case op_rshift: { printBinaryOp(out, exec, location, it, "rshift"); break; } case op_urshift: { printBinaryOp(out, exec, location, it, "urshift"); break; } case op_bitand: { printBinaryOp(out, exec, location, it, "bitand"); ++it; break; } case op_bitxor: { printBinaryOp(out, exec, location, it, "bitxor"); ++it; break; } case op_bitor: { printBinaryOp(out, exec, location, it, "bitor"); ++it; break; } case op_check_has_instance: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "check_has_instance"); out.printf("%s, %s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), registerName(r2).data(), offset, location + offset); break; } case op_instanceof: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "instanceof"); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); break; } case op_unsigned: { printUnaryOp(out, exec, location, it, "unsigned"); break; } case op_typeof: { printUnaryOp(out, exec, location, it, "typeof"); break; } case op_is_undefined: { printUnaryOp(out, exec, location, it, "is_undefined"); break; } case op_is_boolean: { printUnaryOp(out, exec, location, it, "is_boolean"); break; } case op_is_number: { printUnaryOp(out, exec, location, it, "is_number"); break; } case op_is_string: { printUnaryOp(out, exec, location, it, "is_string"); break; } case op_is_object: { printUnaryOp(out, exec, location, it, "is_object"); break; } case op_is_function: { printUnaryOp(out, exec, location, it, "is_function"); break; } case op_in: { printBinaryOp(out, exec, location, it, "in"); break; } case op_init_global_const_nop: { printLocationAndOp(out, exec, location, it, "init_global_const_nop"); it++; it++; it++; it++; break; } case op_init_global_const: { WriteBarrier* registerPointer = (++it)->u.registerPointer; int r0 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "init_global_const"); out.printf("g%d(%p), %s", m_globalObject->findRegisterIndex(registerPointer), registerPointer, registerName(r0).data()); it++; it++; break; } case op_get_by_id: case op_get_by_id_out_of_line: case op_get_array_length: { printGetByIdOp(out, exec, location, it); printGetByIdCacheStatus(out, exec, location, stubInfos); dumpValueProfiling(out, it, hasPrintedProfiling); break; } case op_get_arguments_length: { printUnaryOp(out, exec, location, it, "get_arguments_length"); it++; break; } case op_put_by_id: { printPutByIdOp(out, exec, location, it, "put_by_id"); break; } case op_put_by_id_out_of_line: { printPutByIdOp(out, exec, location, it, "put_by_id_out_of_line"); break; } case op_put_by_id_transition_direct: { printPutByIdOp(out, exec, location, it, "put_by_id_transition_direct"); break; } case op_put_by_id_transition_direct_out_of_line: { printPutByIdOp(out, exec, location, it, "put_by_id_transition_direct_out_of_line"); break; } case op_put_by_id_transition_normal: { printPutByIdOp(out, exec, location, it, "put_by_id_transition_normal"); break; } case op_put_by_id_transition_normal_out_of_line: { printPutByIdOp(out, exec, location, it, "put_by_id_transition_normal_out_of_line"); break; } case op_put_getter_setter: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "put_getter_setter"); out.printf("%s, %s, %s, %s", registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data(), registerName(r2).data()); break; } case op_del_by_id: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "del_by_id"); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data()); break; } case op_get_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "get_by_val"); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); dumpArrayProfiling(out, it, hasPrintedProfiling); dumpValueProfiling(out, it, hasPrintedProfiling); break; } case op_get_argument_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "get_argument_by_val"); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); ++it; dumpValueProfiling(out, it, hasPrintedProfiling); break; } case op_get_by_pname: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; int r3 = (++it)->u.operand; int r4 = (++it)->u.operand; int r5 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "get_by_pname"); out.printf("%s, %s, %s, %s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data(), registerName(r3).data(), registerName(r4).data(), registerName(r5).data()); break; } case op_put_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "put_by_val"); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); dumpArrayProfiling(out, it, hasPrintedProfiling); break; } case op_put_by_val_direct: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "put_by_val_direct"); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); dumpArrayProfiling(out, it, hasPrintedProfiling); break; } case op_del_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "del_by_val"); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); break; } case op_put_by_index: { int r0 = (++it)->u.operand; unsigned n0 = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "put_by_index"); out.printf("%s, %u, %s", registerName(r0).data(), n0, registerName(r1).data()); break; } case op_jmp: { int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jmp"); out.printf("%d(->%d)", offset, location + offset); break; } case op_jtrue: { printConditionalJump(out, exec, begin, it, location, "jtrue"); break; } case op_jfalse: { printConditionalJump(out, exec, begin, it, location, "jfalse"); break; } case op_jeq_null: { printConditionalJump(out, exec, begin, it, location, "jeq_null"); break; } case op_jneq_null: { printConditionalJump(out, exec, begin, it, location, "jneq_null"); break; } case op_jneq_ptr: { int r0 = (++it)->u.operand; Special::Pointer pointer = (++it)->u.specialPointer; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jneq_ptr"); out.printf("%s, %d (%p), %d(->%d)", registerName(r0).data(), pointer, m_globalObject->actualPointerFor(pointer), offset, location + offset); break; } case op_jless: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jless"); out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } case op_jlesseq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jlesseq"); out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } case op_jgreater: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jgreater"); out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } case op_jgreatereq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jgreatereq"); out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } case op_jnless: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jnless"); out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } case op_jnlesseq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jnlesseq"); out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } case op_jngreater: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jngreater"); out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } case op_jngreatereq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jngreatereq"); out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } case op_loop_hint: { printLocationAndOp(out, exec, location, it, "loop_hint"); break; } case op_switch_imm: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "switch_imm"); out.printf("%d, %d(->%d), %s", tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data()); break; } case op_switch_char: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "switch_char"); out.printf("%d, %d(->%d), %s", tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data()); break; } case op_switch_string: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "switch_string"); out.printf("%d, %d(->%d), %s", tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data()); break; } case op_new_func: { int r0 = (++it)->u.operand; int f0 = (++it)->u.operand; int shouldCheck = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "new_func"); out.printf("%s, f%d, %s", registerName(r0).data(), f0, shouldCheck ? "" : ""); break; } case op_new_captured_func: { int r0 = (++it)->u.operand; int f0 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "new_captured_func"); out.printf("%s, f%d", registerName(r0).data(), f0); ++it; break; } case op_new_func_exp: { int r0 = (++it)->u.operand; int f0 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "new_func_exp"); out.printf("%s, f%d", registerName(r0).data(), f0); break; } case op_call: { printCallOp(out, exec, location, it, "call", DumpCaches, hasPrintedProfiling, callLinkInfos); break; } case op_call_eval: { printCallOp(out, exec, location, it, "call_eval", DontDumpCaches, hasPrintedProfiling, callLinkInfos); break; } case op_construct_varargs: case op_call_varargs: { int result = (++it)->u.operand; int callee = (++it)->u.operand; int thisValue = (++it)->u.operand; int arguments = (++it)->u.operand; int firstFreeRegister = (++it)->u.operand; int varArgOffset = (++it)->u.operand; ++it; printLocationAndOp(out, exec, location, it, opcode == op_call_varargs ? "call_varargs" : "construct_varargs"); out.printf("%s, %s, %s, %s, %d, %d", registerName(result).data(), registerName(callee).data(), registerName(thisValue).data(), registerName(arguments).data(), firstFreeRegister, varArgOffset); dumpValueProfiling(out, it, hasPrintedProfiling); break; } case op_tear_off_activation: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "tear_off_activation", r0); break; } case op_tear_off_arguments: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "tear_off_arguments"); out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); break; } case op_ret: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "ret", r0); break; } case op_ret_object_or_this: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "constructor_ret"); out.printf("%s %s", registerName(r0).data(), registerName(r1).data()); break; } case op_construct: { printCallOp(out, exec, location, it, "construct", DumpCaches, hasPrintedProfiling, callLinkInfos); break; } case op_strcat: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int count = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "strcat"); out.printf("%s, %s, %d", registerName(r0).data(), registerName(r1).data(), count); break; } case op_to_primitive: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "to_primitive"); out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); break; } case op_get_pnames: { int r0 = it[1].u.operand; int r1 = it[2].u.operand; int r2 = it[3].u.operand; int r3 = it[4].u.operand; int offset = it[5].u.operand; printLocationAndOp(out, exec, location, it, "get_pnames"); out.printf("%s, %s, %s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), registerName(r2).data(), registerName(r3).data(), offset, location + offset); it += OPCODE_LENGTH(op_get_pnames) - 1; break; } case op_next_pname: { int dest = it[1].u.operand; int base = it[2].u.operand; int i = it[3].u.operand; int size = it[4].u.operand; int iter = it[5].u.operand; int offset = it[6].u.operand; printLocationAndOp(out, exec, location, it, "next_pname"); out.printf("%s, %s, %s, %s, %s, %d(->%d)", registerName(dest).data(), registerName(base).data(), registerName(i).data(), registerName(size).data(), registerName(iter).data(), offset, location + offset); it += OPCODE_LENGTH(op_next_pname) - 1; break; } case op_push_with_scope: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "push_with_scope", r0); break; } case op_pop_scope: { printLocationAndOp(out, exec, location, it, "pop_scope"); break; } case op_push_name_scope: { int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; unsigned attributes = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "push_name_scope"); out.printf("%s, %s, %u", idName(id0, identifier(id0)).data(), registerName(r1).data(), attributes); break; } case op_catch: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "catch", r0); break; } case op_throw: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "throw", r0); break; } case op_throw_static_error: { int k0 = (++it)->u.operand; int k1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "throw_static_error"); out.printf("%s, %s", constantName(k0, getConstant(k0)).data(), k1 ? "true" : "false"); break; } case op_debug: { int debugHookID = (++it)->u.operand; int hasBreakpointFlag = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "debug"); out.printf("%s %d", debugHookName(debugHookID), hasBreakpointFlag); break; } case op_profile_will_call: { int function = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "profile_will_call", function); break; } case op_profile_did_call: { int function = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "profile_did_call", function); break; } case op_end: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "end", r0); break; } case op_resolve_scope: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; ResolveModeAndType modeAndType = ResolveModeAndType((++it)->u.operand); int depth = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "resolve_scope"); out.printf("%s, %s, %u<%s|%s>, %d", registerName(r0).data(), idName(id0, identifier(id0)).data(), modeAndType.operand(), resolveModeName(modeAndType.mode()), resolveTypeName(modeAndType.type()), depth); ++it; break; } case op_get_from_scope: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; ResolveModeAndType modeAndType = ResolveModeAndType((++it)->u.operand); ++it; // Structure int operand = (++it)->u.operand; // Operand ++it; // Skip value profile. printLocationAndOp(out, exec, location, it, "get_from_scope"); out.printf("%s, %s, %s, %u<%s|%s>, , %d", registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data(), modeAndType.operand(), resolveModeName(modeAndType.mode()), resolveTypeName(modeAndType.type()), operand); break; } case op_put_to_scope: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; ResolveModeAndType modeAndType = ResolveModeAndType((++it)->u.operand); ++it; // Structure int operand = (++it)->u.operand; // Operand printLocationAndOp(out, exec, location, it, "put_to_scope"); out.printf("%s, %s, %s, %u<%s|%s>, , %d", registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data(), modeAndType.operand(), resolveModeName(modeAndType.mode()), resolveTypeName(modeAndType.type()), operand); break; } default: RELEASE_ASSERT_NOT_REACHED(); } dumpRareCaseProfile(out, "rare case: ", rareCaseProfileForBytecodeOffset(location), hasPrintedProfiling); dumpRareCaseProfile(out, "special fast case: ", specialFastCaseProfileForBytecodeOffset(location), hasPrintedProfiling); #if ENABLE(DFG_JIT) Vector exitSites = exitProfile().exitSitesFor(location); if (!exitSites.isEmpty()) { out.print(" !! frequent exits: "); CommaPrinter comma; for (unsigned i = 0; i < exitSites.size(); ++i) out.print(comma, exitSites[i].kind(), " ", exitSites[i].jitType()); } #else // ENABLE(DFG_JIT) UNUSED_PARAM(location); #endif // ENABLE(DFG_JIT) out.print("\n"); } void CodeBlock::dumpBytecode( PrintStream& out, unsigned bytecodeOffset, const StubInfoMap& stubInfos, const CallLinkInfoMap& callLinkInfos) { ExecState* exec = m_globalObject->globalExec(); const Instruction* it = instructions().begin() + bytecodeOffset; dumpBytecode(out, exec, instructions().begin(), it, stubInfos, callLinkInfos); } #define FOR_EACH_MEMBER_VECTOR(macro) \ macro(instructions) \ macro(callLinkInfos) \ macro(linkedCallerList) \ macro(identifiers) \ macro(functionExpressions) \ macro(constantRegisters) #define FOR_EACH_MEMBER_VECTOR_RARE_DATA(macro) \ macro(regexps) \ macro(functions) \ macro(exceptionHandlers) \ macro(switchJumpTables) \ macro(stringSwitchJumpTables) \ macro(evalCodeCache) \ macro(expressionInfo) \ macro(lineInfo) \ macro(callReturnIndexVector) template static size_t sizeInBytes(const Vector& vector) { return vector.capacity() * sizeof(T); } CodeBlock::CodeBlock(CopyParsedBlockTag, CodeBlock& other) : m_globalObject(other.m_globalObject) , m_heap(other.m_heap) , m_numCalleeRegisters(other.m_numCalleeRegisters) , m_numVars(other.m_numVars) , m_isConstructor(other.m_isConstructor) , m_shouldAlwaysBeInlined(true) , m_didFailFTLCompilation(false) , m_hasBeenCompiledWithFTL(false) , m_unlinkedCode(*other.m_vm, other.m_ownerExecutable.get(), other.m_unlinkedCode.get()) , m_hasDebuggerStatement(false) , m_steppingMode(SteppingModeDisabled) , m_numBreakpoints(0) , m_ownerExecutable(*other.m_vm, other.m_ownerExecutable.get(), other.m_ownerExecutable.get()) , m_vm(other.m_vm) , m_instructions(other.m_instructions) , m_thisRegister(other.m_thisRegister) , m_argumentsRegister(other.m_argumentsRegister) , m_activationRegister(other.m_activationRegister) , m_isStrictMode(other.m_isStrictMode) , m_needsActivation(other.m_needsActivation) , m_mayBeExecuting(false) , m_visitAggregateHasBeenCalled(false) , m_source(other.m_source) , m_sourceOffset(other.m_sourceOffset) , m_firstLineColumnOffset(other.m_firstLineColumnOffset) , m_codeType(other.m_codeType) , m_constantRegisters(other.m_constantRegisters) , m_functionDecls(other.m_functionDecls) , m_functionExprs(other.m_functionExprs) , m_osrExitCounter(0) , m_optimizationDelayCounter(0) , m_reoptimizationRetryCounter(0) , m_hash(other.m_hash) #if ENABLE(JIT) , m_capabilityLevelState(DFG::CapabilityLevelNotSet) #endif { ASSERT(m_heap->isDeferred()); if (SymbolTable* symbolTable = other.symbolTable()) m_symbolTable.set(*m_vm, m_ownerExecutable.get(), symbolTable); setNumParameters(other.numParameters()); optimizeAfterWarmUp(); jitAfterWarmUp(); if (other.m_rareData) { createRareDataIfNecessary(); m_rareData->m_exceptionHandlers = other.m_rareData->m_exceptionHandlers; m_rareData->m_constantBuffers = other.m_rareData->m_constantBuffers; m_rareData->m_switchJumpTables = other.m_rareData->m_switchJumpTables; m_rareData->m_stringSwitchJumpTables = other.m_rareData->m_stringSwitchJumpTables; } m_heap->m_codeBlocks.add(this); m_heap->reportExtraMemoryCost(sizeof(CodeBlock)); } CodeBlock::CodeBlock(ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, JSScope* scope, PassRefPtr sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset) : m_globalObject(scope->globalObject()->vm(), ownerExecutable, scope->globalObject()) , m_heap(&m_globalObject->vm().heap) , m_numCalleeRegisters(unlinkedCodeBlock->m_numCalleeRegisters) , m_numVars(unlinkedCodeBlock->m_numVars) , m_isConstructor(unlinkedCodeBlock->isConstructor()) , m_shouldAlwaysBeInlined(true) , m_didFailFTLCompilation(false) , m_hasBeenCompiledWithFTL(false) , m_unlinkedCode(m_globalObject->vm(), ownerExecutable, unlinkedCodeBlock) , m_hasDebuggerStatement(false) , m_steppingMode(SteppingModeDisabled) , m_numBreakpoints(0) , m_ownerExecutable(m_globalObject->vm(), ownerExecutable, ownerExecutable) , m_vm(unlinkedCodeBlock->vm()) , m_thisRegister(unlinkedCodeBlock->thisRegister()) , m_argumentsRegister(unlinkedCodeBlock->argumentsRegister()) , m_activationRegister(unlinkedCodeBlock->activationRegister()) , m_isStrictMode(unlinkedCodeBlock->isStrictMode()) , m_needsActivation(unlinkedCodeBlock->hasActivationRegister() && unlinkedCodeBlock->codeType() == FunctionCode) , m_mayBeExecuting(false) , m_visitAggregateHasBeenCalled(false) , m_source(sourceProvider) , m_sourceOffset(sourceOffset) , m_firstLineColumnOffset(firstLineColumnOffset) , m_codeType(unlinkedCodeBlock->codeType()) , m_osrExitCounter(0) , m_optimizationDelayCounter(0) , m_reoptimizationRetryCounter(0) #if ENABLE(JIT) , m_capabilityLevelState(DFG::CapabilityLevelNotSet) #endif { ASSERT(m_heap->isDeferred()); bool didCloneSymbolTable = false; if (SymbolTable* symbolTable = unlinkedCodeBlock->symbolTable()) { if (codeType() == FunctionCode && symbolTable->captureCount()) { m_symbolTable.set(*m_vm, m_ownerExecutable.get(), symbolTable->cloneCapturedNames(*m_vm)); didCloneSymbolTable = true; } else m_symbolTable.set(*m_vm, m_ownerExecutable.get(), symbolTable); } ASSERT(m_source); setNumParameters(unlinkedCodeBlock->numParameters()); setConstantRegisters(unlinkedCodeBlock->constantRegisters()); if (unlinkedCodeBlock->usesGlobalObject()) m_constantRegisters[unlinkedCodeBlock->globalObjectRegister().toConstantIndex()].set(*m_vm, ownerExecutable, m_globalObject.get()); m_functionDecls.resizeToFit(unlinkedCodeBlock->numberOfFunctionDecls()); for (size_t count = unlinkedCodeBlock->numberOfFunctionDecls(), i = 0; i < count; ++i) { UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionDecl(i); unsigned lineCount = unlinkedExecutable->lineCount(); unsigned firstLine = ownerExecutable->lineNo() + unlinkedExecutable->firstLineOffset(); bool startColumnIsOnOwnerStartLine = !unlinkedExecutable->firstLineOffset(); unsigned startColumn = unlinkedExecutable->unlinkedBodyStartColumn() + (startColumnIsOnOwnerStartLine ? ownerExecutable->startColumn() : 1); bool endColumnIsOnStartLine = !lineCount; unsigned endColumn = unlinkedExecutable->unlinkedBodyEndColumn() + (endColumnIsOnStartLine ? startColumn : 1); unsigned startOffset = sourceOffset + unlinkedExecutable->startOffset(); unsigned sourceLength = unlinkedExecutable->sourceLength(); SourceCode code(m_source, startOffset, startOffset + sourceLength, firstLine, startColumn); FunctionExecutable* executable = FunctionExecutable::create(*m_vm, code, unlinkedExecutable, firstLine, firstLine + lineCount, startColumn, endColumn); m_functionDecls[i].set(*m_vm, ownerExecutable, executable); } m_functionExprs.resizeToFit(unlinkedCodeBlock->numberOfFunctionExprs()); for (size_t count = unlinkedCodeBlock->numberOfFunctionExprs(), i = 0; i < count; ++i) { UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionExpr(i); unsigned lineCount = unlinkedExecutable->lineCount(); unsigned firstLine = ownerExecutable->lineNo() + unlinkedExecutable->firstLineOffset(); bool startColumnIsOnOwnerStartLine = !unlinkedExecutable->firstLineOffset(); unsigned startColumn = unlinkedExecutable->unlinkedBodyStartColumn() + (startColumnIsOnOwnerStartLine ? ownerExecutable->startColumn() : 1); bool endColumnIsOnStartLine = !lineCount; unsigned endColumn = unlinkedExecutable->unlinkedBodyEndColumn() + (endColumnIsOnStartLine ? startColumn : 1); unsigned startOffset = sourceOffset + unlinkedExecutable->startOffset(); unsigned sourceLength = unlinkedExecutable->sourceLength(); SourceCode code(m_source, startOffset, startOffset + sourceLength, firstLine, startColumn); FunctionExecutable* executable = FunctionExecutable::create(*m_vm, code, unlinkedExecutable, firstLine, firstLine + lineCount, startColumn, endColumn); m_functionExprs[i].set(*m_vm, ownerExecutable, executable); } if (unlinkedCodeBlock->hasRareData()) { createRareDataIfNecessary(); if (size_t count = unlinkedCodeBlock->constantBufferCount()) { m_rareData->m_constantBuffers.grow(count); for (size_t i = 0; i < count; i++) { const UnlinkedCodeBlock::ConstantBuffer& buffer = unlinkedCodeBlock->constantBuffer(i); m_rareData->m_constantBuffers[i] = buffer; } } if (size_t count = unlinkedCodeBlock->numberOfExceptionHandlers()) { m_rareData->m_exceptionHandlers.resizeToFit(count); size_t nonLocalScopeDepth = scope->depth(); for (size_t i = 0; i < count; i++) { const UnlinkedHandlerInfo& handler = unlinkedCodeBlock->exceptionHandler(i); m_rareData->m_exceptionHandlers[i].start = handler.start; m_rareData->m_exceptionHandlers[i].end = handler.end; m_rareData->m_exceptionHandlers[i].target = handler.target; m_rareData->m_exceptionHandlers[i].scopeDepth = nonLocalScopeDepth + handler.scopeDepth; #if ENABLE(JIT) m_rareData->m_exceptionHandlers[i].nativeCode = CodeLocationLabel(MacroAssemblerCodePtr::createFromExecutableAddress(LLInt::getCodePtr(op_catch))); #endif } } if (size_t count = unlinkedCodeBlock->numberOfStringSwitchJumpTables()) { m_rareData->m_stringSwitchJumpTables.grow(count); for (size_t i = 0; i < count; i++) { UnlinkedStringJumpTable::StringOffsetTable::iterator ptr = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.begin(); UnlinkedStringJumpTable::StringOffsetTable::iterator end = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.end(); for (; ptr != end; ++ptr) { OffsetLocation offset; offset.branchOffset = ptr->value; m_rareData->m_stringSwitchJumpTables[i].offsetTable.add(ptr->key, offset); } } } if (size_t count = unlinkedCodeBlock->numberOfSwitchJumpTables()) { m_rareData->m_switchJumpTables.grow(count); for (size_t i = 0; i < count; i++) { UnlinkedSimpleJumpTable& sourceTable = unlinkedCodeBlock->switchJumpTable(i); SimpleJumpTable& destTable = m_rareData->m_switchJumpTables[i]; destTable.branchOffsets = sourceTable.branchOffsets; destTable.min = sourceTable.min; } } } // Allocate metadata buffers for the bytecode if (size_t size = unlinkedCodeBlock->numberOfLLintCallLinkInfos()) m_llintCallLinkInfos.resizeToFit(size); if (size_t size = unlinkedCodeBlock->numberOfArrayProfiles()) m_arrayProfiles.grow(size); if (size_t size = unlinkedCodeBlock->numberOfArrayAllocationProfiles()) m_arrayAllocationProfiles.resizeToFit(size); if (size_t size = unlinkedCodeBlock->numberOfValueProfiles()) m_valueProfiles.resizeToFit(size); if (size_t size = unlinkedCodeBlock->numberOfObjectAllocationProfiles()) m_objectAllocationProfiles.resizeToFit(size); // Copy and translate the UnlinkedInstructions unsigned instructionCount = unlinkedCodeBlock->instructions().count(); UnlinkedInstructionStream::Reader instructionReader(unlinkedCodeBlock->instructions()); Vector instructions(instructionCount); for (unsigned i = 0; !instructionReader.atEnd(); ) { const UnlinkedInstruction* pc = instructionReader.next(); unsigned opLength = opcodeLength(pc[0].u.opcode); instructions[i] = vm()->interpreter->getOpcode(pc[0].u.opcode); for (size_t j = 1; j < opLength; ++j) { if (sizeof(int32_t) != sizeof(intptr_t)) instructions[i + j].u.pointer = 0; instructions[i + j].u.operand = pc[j].u.operand; } switch (pc[0].u.opcode) { case op_call_varargs: case op_construct_varargs: case op_get_by_val: case op_get_argument_by_val: { int arrayProfileIndex = pc[opLength - 2].u.operand; m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex]; FALLTHROUGH; } case op_get_by_id: { ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand]; ASSERT(profile->m_bytecodeOffset == -1); profile->m_bytecodeOffset = i; instructions[i + opLength - 1] = profile; break; } case op_put_by_val: { int arrayProfileIndex = pc[opLength - 1].u.operand; m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex]; break; } case op_put_by_val_direct: { int arrayProfileIndex = pc[opLength - 1].u.operand; m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex]; break; } case op_new_array: case op_new_array_buffer: case op_new_array_with_size: { int arrayAllocationProfileIndex = pc[opLength - 1].u.operand; instructions[i + opLength - 1] = &m_arrayAllocationProfiles[arrayAllocationProfileIndex]; break; } case op_new_object: { int objectAllocationProfileIndex = pc[opLength - 1].u.operand; ObjectAllocationProfile* objectAllocationProfile = &m_objectAllocationProfiles[objectAllocationProfileIndex]; int inferredInlineCapacity = pc[opLength - 2].u.operand; instructions[i + opLength - 1] = objectAllocationProfile; objectAllocationProfile->initialize(*vm(), m_ownerExecutable.get(), m_globalObject->objectPrototype(), inferredInlineCapacity); break; } case op_call: case op_call_eval: { ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand]; ASSERT(profile->m_bytecodeOffset == -1); profile->m_bytecodeOffset = i; instructions[i + opLength - 1] = profile; int arrayProfileIndex = pc[opLength - 2].u.operand; m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex]; instructions[i + 5] = &m_llintCallLinkInfos[pc[5].u.operand]; break; } case op_construct: { instructions[i + 5] = &m_llintCallLinkInfos[pc[5].u.operand]; ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand]; ASSERT(profile->m_bytecodeOffset == -1); profile->m_bytecodeOffset = i; instructions[i + opLength - 1] = profile; break; } case op_get_by_id_out_of_line: case op_get_array_length: CRASH(); case op_init_global_const_nop: { ASSERT(codeType() == GlobalCode); Identifier ident = identifier(pc[4].u.operand); SymbolTableEntry entry = m_globalObject->symbolTable()->get(ident.impl()); if (entry.isNull()) break; instructions[i + 0] = vm()->interpreter->getOpcode(op_init_global_const); instructions[i + 1] = &m_globalObject->registerAt(entry.getIndex()); break; } case op_resolve_scope: { const Identifier& ident = identifier(pc[2].u.operand); ResolveType type = static_cast(pc[3].u.operand); ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), scope, ident, Get, type); instructions[i + 3].u.operand = op.type; instructions[i + 4].u.operand = op.depth; if (op.activation) instructions[i + 5].u.activation.set(*vm(), ownerExecutable, op.activation); break; } case op_get_from_scope: { ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand]; ASSERT(profile->m_bytecodeOffset == -1); profile->m_bytecodeOffset = i; instructions[i + opLength - 1] = profile; // get_from_scope dst, scope, id, ResolveModeAndType, Structure, Operand const Identifier& ident = identifier(pc[3].u.operand); ResolveModeAndType modeAndType = ResolveModeAndType(pc[4].u.operand); ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), scope, ident, Get, modeAndType.type()); instructions[i + 4].u.operand = ResolveModeAndType(modeAndType.mode(), op.type).operand(); if (op.type == GlobalVar || op.type == GlobalVarWithVarInjectionChecks) instructions[i + 5].u.watchpointSet = op.watchpointSet; else if (op.structure) instructions[i + 5].u.structure.set(*vm(), ownerExecutable, op.structure); instructions[i + 6].u.pointer = reinterpret_cast(op.operand); break; } case op_put_to_scope: { // put_to_scope scope, id, value, ResolveModeAndType, Structure, Operand const Identifier& ident = identifier(pc[2].u.operand); ResolveModeAndType modeAndType = ResolveModeAndType(pc[4].u.operand); ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), scope, ident, Put, modeAndType.type()); instructions[i + 4].u.operand = ResolveModeAndType(modeAndType.mode(), op.type).operand(); if (op.type == GlobalVar || op.type == GlobalVarWithVarInjectionChecks) instructions[i + 5].u.watchpointSet = op.watchpointSet; else if (op.type == ClosureVar || op.type == ClosureVarWithVarInjectionChecks) { if (op.watchpointSet) op.watchpointSet->invalidate(); } else if (op.structure) instructions[i + 5].u.structure.set(*vm(), ownerExecutable, op.structure); instructions[i + 6].u.pointer = reinterpret_cast(op.operand); break; } case op_captured_mov: case op_new_captured_func: { if (pc[3].u.index == UINT_MAX) { instructions[i + 3].u.watchpointSet = 0; break; } StringImpl* uid = identifier(pc[3].u.index).impl(); RELEASE_ASSERT(didCloneSymbolTable); ConcurrentJITLocker locker(m_symbolTable->m_lock); SymbolTable::Map::iterator iter = m_symbolTable->find(locker, uid); ASSERT(iter != m_symbolTable->end(locker)); iter->value.prepareToWatch(symbolTable()); instructions[i + 3].u.watchpointSet = iter->value.watchpointSet(); break; } case op_debug: { if (pc[1].u.index == DidReachBreakpoint) m_hasDebuggerStatement = true; break; } default: break; } i += opLength; } m_instructions = WTF::RefCountedArray(instructions); // Set optimization thresholds only after m_instructions is initialized, since these // rely on the instruction count (and are in theory permitted to also inspect the // instruction stream to more accurate assess the cost of tier-up). optimizeAfterWarmUp(); jitAfterWarmUp(); // If the concurrent thread will want the code block's hash, then compute it here // synchronously. if (Options::alwaysComputeHash()) hash(); if (Options::dumpGeneratedBytecodes()) dumpBytecode(); m_heap->m_codeBlocks.add(this); m_heap->reportExtraMemoryCost(sizeof(CodeBlock) + m_instructions.size() * sizeof(Instruction)); } CodeBlock::~CodeBlock() { if (m_vm->m_perBytecodeProfiler) m_vm->m_perBytecodeProfiler->notifyDestruction(this); #if ENABLE(VERBOSE_VALUE_PROFILE) dumpValueProfiles(); #endif while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end()) m_incomingLLIntCalls.begin()->remove(); #if ENABLE(JIT) // We may be destroyed before any CodeBlocks that refer to us are destroyed. // Consider that two CodeBlocks become unreachable at the same time. There // is no guarantee about the order in which the CodeBlocks are destroyed. // So, if we don't remove incoming calls, and get destroyed before the // CodeBlock(s) that have calls into us, then the CallLinkInfo vector's // destructor will try to remove nodes from our (no longer valid) linked list. while (m_incomingCalls.begin() != m_incomingCalls.end()) m_incomingCalls.begin()->remove(); // Note that our outgoing calls will be removed from other CodeBlocks' // m_incomingCalls linked lists through the execution of the ~CallLinkInfo // destructors. for (Bag::iterator iter = m_stubInfos.begin(); !!iter; ++iter) (*iter)->deref(); #endif // ENABLE(JIT) } void CodeBlock::setNumParameters(int newValue) { m_numParameters = newValue; m_argumentValueProfiles.resizeToFit(newValue); } void EvalCodeCache::visitAggregate(SlotVisitor& visitor) { EvalCacheMap::iterator end = m_cacheMap.end(); for (EvalCacheMap::iterator ptr = m_cacheMap.begin(); ptr != end; ++ptr) visitor.append(&ptr->value); } CodeBlock* CodeBlock::specialOSREntryBlockOrNull() { #if ENABLE(FTL_JIT) if (jitType() != JITCode::DFGJIT) return 0; DFG::JITCode* jitCode = m_jitCode->dfg(); return jitCode->osrEntryBlock.get(); #else // ENABLE(FTL_JIT) return 0; #endif // ENABLE(FTL_JIT) } void CodeBlock::visitAggregate(SlotVisitor& visitor) { #if ENABLE(PARALLEL_GC) // I may be asked to scan myself more than once, and it may even happen concurrently. // To this end, use a CAS loop to check if I've been called already. Only one thread // may proceed past this point - whichever one wins the CAS race. unsigned oldValue; do { oldValue = m_visitAggregateHasBeenCalled; if (oldValue) { // Looks like someone else won! Return immediately to ensure that we don't // trace the same CodeBlock concurrently. Doing so is hazardous since we will // be mutating the state of ValueProfiles, which contain JSValues, which can // have word-tearing on 32-bit, leading to awesome timing-dependent crashes // that are nearly impossible to track down. // Also note that it must be safe to return early as soon as we see the // value true (well, (unsigned)1), since once a GC thread is in this method // and has won the CAS race (i.e. was responsible for setting the value true) // it will definitely complete the rest of this method before declaring // termination. return; } } while (!WTF::weakCompareAndSwap(&m_visitAggregateHasBeenCalled, 0, 1)); #endif // ENABLE(PARALLEL_GC) if (!!m_alternative) m_alternative->visitAggregate(visitor); if (CodeBlock* otherBlock = specialOSREntryBlockOrNull()) otherBlock->visitAggregate(visitor); visitor.reportExtraMemoryUsage(ownerExecutable(), sizeof(CodeBlock)); if (m_jitCode) visitor.reportExtraMemoryUsage(ownerExecutable(), m_jitCode->size()); if (m_instructions.size()) { // Divide by refCount() because m_instructions points to something that is shared // by multiple CodeBlocks, and we only want to count it towards the heap size once. // Having each CodeBlock report only its proportional share of the size is one way // of accomplishing this. visitor.reportExtraMemoryUsage(ownerExecutable(), m_instructions.size() * sizeof(Instruction) / m_instructions.refCount()); } visitor.append(&m_unlinkedCode); // There are three things that may use unconditional finalizers: lazy bytecode freeing, // inline cache clearing, and jettisoning. The probability of us wanting to do at // least one of those things is probably quite close to 1. So we add one no matter what // and when it runs, it figures out whether it has any work to do. visitor.addUnconditionalFinalizer(this); m_allTransitionsHaveBeenMarked = false; if (shouldImmediatelyAssumeLivenessDuringScan()) { // This code block is live, so scan all references strongly and return. stronglyVisitStrongReferences(visitor); stronglyVisitWeakReferences(visitor); propagateTransitions(visitor); return; } // There are two things that we use weak reference harvesters for: DFG fixpoint for // jettisoning, and trying to find structures that would be live based on some // inline cache. So it makes sense to register them regardless. visitor.addWeakReferenceHarvester(this); #if ENABLE(DFG_JIT) // We get here if we're live in the sense that our owner executable is live, // but we're not yet live for sure in another sense: we may yet decide that this // code block should be jettisoned based on its outgoing weak references being // stale. Set a flag to indicate that we're still assuming that we're dead, and // perform one round of determining if we're live. The GC may determine, based on // either us marking additional objects, or by other objects being marked for // other reasons, that this iteration should run again; it will notify us of this // decision by calling harvestWeakReferences(). m_jitCode->dfgCommon()->livenessHasBeenProved = false; propagateTransitions(visitor); determineLiveness(visitor); #else // ENABLE(DFG_JIT) RELEASE_ASSERT_NOT_REACHED(); #endif // ENABLE(DFG_JIT) } bool CodeBlock::shouldImmediatelyAssumeLivenessDuringScan() { #if ENABLE(DFG_JIT) // Interpreter and Baseline JIT CodeBlocks don't need to be jettisoned when // their weak references go stale. So if a basline JIT CodeBlock gets // scanned, we can assume that this means that it's live. if (!JITCode::isOptimizingJIT(jitType())) return true; // For simplicity, we don't attempt to jettison code blocks during GC if // they are executing. Instead we strongly mark their weak references to // allow them to continue to execute soundly. if (m_mayBeExecuting) return true; if (Options::forceDFGCodeBlockLiveness()) return true; return false; #else return true; #endif } bool CodeBlock::isKnownToBeLiveDuringGC() { #if ENABLE(DFG_JIT) // This should return true for: // - Code blocks that behave like normal objects - i.e. if they are referenced then they // are live. // - Code blocks that were running on the stack. // - Code blocks that survived the last GC if the current GC is an Eden GC. This is // because either livenessHasBeenProved would have survived as true or m_mayBeExecuting // would survive as true. // - Code blocks that don't have any dead weak references. return shouldImmediatelyAssumeLivenessDuringScan() || m_jitCode->dfgCommon()->livenessHasBeenProved; #else return true; #endif } void CodeBlock::propagateTransitions(SlotVisitor& visitor) { UNUSED_PARAM(visitor); if (m_allTransitionsHaveBeenMarked) return; bool allAreMarkedSoFar = true; Interpreter* interpreter = m_vm->interpreter; if (jitType() == JITCode::InterpreterThunk) { const Vector& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions(); for (size_t i = 0; i < propertyAccessInstructions.size(); ++i) { Instruction* instruction = &instructions()[propertyAccessInstructions[i]]; switch (interpreter->getOpcodeID(instruction[0].u.opcode)) { case op_put_by_id_transition_direct: case op_put_by_id_transition_normal: case op_put_by_id_transition_direct_out_of_line: case op_put_by_id_transition_normal_out_of_line: { if (Heap::isMarked(instruction[4].u.structure.get())) visitor.append(&instruction[6].u.structure); else allAreMarkedSoFar = false; break; } default: break; } } } #if ENABLE(JIT) if (JITCode::isJIT(jitType())) { for (Bag::iterator iter = m_stubInfos.begin(); !!iter; ++iter) { StructureStubInfo& stubInfo = **iter; switch (stubInfo.accessType) { case access_put_by_id_transition_normal: case access_put_by_id_transition_direct: { JSCell* origin = stubInfo.codeOrigin.codeOriginOwner(); if ((!origin || Heap::isMarked(origin)) && Heap::isMarked(stubInfo.u.putByIdTransition.previousStructure.get())) visitor.append(&stubInfo.u.putByIdTransition.structure); else allAreMarkedSoFar = false; break; } case access_put_by_id_list: { PolymorphicPutByIdList* list = stubInfo.u.putByIdList.list; JSCell* origin = stubInfo.codeOrigin.codeOriginOwner(); if (origin && !Heap::isMarked(origin)) { allAreMarkedSoFar = false; break; } for (unsigned j = list->size(); j--;) { PutByIdAccess& access = list->m_list[j]; if (!access.isTransition()) continue; if (Heap::isMarked(access.oldStructure())) visitor.append(&access.m_newStructure); else allAreMarkedSoFar = false; } break; } default: break; } } } #endif // ENABLE(JIT) #if ENABLE(DFG_JIT) if (JITCode::isOptimizingJIT(jitType())) { DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) { if ((!dfgCommon->transitions[i].m_codeOrigin || Heap::isMarked(dfgCommon->transitions[i].m_codeOrigin.get())) && Heap::isMarked(dfgCommon->transitions[i].m_from.get())) { // If the following three things are live, then the target of the // transition is also live: // - This code block. We know it's live already because otherwise // we wouldn't be scanning ourselves. // - The code origin of the transition. Transitions may arise from // code that was inlined. They are not relevant if the user's // object that is required for the inlinee to run is no longer // live. // - The source of the transition. The transition checks if some // heap location holds the source, and if so, stores the target. // Hence the source must be live for the transition to be live. visitor.append(&dfgCommon->transitions[i].m_to); } else allAreMarkedSoFar = false; } } #endif // ENABLE(DFG_JIT) if (allAreMarkedSoFar) m_allTransitionsHaveBeenMarked = true; } void CodeBlock::determineLiveness(SlotVisitor& visitor) { UNUSED_PARAM(visitor); if (shouldImmediatelyAssumeLivenessDuringScan()) return; #if ENABLE(DFG_JIT) // Check if we have any remaining work to do. DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); if (dfgCommon->livenessHasBeenProved) return; // Now check all of our weak references. If all of them are live, then we // have proved liveness and so we scan our strong references. If at end of // GC we still have not proved liveness, then this code block is toast. bool allAreLiveSoFar = true; for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) { if (!Heap::isMarked(dfgCommon->weakReferences[i].get())) { allAreLiveSoFar = false; break; } } // If some weak references are dead, then this fixpoint iteration was // unsuccessful. if (!allAreLiveSoFar) return; // All weak references are live. Record this information so we don't // come back here again, and scan the strong references. dfgCommon->livenessHasBeenProved = true; stronglyVisitStrongReferences(visitor); #endif // ENABLE(DFG_JIT) } void CodeBlock::visitWeakReferences(SlotVisitor& visitor) { propagateTransitions(visitor); determineLiveness(visitor); } void CodeBlock::finalizeUnconditionally() { Interpreter* interpreter = m_vm->interpreter; if (JITCode::couldBeInterpreted(jitType())) { const Vector& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions(); for (size_t size = propertyAccessInstructions.size(), i = 0; i < size; ++i) { Instruction* curInstruction = &instructions()[propertyAccessInstructions[i]]; switch (interpreter->getOpcodeID(curInstruction[0].u.opcode)) { case op_get_by_id: case op_get_by_id_out_of_line: case op_put_by_id: case op_put_by_id_out_of_line: if (!curInstruction[4].u.structure || Heap::isMarked(curInstruction[4].u.structure.get())) break; if (Options::verboseOSR()) dataLogF("Clearing LLInt property access with structure %p.\n", curInstruction[4].u.structure.get()); curInstruction[4].u.structure.clear(); curInstruction[5].u.operand = 0; break; case op_put_by_id_transition_direct: case op_put_by_id_transition_normal: case op_put_by_id_transition_direct_out_of_line: case op_put_by_id_transition_normal_out_of_line: if (Heap::isMarked(curInstruction[4].u.structure.get()) && Heap::isMarked(curInstruction[6].u.structure.get()) && Heap::isMarked(curInstruction[7].u.structureChain.get())) break; if (Options::verboseOSR()) { dataLogF("Clearing LLInt put transition with structures %p -> %p, chain %p.\n", curInstruction[4].u.structure.get(), curInstruction[6].u.structure.get(), curInstruction[7].u.structureChain.get()); } curInstruction[4].u.structure.clear(); curInstruction[6].u.structure.clear(); curInstruction[7].u.structureChain.clear(); curInstruction[0].u.opcode = interpreter->getOpcode(op_put_by_id); break; case op_get_array_length: break; case op_to_this: if (!curInstruction[2].u.structure || Heap::isMarked(curInstruction[2].u.structure.get())) break; if (Options::verboseOSR()) dataLogF("Clearing LLInt to_this with structure %p.\n", curInstruction[2].u.structure.get()); curInstruction[2].u.structure.clear(); break; case op_get_callee: if (!curInstruction[2].u.jsCell || Heap::isMarked(curInstruction[2].u.jsCell.get())) break; if (Options::verboseOSR()) dataLogF("Clearing LLInt get callee with function %p.\n", curInstruction[2].u.jsCell.get()); curInstruction[2].u.jsCell.clear(); break; case op_resolve_scope: { WriteBarrierBase& activation = curInstruction[5].u.activation; if (!activation || Heap::isMarked(activation.get())) break; if (Options::verboseOSR()) dataLogF("Clearing dead activation %p.\n", activation.get()); activation.clear(); break; } case op_get_from_scope: case op_put_to_scope: { ResolveModeAndType modeAndType = ResolveModeAndType(curInstruction[4].u.operand); if (modeAndType.type() == GlobalVar || modeAndType.type() == GlobalVarWithVarInjectionChecks) continue; WriteBarrierBase& structure = curInstruction[5].u.structure; if (!structure || Heap::isMarked(structure.get())) break; if (Options::verboseOSR()) dataLogF("Clearing scope access with structure %p.\n", structure.get()); structure.clear(); break; } default: RELEASE_ASSERT_NOT_REACHED(); } } for (unsigned i = 0; i < m_llintCallLinkInfos.size(); ++i) { if (m_llintCallLinkInfos[i].isLinked() && !Heap::isMarked(m_llintCallLinkInfos[i].callee.get())) { if (Options::verboseOSR()) dataLog("Clearing LLInt call from ", *this, "\n"); m_llintCallLinkInfos[i].unlink(); } if (!!m_llintCallLinkInfos[i].lastSeenCallee && !Heap::isMarked(m_llintCallLinkInfos[i].lastSeenCallee.get())) m_llintCallLinkInfos[i].lastSeenCallee.clear(); } } #if ENABLE(DFG_JIT) // Check if we're not live. If we are, then jettison. if (!isKnownToBeLiveDuringGC()) { if (Options::verboseOSR()) dataLog(*this, " has dead weak references, jettisoning during GC.\n"); if (DFG::shouldShowDisassembly()) { dataLog(*this, " will be jettisoned because of the following dead references:\n"); DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) { DFG::WeakReferenceTransition& transition = dfgCommon->transitions[i]; JSCell* origin = transition.m_codeOrigin.get(); JSCell* from = transition.m_from.get(); JSCell* to = transition.m_to.get(); if ((!origin || Heap::isMarked(origin)) && Heap::isMarked(from)) continue; dataLog(" Transition under ", RawPointer(origin), ", ", RawPointer(from), " -> ", RawPointer(to), ".\n"); } for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) { JSCell* weak = dfgCommon->weakReferences[i].get(); if (Heap::isMarked(weak)) continue; dataLog(" Weak reference ", RawPointer(weak), ".\n"); } } jettison(Profiler::JettisonDueToWeakReference); return; } #endif // ENABLE(DFG_JIT) #if ENABLE(JIT) // Handle inline caches. if (!!jitCode()) { RepatchBuffer repatchBuffer(this); for (auto iter = callLinkInfosBegin(); !!iter; ++iter) (*iter)->visitWeak(repatchBuffer); for (Bag::iterator iter = m_stubInfos.begin(); !!iter; ++iter) { StructureStubInfo& stubInfo = **iter; if (stubInfo.visitWeakReferences(repatchBuffer)) continue; resetStubDuringGCInternal(repatchBuffer, stubInfo); } } #endif } void CodeBlock::getStubInfoMap(const ConcurrentJITLocker&, StubInfoMap& result) { #if ENABLE(JIT) toHashMap(m_stubInfos, getStructureStubInfoCodeOrigin, result); #else UNUSED_PARAM(result); #endif } void CodeBlock::getStubInfoMap(StubInfoMap& result) { ConcurrentJITLocker locker(m_lock); getStubInfoMap(locker, result); } void CodeBlock::getCallLinkInfoMap(const ConcurrentJITLocker&, CallLinkInfoMap& result) { #if ENABLE(JIT) toHashMap(m_callLinkInfos, getCallLinkInfoCodeOrigin, result); #else UNUSED_PARAM(result); #endif } void CodeBlock::getCallLinkInfoMap(CallLinkInfoMap& result) { ConcurrentJITLocker locker(m_lock); getCallLinkInfoMap(locker, result); } #if ENABLE(JIT) StructureStubInfo* CodeBlock::addStubInfo() { ConcurrentJITLocker locker(m_lock); return m_stubInfos.add(); } CallLinkInfo* CodeBlock::addCallLinkInfo() { ConcurrentJITLocker locker(m_lock); return m_callLinkInfos.add(); } void CodeBlock::resetStub(StructureStubInfo& stubInfo) { if (stubInfo.accessType == access_unset) return; ConcurrentJITLocker locker(m_lock); RepatchBuffer repatchBuffer(this); resetStubInternal(repatchBuffer, stubInfo); } void CodeBlock::resetStubInternal(RepatchBuffer& repatchBuffer, StructureStubInfo& stubInfo) { AccessType accessType = static_cast(stubInfo.accessType); if (Options::verboseOSR()) { // This can be called from GC destructor calls, so we don't try to do a full dump // of the CodeBlock. dataLog("Clearing structure cache (kind ", static_cast(stubInfo.accessType), ") in ", RawPointer(this), ".\n"); } RELEASE_ASSERT(JITCode::isJIT(jitType())); if (isGetByIdAccess(accessType)) resetGetByID(repatchBuffer, stubInfo); else if (isPutByIdAccess(accessType)) resetPutByID(repatchBuffer, stubInfo); else { RELEASE_ASSERT(isInAccess(accessType)); resetIn(repatchBuffer, stubInfo); } stubInfo.reset(); } void CodeBlock::resetStubDuringGCInternal(RepatchBuffer& repatchBuffer, StructureStubInfo& stubInfo) { resetStubInternal(repatchBuffer, stubInfo); stubInfo.resetByGC = true; } CallLinkInfo* CodeBlock::getCallLinkInfoForBytecodeIndex(unsigned index) { for (auto iter = m_callLinkInfos.begin(); !!iter; ++iter) { if ((*iter)->codeOrigin == CodeOrigin(index)) return *iter; } return nullptr; } #endif void CodeBlock::stronglyVisitStrongReferences(SlotVisitor& visitor) { visitor.append(&m_globalObject); visitor.append(&m_ownerExecutable); visitor.append(&m_symbolTable); visitor.append(&m_unlinkedCode); if (m_rareData) m_rareData->m_evalCodeCache.visitAggregate(visitor); visitor.appendValues(m_constantRegisters.data(), m_constantRegisters.size()); for (size_t i = 0; i < m_functionExprs.size(); ++i) visitor.append(&m_functionExprs[i]); for (size_t i = 0; i < m_functionDecls.size(); ++i) visitor.append(&m_functionDecls[i]); for (unsigned i = 0; i < m_objectAllocationProfiles.size(); ++i) m_objectAllocationProfiles[i].visitAggregate(visitor); #if ENABLE(DFG_JIT) if (JITCode::isOptimizingJIT(jitType())) { DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); if (dfgCommon->inlineCallFrames.get()) dfgCommon->inlineCallFrames->visitAggregate(visitor); } #endif updateAllPredictions(); } void CodeBlock::stronglyVisitWeakReferences(SlotVisitor& visitor) { UNUSED_PARAM(visitor); #if ENABLE(DFG_JIT) if (!JITCode::isOptimizingJIT(jitType())) return; DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) { if (!!dfgCommon->transitions[i].m_codeOrigin) visitor.append(&dfgCommon->transitions[i].m_codeOrigin); // Almost certainly not necessary, since the code origin should also be a weak reference. Better to be safe, though. visitor.append(&dfgCommon->transitions[i].m_from); visitor.append(&dfgCommon->transitions[i].m_to); } for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) visitor.append(&dfgCommon->weakReferences[i]); #endif } CodeBlock* CodeBlock::baselineAlternative() { #if ENABLE(JIT) CodeBlock* result = this; while (result->alternative()) result = result->alternative(); RELEASE_ASSERT(result); RELEASE_ASSERT(JITCode::isBaselineCode(result->jitType()) || result->jitType() == JITCode::None); return result; #else return this; #endif } CodeBlock* CodeBlock::baselineVersion() { #if ENABLE(JIT) if (JITCode::isBaselineCode(jitType())) return this; CodeBlock* result = replacement(); if (!result) { // This can happen if we're creating the original CodeBlock for an executable. // Assume that we're the baseline CodeBlock. RELEASE_ASSERT(jitType() == JITCode::None); return this; } result = result->baselineAlternative(); return result; #else return this; #endif } #if ENABLE(JIT) bool CodeBlock::hasOptimizedReplacement(JITCode::JITType typeToReplace) { return JITCode::isHigherTier(replacement()->jitType(), typeToReplace); } bool CodeBlock::hasOptimizedReplacement() { return hasOptimizedReplacement(jitType()); } #endif bool CodeBlock::isCaptured(VirtualRegister operand, InlineCallFrame* inlineCallFrame) const { if (operand.isArgument()) return operand.toArgument() && usesArguments(); if (inlineCallFrame) return inlineCallFrame->capturedVars.get(operand.toLocal()); // The activation object isn't in the captured region, but it's "captured" // in the sense that stores to its location can be observed indirectly. if (needsActivation() && operand == activationRegister()) return true; // Ditto for the arguments object. if (usesArguments() && operand == argumentsRegister()) return true; if (usesArguments() && operand == unmodifiedArgumentsRegister(argumentsRegister())) return true; // We're in global code so there are no locals to capture if (!symbolTable()) return false; return symbolTable()->isCaptured(operand.offset()); } int CodeBlock::framePointerOffsetToGetActivationRegisters(int machineCaptureStart) { // We'll be adding this to the stack pointer to get a registers pointer that looks // like it would have looked in the baseline engine. For example, if bytecode would // have put the first captured variable at offset -5 but we put it at offset -1, then // we'll have an offset of 4. int32_t offset = 0; // Compute where we put the captured variables. This offset will point the registers // pointer directly at the first captured var. offset += machineCaptureStart; // Now compute the offset needed to make the runtime see the captured variables at the // same offset that the bytecode would have used. offset -= symbolTable()->captureStart(); return offset; } int CodeBlock::framePointerOffsetToGetActivationRegisters() { if (!JITCode::isOptimizingJIT(jitType())) return 0; #if ENABLE(DFG_JIT) return framePointerOffsetToGetActivationRegisters(jitCode()->dfgCommon()->machineCaptureStart); #else RELEASE_ASSERT_NOT_REACHED(); return 0; #endif } HandlerInfo* CodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset) { RELEASE_ASSERT(bytecodeOffset < instructions().size()); if (!m_rareData) return 0; Vector& exceptionHandlers = m_rareData->m_exceptionHandlers; for (size_t i = 0; i < exceptionHandlers.size(); ++i) { // Handlers are ordered innermost first, so the first handler we encounter // that contains the source address is the correct handler to use. if (exceptionHandlers[i].start <= bytecodeOffset && exceptionHandlers[i].end > bytecodeOffset) return &exceptionHandlers[i]; } return 0; } unsigned CodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset) { RELEASE_ASSERT(bytecodeOffset < instructions().size()); return m_ownerExecutable->lineNo() + m_unlinkedCode->lineNumberForBytecodeOffset(bytecodeOffset); } unsigned CodeBlock::columnNumberForBytecodeOffset(unsigned bytecodeOffset) { int divot; int startOffset; int endOffset; unsigned line; unsigned column; expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column); return column; } void CodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset, unsigned& line, unsigned& column) { m_unlinkedCode->expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column); divot += m_sourceOffset; column += line ? 1 : firstLineColumnOffset(); line += m_ownerExecutable->lineNo(); } bool CodeBlock::hasOpDebugForLineAndColumn(unsigned line, unsigned column) { Interpreter* interpreter = vm()->interpreter; const Instruction* begin = instructions().begin(); const Instruction* end = instructions().end(); for (const Instruction* it = begin; it != end;) { OpcodeID opcodeID = interpreter->getOpcodeID(it->u.opcode); if (opcodeID == op_debug) { unsigned bytecodeOffset = it - begin; int unused; unsigned opDebugLine; unsigned opDebugColumn; expressionRangeForBytecodeOffset(bytecodeOffset, unused, unused, unused, opDebugLine, opDebugColumn); if (line == opDebugLine && (column == Breakpoint::unspecifiedColumn || column == opDebugColumn)) return true; } it += opcodeLengths[opcodeID]; } return false; } void CodeBlock::shrinkToFit(ShrinkMode shrinkMode) { m_rareCaseProfiles.shrinkToFit(); m_specialFastCaseProfiles.shrinkToFit(); if (shrinkMode == EarlyShrink) { m_constantRegisters.shrinkToFit(); if (m_rareData) { m_rareData->m_switchJumpTables.shrinkToFit(); m_rareData->m_stringSwitchJumpTables.shrinkToFit(); } } // else don't shrink these, because we would have already pointed pointers into these tables. } unsigned CodeBlock::addOrFindConstant(JSValue v) { unsigned result; if (findConstant(v, result)) return result; return addConstant(v); } bool CodeBlock::findConstant(JSValue v, unsigned& index) { unsigned numberOfConstants = numberOfConstantRegisters(); for (unsigned i = 0; i < numberOfConstants; ++i) { if (getConstant(FirstConstantRegisterIndex + i) == v) { index = i; return true; } } index = numberOfConstants; return false; } #if ENABLE(JIT) void CodeBlock::unlinkCalls() { if (!!m_alternative) m_alternative->unlinkCalls(); for (size_t i = 0; i < m_llintCallLinkInfos.size(); ++i) { if (m_llintCallLinkInfos[i].isLinked()) m_llintCallLinkInfos[i].unlink(); } if (m_callLinkInfos.isEmpty()) return; if (!m_vm->canUseJIT()) return; RepatchBuffer repatchBuffer(this); for (auto iter = m_callLinkInfos.begin(); !!iter; ++iter) { CallLinkInfo& info = **iter; if (!info.isLinked()) continue; info.unlink(repatchBuffer); } } void CodeBlock::linkIncomingCall(ExecState* callerFrame, CallLinkInfo* incoming) { noticeIncomingCall(callerFrame); m_incomingCalls.push(incoming); } #endif // ENABLE(JIT) void CodeBlock::unlinkIncomingCalls() { while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end()) m_incomingLLIntCalls.begin()->unlink(); #if ENABLE(JIT) if (m_incomingCalls.isEmpty()) return; RepatchBuffer repatchBuffer(this); while (m_incomingCalls.begin() != m_incomingCalls.end()) m_incomingCalls.begin()->unlink(repatchBuffer); #endif // ENABLE(JIT) } void CodeBlock::linkIncomingCall(ExecState* callerFrame, LLIntCallLinkInfo* incoming) { noticeIncomingCall(callerFrame); m_incomingLLIntCalls.push(incoming); } void CodeBlock::clearEvalCache() { if (!!m_alternative) m_alternative->clearEvalCache(); if (CodeBlock* otherBlock = specialOSREntryBlockOrNull()) otherBlock->clearEvalCache(); if (!m_rareData) return; m_rareData->m_evalCodeCache.clear(); } void CodeBlock::install() { ownerExecutable()->installCode(this); } PassRefPtr CodeBlock::newReplacement() { return ownerExecutable()->newReplacementCodeBlockFor(specializationKind()); } const SlowArgument* CodeBlock::machineSlowArguments() { if (!JITCode::isOptimizingJIT(jitType())) return symbolTable()->slowArguments(); #if ENABLE(DFG_JIT) return jitCode()->dfgCommon()->slowArguments.get(); #else // ENABLE(DFG_JIT) return 0; #endif // ENABLE(DFG_JIT) } #if ENABLE(JIT) CodeBlock* ProgramCodeBlock::replacement() { return jsCast(ownerExecutable())->codeBlock(); } CodeBlock* EvalCodeBlock::replacement() { return jsCast(ownerExecutable())->codeBlock(); } CodeBlock* FunctionCodeBlock::replacement() { return jsCast(ownerExecutable())->codeBlockFor(m_isConstructor ? CodeForConstruct : CodeForCall); } DFG::CapabilityLevel ProgramCodeBlock::capabilityLevelInternal() { return DFG::programCapabilityLevel(this); } DFG::CapabilityLevel EvalCodeBlock::capabilityLevelInternal() { return DFG::evalCapabilityLevel(this); } DFG::CapabilityLevel FunctionCodeBlock::capabilityLevelInternal() { if (m_isConstructor) return DFG::functionForConstructCapabilityLevel(this); return DFG::functionForCallCapabilityLevel(this); } #endif void CodeBlock::jettison(Profiler::JettisonReason reason, ReoptimizationMode mode) { RELEASE_ASSERT(reason != Profiler::NotJettisoned); #if ENABLE(DFG_JIT) if (DFG::shouldShowDisassembly()) { dataLog("Jettisoning ", *this); if (mode == CountReoptimization) dataLog(" and counting reoptimization"); dataLog(" due to ", reason, ".\n"); } DeferGCForAWhile deferGC(*m_heap); RELEASE_ASSERT(JITCode::isOptimizingJIT(jitType())); if (Profiler::Compilation* compilation = jitCode()->dfgCommon()->compilation.get()) compilation->setJettisonReason(reason); // We want to accomplish two things here: // 1) Make sure that if this CodeBlock is on the stack right now, then if we return to it // we should OSR exit at the top of the next bytecode instruction after the return. // 2) Make sure that if we call the owner executable, then we shouldn't call this CodeBlock. // This accomplishes the OSR-exit-on-return part, and does its own book-keeping about // whether the invalidation has already happened. if (!jitCode()->dfgCommon()->invalidate()) { // Nothing to do since we've already been invalidated. That means that we cannot be // the optimized replacement. RELEASE_ASSERT(this != replacement()); return; } if (DFG::shouldShowDisassembly()) dataLog(" Did invalidate ", *this, "\n"); // Count the reoptimization if that's what the user wanted. if (mode == CountReoptimization) { // FIXME: Maybe this should call alternative(). // https://bugs.webkit.org/show_bug.cgi?id=123677 baselineAlternative()->countReoptimization(); if (DFG::shouldShowDisassembly()) dataLog(" Did count reoptimization for ", *this, "\n"); } // Now take care of the entrypoint. if (this != replacement()) { // This means that we were never the entrypoint. This can happen for OSR entry code // blocks. return; } alternative()->optimizeAfterWarmUp(); tallyFrequentExitSites(); alternative()->install(); if (DFG::shouldShowDisassembly()) dataLog(" Did install baseline version of ", *this, "\n"); #else // ENABLE(DFG_JIT) UNUSED_PARAM(mode); UNREACHABLE_FOR_PLATFORM(); #endif // ENABLE(DFG_JIT) } JSGlobalObject* CodeBlock::globalObjectFor(CodeOrigin codeOrigin) { if (!codeOrigin.inlineCallFrame) return globalObject(); return jsCast(codeOrigin.inlineCallFrame->executable.get())->eitherCodeBlock()->globalObject(); } void CodeBlock::noticeIncomingCall(ExecState* callerFrame) { CodeBlock* callerCodeBlock = callerFrame->codeBlock(); if (Options::verboseCallLink()) dataLog("Noticing call link from ", *callerCodeBlock, " to ", *this, "\n"); if (!m_shouldAlwaysBeInlined) return; #if ENABLE(DFG_JIT) if (!hasBaselineJITProfiling()) return; if (!DFG::mightInlineFunction(this)) return; if (!canInline(m_capabilityLevelState)) return; if (!DFG::isSmallEnoughToInlineCodeInto(callerCodeBlock)) { m_shouldAlwaysBeInlined = false; if (Options::verboseCallLink()) dataLog(" Clearing SABI because caller is too large.\n"); return; } if (callerCodeBlock->jitType() == JITCode::InterpreterThunk) { // If the caller is still in the interpreter, then we can't expect inlining to // happen anytime soon. Assume it's profitable to optimize it separately. This // ensures that a function is SABI only if it is called no more frequently than // any of its callers. m_shouldAlwaysBeInlined = false; if (Options::verboseCallLink()) dataLog(" Clearing SABI because caller is in LLInt.\n"); return; } if (callerCodeBlock->codeType() != FunctionCode) { // If the caller is either eval or global code, assume that that won't be // optimized anytime soon. For eval code this is particularly true since we // delay eval optimization by a *lot*. m_shouldAlwaysBeInlined = false; if (Options::verboseCallLink()) dataLog(" Clearing SABI because caller is not a function.\n"); return; } ExecState* frame = callerFrame; for (unsigned i = Options::maximumInliningDepth(); i--; frame = frame->callerFrame()) { if (frame->isVMEntrySentinel()) break; if (frame->codeBlock() == this) { // Recursive calls won't be inlined. if (Options::verboseCallLink()) dataLog(" Clearing SABI because recursion was detected.\n"); m_shouldAlwaysBeInlined = false; return; } } RELEASE_ASSERT(callerCodeBlock->m_capabilityLevelState != DFG::CapabilityLevelNotSet); if (canCompile(callerCodeBlock->m_capabilityLevelState)) return; if (Options::verboseCallLink()) dataLog(" Clearing SABI because the caller is not a DFG candidate.\n"); m_shouldAlwaysBeInlined = false; #endif } unsigned CodeBlock::reoptimizationRetryCounter() const { #if ENABLE(JIT) ASSERT(m_reoptimizationRetryCounter <= Options::reoptimizationRetryCounterMax()); return m_reoptimizationRetryCounter; #else return 0; #endif // ENABLE(JIT) } #if ENABLE(JIT) void CodeBlock::countReoptimization() { m_reoptimizationRetryCounter++; if (m_reoptimizationRetryCounter > Options::reoptimizationRetryCounterMax()) m_reoptimizationRetryCounter = Options::reoptimizationRetryCounterMax(); } unsigned CodeBlock::numberOfDFGCompiles() { ASSERT(JITCode::isBaselineCode(jitType())); if (Options::testTheFTL()) { if (m_didFailFTLCompilation) return 1000000; return (m_hasBeenCompiledWithFTL ? 1 : 0) + m_reoptimizationRetryCounter; } return (JITCode::isOptimizingJIT(replacement()->jitType()) ? 1 : 0) + m_reoptimizationRetryCounter; } int32_t CodeBlock::codeTypeThresholdMultiplier() const { if (codeType() == EvalCode) return Options::evalThresholdMultiplier(); return 1; } double CodeBlock::optimizationThresholdScalingFactor() { // This expression arises from doing a least-squares fit of // // F[x_] =: a * Sqrt[x + b] + Abs[c * x] + d // // against the data points: // // x F[x_] // 10 0.9 (smallest reasonable code block) // 200 1.0 (typical small-ish code block) // 320 1.2 (something I saw in 3d-cube that I wanted to optimize) // 1268 5.0 (something I saw in 3d-cube that I didn't want to optimize) // 4000 5.5 (random large size, used to cause the function to converge to a shallow curve of some sort) // 10000 6.0 (similar to above) // // I achieve the minimization using the following Mathematica code: // // MyFunctionTemplate[x_, a_, b_, c_, d_] := a*Sqrt[x + b] + Abs[c*x] + d // // samples = {{10, 0.9}, {200, 1}, {320, 1.2}, {1268, 5}, {4000, 5.5}, {10000, 6}} // // solution = // Minimize[Plus @@ ((MyFunctionTemplate[#[[1]], a, b, c, d] - #[[2]])^2 & /@ samples), // {a, b, c, d}][[2]] // // And the code below (to initialize a, b, c, d) is generated by: // // Print["const double " <> ToString[#[[1]]] <> " = " <> // If[#[[2]] < 0.00001, "0.0", ToString[#[[2]]]] <> ";"] & /@ solution // // We've long known the following to be true: // - Small code blocks are cheap to optimize and so we should do it sooner rather // than later. // - Large code blocks are expensive to optimize and so we should postpone doing so, // and sometimes have a large enough threshold that we never optimize them. // - The difference in cost is not totally linear because (a) just invoking the // DFG incurs some base cost and (b) for large code blocks there is enough slop // in the correlation between instruction count and the actual compilation cost // that for those large blocks, the instruction count should not have a strong // influence on our threshold. // // I knew the goals but I didn't know how to achieve them; so I picked an interesting // example where the heuristics were right (code block in 3d-cube with instruction // count 320, which got compiled early as it should have been) and one where they were // totally wrong (code block in 3d-cube with instruction count 1268, which was expensive // to compile and didn't run often enough to warrant compilation in my opinion), and // then threw in additional data points that represented my own guess of what our // heuristics should do for some round-numbered examples. // // The expression to which I decided to fit the data arose because I started with an // affine function, and then did two things: put the linear part in an Abs to ensure // that the fit didn't end up choosing a negative value of c (which would result in // the function turning over and going negative for large x) and I threw in a Sqrt // term because Sqrt represents my intution that the function should be more sensitive // to small changes in small values of x, but less sensitive when x gets large. // Note that the current fit essentially eliminates the linear portion of the // expression (c == 0.0). const double a = 0.061504; const double b = 1.02406; const double c = 0.0; const double d = 0.825914; double instructionCount = this->instructionCount(); ASSERT(instructionCount); // Make sure this is called only after we have an instruction stream; otherwise it'll just return the value of d, which makes no sense. double result = d + a * sqrt(instructionCount + b) + c * instructionCount; result *= codeTypeThresholdMultiplier(); if (Options::verboseOSR()) { dataLog( *this, ": instruction count is ", instructionCount, ", scaling execution counter by ", result, " * ", codeTypeThresholdMultiplier(), "\n"); } return result; } static int32_t clipThreshold(double threshold) { if (threshold < 1.0) return 1; if (threshold > static_cast(std::numeric_limits::max())) return std::numeric_limits::max(); return static_cast(threshold); } int32_t CodeBlock::adjustedCounterValue(int32_t desiredThreshold) { return clipThreshold( static_cast(desiredThreshold) * optimizationThresholdScalingFactor() * (1 << reoptimizationRetryCounter())); } bool CodeBlock::checkIfOptimizationThresholdReached() { #if ENABLE(DFG_JIT) if (DFG::Worklist* worklist = DFG::existingGlobalDFGWorklistOrNull()) { if (worklist->compilationState(DFG::CompilationKey(this, DFG::DFGMode)) == DFG::Worklist::Compiled) { optimizeNextInvocation(); return true; } } #endif return m_jitExecuteCounter.checkIfThresholdCrossedAndSet(this); } void CodeBlock::optimizeNextInvocation() { if (Options::verboseOSR()) dataLog(*this, ": Optimizing next invocation.\n"); m_jitExecuteCounter.setNewThreshold(0, this); } void CodeBlock::dontOptimizeAnytimeSoon() { if (Options::verboseOSR()) dataLog(*this, ": Not optimizing anytime soon.\n"); m_jitExecuteCounter.deferIndefinitely(); } void CodeBlock::optimizeAfterWarmUp() { if (Options::verboseOSR()) dataLog(*this, ": Optimizing after warm-up.\n"); #if ENABLE(DFG_JIT) m_jitExecuteCounter.setNewThreshold( adjustedCounterValue(Options::thresholdForOptimizeAfterWarmUp()), this); #endif } void CodeBlock::optimizeAfterLongWarmUp() { if (Options::verboseOSR()) dataLog(*this, ": Optimizing after long warm-up.\n"); #if ENABLE(DFG_JIT) m_jitExecuteCounter.setNewThreshold( adjustedCounterValue(Options::thresholdForOptimizeAfterLongWarmUp()), this); #endif } void CodeBlock::optimizeSoon() { if (Options::verboseOSR()) dataLog(*this, ": Optimizing soon.\n"); #if ENABLE(DFG_JIT) m_jitExecuteCounter.setNewThreshold( adjustedCounterValue(Options::thresholdForOptimizeSoon()), this); #endif } void CodeBlock::forceOptimizationSlowPathConcurrently() { if (Options::verboseOSR()) dataLog(*this, ": Forcing slow path concurrently.\n"); m_jitExecuteCounter.forceSlowPathConcurrently(); } #if ENABLE(DFG_JIT) void CodeBlock::setOptimizationThresholdBasedOnCompilationResult(CompilationResult result) { JITCode::JITType type = jitType(); if (type != JITCode::BaselineJIT) { dataLog(*this, ": expected to have baseline code but have ", type, "\n"); RELEASE_ASSERT_NOT_REACHED(); } CodeBlock* theReplacement = replacement(); if ((result == CompilationSuccessful) != (theReplacement != this)) { dataLog(*this, ": we have result = ", result, " but "); if (theReplacement == this) dataLog("we are our own replacement.\n"); else dataLog("our replacement is ", pointerDump(theReplacement), "\n"); RELEASE_ASSERT_NOT_REACHED(); } switch (result) { case CompilationSuccessful: RELEASE_ASSERT(JITCode::isOptimizingJIT(replacement()->jitType())); optimizeNextInvocation(); return; case CompilationFailed: dontOptimizeAnytimeSoon(); return; case CompilationDeferred: // We'd like to do dontOptimizeAnytimeSoon() but we cannot because // forceOptimizationSlowPathConcurrently() is inherently racy. It won't // necessarily guarantee anything. So, we make sure that even if that // function ends up being a no-op, we still eventually retry and realize // that we have optimized code ready. optimizeAfterWarmUp(); return; case CompilationInvalidated: // Retry with exponential backoff. countReoptimization(); optimizeAfterWarmUp(); return; } dataLog("Unrecognized result: ", static_cast(result), "\n"); RELEASE_ASSERT_NOT_REACHED(); } #endif uint32_t CodeBlock::adjustedExitCountThreshold(uint32_t desiredThreshold) { ASSERT(JITCode::isOptimizingJIT(jitType())); // Compute this the lame way so we don't saturate. This is called infrequently // enough that this loop won't hurt us. unsigned result = desiredThreshold; for (unsigned n = baselineVersion()->reoptimizationRetryCounter(); n--;) { unsigned newResult = result << 1; if (newResult < result) return std::numeric_limits::max(); result = newResult; } return result; } uint32_t CodeBlock::exitCountThresholdForReoptimization() { return adjustedExitCountThreshold(Options::osrExitCountForReoptimization() * codeTypeThresholdMultiplier()); } uint32_t CodeBlock::exitCountThresholdForReoptimizationFromLoop() { return adjustedExitCountThreshold(Options::osrExitCountForReoptimizationFromLoop() * codeTypeThresholdMultiplier()); } bool CodeBlock::shouldReoptimizeNow() { return osrExitCounter() >= exitCountThresholdForReoptimization(); } bool CodeBlock::shouldReoptimizeFromLoopNow() { return osrExitCounter() >= exitCountThresholdForReoptimizationFromLoop(); } #endif ArrayProfile* CodeBlock::getArrayProfile(unsigned bytecodeOffset) { for (unsigned i = 0; i < m_arrayProfiles.size(); ++i) { if (m_arrayProfiles[i].bytecodeOffset() == bytecodeOffset) return &m_arrayProfiles[i]; } return 0; } ArrayProfile* CodeBlock::getOrAddArrayProfile(unsigned bytecodeOffset) { ArrayProfile* result = getArrayProfile(bytecodeOffset); if (result) return result; return addArrayProfile(bytecodeOffset); } void CodeBlock::updateAllPredictionsAndCountLiveness(unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles) { ConcurrentJITLocker locker(m_lock); numberOfLiveNonArgumentValueProfiles = 0; numberOfSamplesInProfiles = 0; // If this divided by ValueProfile::numberOfBuckets equals numberOfValueProfiles() then value profiles are full. for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { ValueProfile* profile = getFromAllValueProfiles(i); unsigned numSamples = profile->totalNumberOfSamples(); if (numSamples > ValueProfile::numberOfBuckets) numSamples = ValueProfile::numberOfBuckets; // We don't want profiles that are extremely hot to be given more weight. numberOfSamplesInProfiles += numSamples; if (profile->m_bytecodeOffset < 0) { profile->computeUpdatedPrediction(locker); continue; } if (profile->numberOfSamples() || profile->m_prediction != SpecNone) numberOfLiveNonArgumentValueProfiles++; profile->computeUpdatedPrediction(locker); } #if ENABLE(DFG_JIT) m_lazyOperandValueProfiles.computeUpdatedPredictions(locker); #endif } void CodeBlock::updateAllValueProfilePredictions() { unsigned ignoredValue1, ignoredValue2; updateAllPredictionsAndCountLiveness(ignoredValue1, ignoredValue2); } void CodeBlock::updateAllArrayPredictions() { ConcurrentJITLocker locker(m_lock); for (unsigned i = m_arrayProfiles.size(); i--;) m_arrayProfiles[i].computeUpdatedPrediction(locker, this); // Don't count these either, for similar reasons. for (unsigned i = m_arrayAllocationProfiles.size(); i--;) m_arrayAllocationProfiles[i].updateIndexingType(); } void CodeBlock::updateAllPredictions() { updateAllValueProfilePredictions(); updateAllArrayPredictions(); } bool CodeBlock::shouldOptimizeNow() { if (Options::verboseOSR()) dataLog("Considering optimizing ", *this, "...\n"); if (m_optimizationDelayCounter >= Options::maximumOptimizationDelay()) return true; updateAllArrayPredictions(); unsigned numberOfLiveNonArgumentValueProfiles; unsigned numberOfSamplesInProfiles; updateAllPredictionsAndCountLiveness(numberOfLiveNonArgumentValueProfiles, numberOfSamplesInProfiles); if (Options::verboseOSR()) { dataLogF( "Profile hotness: %lf (%u / %u), %lf (%u / %u)\n", (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles(), numberOfLiveNonArgumentValueProfiles, numberOfValueProfiles(), (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / numberOfValueProfiles(), numberOfSamplesInProfiles, ValueProfile::numberOfBuckets * numberOfValueProfiles()); } if ((!numberOfValueProfiles() || (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles() >= Options::desiredProfileLivenessRate()) && (!totalNumberOfValueProfiles() || (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / totalNumberOfValueProfiles() >= Options::desiredProfileFullnessRate()) && static_cast(m_optimizationDelayCounter) + 1 >= Options::minimumOptimizationDelay()) return true; ASSERT(m_optimizationDelayCounter < std::numeric_limits::max()); m_optimizationDelayCounter++; optimizeAfterWarmUp(); return false; } #if ENABLE(DFG_JIT) void CodeBlock::tallyFrequentExitSites() { ASSERT(JITCode::isOptimizingJIT(jitType())); ASSERT(alternative()->jitType() == JITCode::BaselineJIT); CodeBlock* profiledBlock = alternative(); switch (jitType()) { case JITCode::DFGJIT: { DFG::JITCode* jitCode = m_jitCode->dfg(); for (unsigned i = 0; i < jitCode->osrExit.size(); ++i) { DFG::OSRExit& exit = jitCode->osrExit[i]; if (!exit.considerAddingAsFrequentExitSite(profiledBlock)) continue; } break; } #if ENABLE(FTL_JIT) case JITCode::FTLJIT: { // There is no easy way to avoid duplicating this code since the FTL::JITCode::osrExit // vector contains a totally different type, that just so happens to behave like // DFG::JITCode::osrExit. FTL::JITCode* jitCode = m_jitCode->ftl(); for (unsigned i = 0; i < jitCode->osrExit.size(); ++i) { FTL::OSRExit& exit = jitCode->osrExit[i]; if (!exit.considerAddingAsFrequentExitSite(profiledBlock)) continue; } break; } #endif default: RELEASE_ASSERT_NOT_REACHED(); break; } } #endif // ENABLE(DFG_JIT) #if ENABLE(VERBOSE_VALUE_PROFILE) void CodeBlock::dumpValueProfiles() { dataLog("ValueProfile for ", *this, ":\n"); for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { ValueProfile* profile = getFromAllValueProfiles(i); if (profile->m_bytecodeOffset < 0) { ASSERT(profile->m_bytecodeOffset == -1); dataLogF(" arg = %u: ", i); } else dataLogF(" bc = %d: ", profile->m_bytecodeOffset); if (!profile->numberOfSamples() && profile->m_prediction == SpecNone) { dataLogF("\n"); continue; } profile->dump(WTF::dataFile()); dataLogF("\n"); } dataLog("RareCaseProfile for ", *this, ":\n"); for (unsigned i = 0; i < numberOfRareCaseProfiles(); ++i) { RareCaseProfile* profile = rareCaseProfile(i); dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter); } dataLog("SpecialFastCaseProfile for ", *this, ":\n"); for (unsigned i = 0; i < numberOfSpecialFastCaseProfiles(); ++i) { RareCaseProfile* profile = specialFastCaseProfile(i); dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter); } } #endif // ENABLE(VERBOSE_VALUE_PROFILE) unsigned CodeBlock::frameRegisterCount() { switch (jitType()) { case JITCode::InterpreterThunk: return LLInt::frameRegisterCountFor(this); #if ENABLE(JIT) case JITCode::BaselineJIT: return JIT::frameRegisterCountFor(this); #endif // ENABLE(JIT) #if ENABLE(DFG_JIT) case JITCode::DFGJIT: case JITCode::FTLJIT: return jitCode()->dfgCommon()->frameRegisterCount; #endif // ENABLE(DFG_JIT) default: RELEASE_ASSERT_NOT_REACHED(); return 0; } } int CodeBlock::stackPointerOffset() { return virtualRegisterForLocal(frameRegisterCount() - 1).offset(); } size_t CodeBlock::predictedMachineCodeSize() { // This will be called from CodeBlock::CodeBlock before either m_vm or the // instructions have been initialized. It's OK to return 0 because what will really // matter is the recomputation of this value when the slow path is triggered. if (!m_vm) return 0; if (!m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT) return 0; // It's as good of a prediction as we'll get. // Be conservative: return a size that will be an overestimation 84% of the time. double multiplier = m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT.mean() + m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT.standardDeviation(); // Be paranoid: silently reject bogus multipiers. Silently doing the "wrong" thing // here is OK, since this whole method is just a heuristic. if (multiplier < 0 || multiplier > 1000) return 0; double doubleResult = multiplier * m_instructions.size(); // Be even more paranoid: silently reject values that won't fit into a size_t. If // the function is so huge that we can't even fit it into virtual memory then we // should probably have some other guards in place to prevent us from even getting // to this point. if (doubleResult > std::numeric_limits::max()) return 0; return static_cast(doubleResult); } bool CodeBlock::usesOpcode(OpcodeID opcodeID) { Interpreter* interpreter = vm()->interpreter; Instruction* instructionsBegin = instructions().begin(); unsigned instructionCount = instructions().size(); for (unsigned bytecodeOffset = 0; bytecodeOffset < instructionCount; ) { switch (interpreter->getOpcodeID(instructionsBegin[bytecodeOffset].u.opcode)) { #define DEFINE_OP(curOpcode, length) \ case curOpcode: \ if (curOpcode == opcodeID) \ return true; \ bytecodeOffset += length; \ break; FOR_EACH_OPCODE_ID(DEFINE_OP) #undef DEFINE_OP default: RELEASE_ASSERT_NOT_REACHED(); break; } } return false; } String CodeBlock::nameForRegister(VirtualRegister virtualRegister) { ConcurrentJITLocker locker(symbolTable()->m_lock); SymbolTable::Map::iterator end = symbolTable()->end(locker); for (SymbolTable::Map::iterator ptr = symbolTable()->begin(locker); ptr != end; ++ptr) { if (ptr->value.getIndex() == virtualRegister.offset()) { // FIXME: This won't work from the compilation thread. // https://bugs.webkit.org/show_bug.cgi?id=115300 return String(ptr->key); } } if (needsActivation() && virtualRegister == activationRegister()) return ASCIILiteral("activation"); if (virtualRegister == thisRegister()) return ASCIILiteral("this"); if (usesArguments()) { if (virtualRegister == argumentsRegister()) return ASCIILiteral("arguments"); if (unmodifiedArgumentsRegister(argumentsRegister()) == virtualRegister) return ASCIILiteral("real arguments"); } if (virtualRegister.isArgument()) return String::format("arguments[%3d]", virtualRegister.toArgument()).impl(); return ""; } namespace { struct VerifyCapturedDef { void operator()(CodeBlock* codeBlock, Instruction* instruction, OpcodeID opcodeID, int operand) { unsigned bytecodeOffset = instruction - codeBlock->instructions().begin(); if (codeBlock->isConstantRegisterIndex(operand)) { codeBlock->beginValidationDidFail(); dataLog(" At bc#", bytecodeOffset, " encountered a definition of a constant.\n"); codeBlock->endValidationDidFail(); return; } switch (opcodeID) { case op_enter: case op_captured_mov: case op_init_lazy_reg: case op_create_arguments: case op_new_captured_func: return; default: break; } VirtualRegister virtualReg(operand); if (!virtualReg.isLocal()) return; if (codeBlock->captureCount() && codeBlock->symbolTable()->isCaptured(operand)) { codeBlock->beginValidationDidFail(); dataLog(" At bc#", bytecodeOffset, " encountered invalid assignment to captured variable loc", virtualReg.toLocal(), ".\n"); codeBlock->endValidationDidFail(); return; } return; } }; } // anonymous namespace void CodeBlock::validate() { BytecodeLivenessAnalysis liveness(this); // Compute directly from scratch so it doesn't effect CodeBlock footprint. FastBitVector liveAtHead = liveness.getLivenessInfoAtBytecodeOffset(0); if (liveAtHead.numBits() != static_cast(m_numCalleeRegisters)) { beginValidationDidFail(); dataLog(" Wrong number of bits in result!\n"); dataLog(" Result: ", liveAtHead, "\n"); dataLog(" Bit count: ", liveAtHead.numBits(), "\n"); endValidationDidFail(); } for (unsigned i = m_numCalleeRegisters; i--;) { bool isCaptured = false; VirtualRegister reg = virtualRegisterForLocal(i); if (captureCount()) isCaptured = reg.offset() <= captureStart() && reg.offset() > captureEnd(); if (isCaptured) { if (!liveAtHead.get(i)) { beginValidationDidFail(); dataLog(" Variable loc", i, " is expected to be live because it is captured, but it isn't live.\n"); dataLog(" Result: ", liveAtHead, "\n"); endValidationDidFail(); } } else { if (liveAtHead.get(i)) { beginValidationDidFail(); dataLog(" Variable loc", i, " is expected to be dead.\n"); dataLog(" Result: ", liveAtHead, "\n"); endValidationDidFail(); } } } for (unsigned bytecodeOffset = 0; bytecodeOffset < instructions().size();) { Instruction* currentInstruction = instructions().begin() + bytecodeOffset; OpcodeID opcodeID = m_vm->interpreter->getOpcodeID(currentInstruction->u.opcode); VerifyCapturedDef verifyCapturedDef; computeDefsForBytecodeOffset(this, bytecodeOffset, verifyCapturedDef); bytecodeOffset += opcodeLength(opcodeID); } } void CodeBlock::beginValidationDidFail() { dataLog("Validation failure in ", *this, ":\n"); dataLog("\n"); } void CodeBlock::endValidationDidFail() { dataLog("\n"); dumpBytecode(); dataLog("\n"); dataLog("Validation failure.\n"); RELEASE_ASSERT_NOT_REACHED(); } void CodeBlock::addBreakpoint(unsigned numBreakpoints) { m_numBreakpoints += numBreakpoints; ASSERT(m_numBreakpoints); if (JITCode::isOptimizingJIT(jitType())) jettison(Profiler::JettisonDueToDebuggerBreakpoint); } void CodeBlock::setSteppingMode(CodeBlock::SteppingMode mode) { m_steppingMode = mode; if (mode == SteppingModeEnabled && JITCode::isOptimizingJIT(jitType())) jettison(Profiler::JettisonDueToDebuggerStepping); } RareCaseProfile* CodeBlock::rareCaseProfileForBytecodeOffset(int bytecodeOffset) { return tryBinarySearch( m_rareCaseProfiles, m_rareCaseProfiles.size(), bytecodeOffset, getRareCaseProfileBytecodeOffset); } #if ENABLE(JIT) DFG::CapabilityLevel CodeBlock::capabilityLevel() { DFG::CapabilityLevel result = capabilityLevelInternal(); m_capabilityLevelState = result; return result; } #endif } // namespace JSC