/* * Copyright (c) 2000-2010 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* last */ #include #undef thread_should_halt /* BSD KERN COMPONENT INTERFACE */ task_t bsd_init_task = TASK_NULL; char init_task_failure_data[1024]; extern unsigned int not_in_kdp; /* Skip acquiring locks if we're in kdp */ thread_t get_firstthread(task_t); int get_task_userstop(task_t); int get_thread_userstop(thread_t); boolean_t current_thread_aborted(void); void task_act_iterate_wth_args(task_t, void(*)(thread_t, void *), void *); kern_return_t get_signalact(task_t , thread_t *, int); int get_vmsubmap_entries(vm_map_t, vm_object_offset_t, vm_object_offset_t); int fill_task_rusage(task_t task, rusage_info_current *ri); int fill_task_io_rusage(task_t task, rusage_info_current *ri); int fill_task_qos_rusage(task_t task, rusage_info_current *ri); void fill_task_billed_usage(task_t task, rusage_info_current *ri); /* * */ void *get_bsdtask_info(task_t t) { return(t->bsd_info); } /* * */ void *get_bsdthreadtask_info(thread_t th) { return(th->task != TASK_NULL ? th->task->bsd_info : NULL); } /* * */ void set_bsdtask_info(task_t t,void * v) { t->bsd_info=v; } /* * */ void *get_bsdthread_info(thread_t th) { return(th->uthread); } /* * XXX */ int get_thread_lock_count(thread_t th); /* forced forward */ int get_thread_lock_count(thread_t th) { return(th->mutex_count); } /* * XXX: wait for BSD to fix signal code * Until then, we cannot block here. We know the task * can't go away, so we make sure it is still active after * retrieving the first thread for extra safety. */ thread_t get_firstthread(task_t task) { thread_t thread = (thread_t)(void *)queue_first(&task->threads); if (queue_end(&task->threads, (queue_entry_t)thread)) thread = THREAD_NULL; if (!task->active) return (THREAD_NULL); return (thread); } kern_return_t get_signalact( task_t task, thread_t *result_out, int setast) { kern_return_t result = KERN_SUCCESS; thread_t inc, thread = THREAD_NULL; task_lock(task); if (!task->active) { task_unlock(task); return (KERN_FAILURE); } for (inc = (thread_t)(void *)queue_first(&task->threads); !queue_end(&task->threads, (queue_entry_t)inc); ) { thread_mtx_lock(inc); if (inc->active && (inc->sched_flags & TH_SFLAG_ABORTED_MASK) != TH_SFLAG_ABORT) { thread = inc; break; } thread_mtx_unlock(inc); inc = (thread_t)(void *)queue_next(&inc->task_threads); } if (result_out) *result_out = thread; if (thread) { if (setast) act_set_astbsd(thread); thread_mtx_unlock(thread); } else result = KERN_FAILURE; task_unlock(task); return (result); } kern_return_t check_actforsig( task_t task, thread_t thread, int setast) { kern_return_t result = KERN_FAILURE; thread_t inc; task_lock(task); if (!task->active) { task_unlock(task); return (KERN_FAILURE); } for (inc = (thread_t)(void *)queue_first(&task->threads); !queue_end(&task->threads, (queue_entry_t)inc); ) { if (inc == thread) { thread_mtx_lock(inc); if (inc->active && (inc->sched_flags & TH_SFLAG_ABORTED_MASK) != TH_SFLAG_ABORT) { result = KERN_SUCCESS; break; } thread_mtx_unlock(inc); break; } inc = (thread_t)(void *)queue_next(&inc->task_threads); } if (result == KERN_SUCCESS) { if (setast) act_set_astbsd(thread); thread_mtx_unlock(thread); } task_unlock(task); return (result); } ledger_t get_task_ledger(task_t t) { return(t->ledger); } /* * This is only safe to call from a thread executing in * in the task's context or if the task is locked Otherwise, * the map could be switched for the task (and freed) before * we to return it here. */ vm_map_t get_task_map(task_t t) { return(t->map); } vm_map_t get_task_map_reference(task_t t) { vm_map_t m; if (t == NULL) return VM_MAP_NULL; task_lock(t); if (!t->active) { task_unlock(t); return VM_MAP_NULL; } m = t->map; vm_map_reference_swap(m); task_unlock(t); return m; } /* * */ ipc_space_t get_task_ipcspace(task_t t) { return(t->itk_space); } int get_task_numactivethreads(task_t task) { thread_t inc; int num_active_thr=0; task_lock(task); for (inc = (thread_t)(void *)queue_first(&task->threads); !queue_end(&task->threads, (queue_entry_t)inc); inc = (thread_t)(void *)queue_next(&inc->task_threads)) { if(inc->active) num_active_thr++; } task_unlock(task); return num_active_thr; } int get_task_numacts(task_t t) { return(t->thread_count); } /* does this machine need 64bit register set for signal handler */ int is_64signalregset(void) { if (task_has_64BitData(current_task())) { return(1); } return(0); } /* * Swap in a new map for the task/thread pair; the old map reference is * returned. */ vm_map_t swap_task_map(task_t task, thread_t thread, vm_map_t map, boolean_t doswitch) { vm_map_t old_map; if (task != thread->task) panic("swap_task_map"); task_lock(task); mp_disable_preemption(); old_map = task->map; thread->map = task->map = map; if (doswitch) { pmap_switch(map->pmap); } mp_enable_preemption(); task_unlock(task); #if (defined(__i386__) || defined(__x86_64__)) && NCOPY_WINDOWS > 0 inval_copy_windows(thread); #endif return old_map; } /* * */ pmap_t get_task_pmap(task_t t) { return(t->map->pmap); } /* * */ uint64_t get_task_resident_size(task_t task) { vm_map_t map; map = (task == kernel_task) ? kernel_map: task->map; return((uint64_t)pmap_resident_count(map->pmap) * PAGE_SIZE_64); } uint64_t get_task_compressed(task_t task) { vm_map_t map; map = (task == kernel_task) ? kernel_map: task->map; return((uint64_t)pmap_compressed(map->pmap) * PAGE_SIZE_64); } uint64_t get_task_resident_max(task_t task) { vm_map_t map; map = (task == kernel_task) ? kernel_map: task->map; return((uint64_t)pmap_resident_max(map->pmap) * PAGE_SIZE_64); } uint64_t get_task_purgeable_size(task_t task) { vm_map_t map; mach_vm_size_t volatile_virtual_size; mach_vm_size_t volatile_resident_size; mach_vm_size_t volatile_pmap_size; map = (task == kernel_task) ? kernel_map: task->map; vm_map_query_volatile(map, &volatile_virtual_size, &volatile_resident_size, &volatile_pmap_size); return((uint64_t)volatile_resident_size); } /* * */ uint64_t get_task_phys_footprint(task_t task) { kern_return_t ret; ledger_amount_t credit, debit; ret = ledger_get_entries(task->ledger, task_ledgers.phys_footprint, &credit, &debit); if (KERN_SUCCESS == ret) { return (credit - debit); } return 0; } /* * */ uint64_t get_task_phys_footprint_max(task_t task) { kern_return_t ret; ledger_amount_t max; ret = ledger_get_maximum(task->ledger, task_ledgers.phys_footprint, &max); if (KERN_SUCCESS == ret) { return max; } return 0; } uint64_t get_task_cpu_time(task_t task) { kern_return_t ret; ledger_amount_t credit, debit; ret = ledger_get_entries(task->ledger, task_ledgers.cpu_time, &credit, &debit); if (KERN_SUCCESS == ret) { return (credit - debit); } return 0; } /* * */ pmap_t get_map_pmap(vm_map_t map) { return(map->pmap); } /* * */ task_t get_threadtask(thread_t th) { return(th->task); } /* * */ vm_map_offset_t get_map_min( vm_map_t map) { return(vm_map_min(map)); } /* * */ vm_map_offset_t get_map_max( vm_map_t map) { return(vm_map_max(map)); } vm_map_size_t get_vmmap_size( vm_map_t map) { return(map->size); } int get_vmsubmap_entries( vm_map_t map, vm_object_offset_t start, vm_object_offset_t end) { int total_entries = 0; vm_map_entry_t entry; if (not_in_kdp) vm_map_lock(map); entry = vm_map_first_entry(map); while((entry != vm_map_to_entry(map)) && (entry->vme_start < start)) { entry = entry->vme_next; } while((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { if(entry->is_sub_map) { total_entries += get_vmsubmap_entries(entry->object.sub_map, entry->offset, entry->offset + (entry->vme_end - entry->vme_start)); } else { total_entries += 1; } entry = entry->vme_next; } if (not_in_kdp) vm_map_unlock(map); return(total_entries); } int get_vmmap_entries( vm_map_t map) { int total_entries = 0; vm_map_entry_t entry; if (not_in_kdp) vm_map_lock(map); entry = vm_map_first_entry(map); while(entry != vm_map_to_entry(map)) { if(entry->is_sub_map) { total_entries += get_vmsubmap_entries(entry->object.sub_map, entry->offset, entry->offset + (entry->vme_end - entry->vme_start)); } else { total_entries += 1; } entry = entry->vme_next; } if (not_in_kdp) vm_map_unlock(map); return(total_entries); } /* * */ /* * */ int get_task_userstop( task_t task) { return(task->user_stop_count); } /* * */ int get_thread_userstop( thread_t th) { return(th->user_stop_count); } /* * */ boolean_t get_task_pidsuspended( task_t task) { return (task->pidsuspended); } /* * */ boolean_t get_task_frozen( task_t task) { return (task->frozen); } /* * */ boolean_t thread_should_abort( thread_t th) { return ((th->sched_flags & TH_SFLAG_ABORTED_MASK) == TH_SFLAG_ABORT); } /* * This routine is like thread_should_abort() above. It checks to * see if the current thread is aborted. But unlike above, it also * checks to see if thread is safely aborted. If so, it returns * that fact, and clears the condition (safe aborts only should * have a single effect, and a poll of the abort status * qualifies. */ boolean_t current_thread_aborted ( void) { thread_t th = current_thread(); spl_t s; if ((th->sched_flags & TH_SFLAG_ABORTED_MASK) == TH_SFLAG_ABORT && (th->options & TH_OPT_INTMASK) != THREAD_UNINT) return (TRUE); if (th->sched_flags & TH_SFLAG_ABORTSAFELY) { s = splsched(); thread_lock(th); if (th->sched_flags & TH_SFLAG_ABORTSAFELY) th->sched_flags &= ~TH_SFLAG_ABORTED_MASK; thread_unlock(th); splx(s); } return FALSE; } /* * */ void task_act_iterate_wth_args( task_t task, void (*func_callback)(thread_t, void *), void *func_arg) { thread_t inc; task_lock(task); for (inc = (thread_t)(void *)queue_first(&task->threads); !queue_end(&task->threads, (queue_entry_t)inc); ) { (void) (*func_callback)(inc, func_arg); inc = (thread_t)(void *)queue_next(&inc->task_threads); } task_unlock(task); } void astbsd_on(void) { boolean_t reenable; reenable = ml_set_interrupts_enabled(FALSE); ast_on_fast(AST_BSD); (void)ml_set_interrupts_enabled(reenable); } #include void fill_taskprocinfo(task_t task, struct proc_taskinfo_internal * ptinfo) { vm_map_t map; task_absolutetime_info_data_t tinfo; thread_t thread; uint32_t cswitch = 0, numrunning = 0; uint32_t syscalls_unix = 0; uint32_t syscalls_mach = 0; map = (task == kernel_task)? kernel_map: task->map; ptinfo->pti_virtual_size = map->size; ptinfo->pti_resident_size = (mach_vm_size_t)(pmap_resident_count(map->pmap)) * PAGE_SIZE_64; task_lock(task); ptinfo->pti_policy = ((task != kernel_task)? POLICY_TIMESHARE: POLICY_RR); tinfo.threads_user = tinfo.threads_system = 0; tinfo.total_user = task->total_user_time; tinfo.total_system = task->total_system_time; queue_iterate(&task->threads, thread, thread_t, task_threads) { uint64_t tval; spl_t x; if (thread->options & TH_OPT_IDLE_THREAD) continue; x = splsched(); thread_lock(thread); if ((thread->state & TH_RUN) == TH_RUN) numrunning++; cswitch += thread->c_switch; tval = timer_grab(&thread->user_timer); tinfo.threads_user += tval; tinfo.total_user += tval; tval = timer_grab(&thread->system_timer); if (thread->precise_user_kernel_time) { tinfo.threads_system += tval; tinfo.total_system += tval; } else { /* system_timer may represent either sys or user */ tinfo.threads_user += tval; tinfo.total_user += tval; } syscalls_unix += thread->syscalls_unix; syscalls_mach += thread->syscalls_mach; thread_unlock(thread); splx(x); } ptinfo->pti_total_system = tinfo.total_system; ptinfo->pti_total_user = tinfo.total_user; ptinfo->pti_threads_system = tinfo.threads_system; ptinfo->pti_threads_user = tinfo.threads_user; ptinfo->pti_faults = task->faults; ptinfo->pti_pageins = task->pageins; ptinfo->pti_cow_faults = task->cow_faults; ptinfo->pti_messages_sent = task->messages_sent; ptinfo->pti_messages_received = task->messages_received; ptinfo->pti_syscalls_mach = task->syscalls_mach + syscalls_mach; ptinfo->pti_syscalls_unix = task->syscalls_unix + syscalls_unix; ptinfo->pti_csw = task->c_switch + cswitch; ptinfo->pti_threadnum = task->thread_count; ptinfo->pti_numrunning = numrunning; ptinfo->pti_priority = task->priority; task_unlock(task); } int fill_taskthreadinfo(task_t task, uint64_t thaddr, int thuniqueid, struct proc_threadinfo_internal * ptinfo, void * vpp, int *vidp) { thread_t thact; int err=0; mach_msg_type_number_t count; thread_basic_info_data_t basic_info; kern_return_t kret; uint64_t addr = 0; task_lock(task); for (thact = (thread_t)(void *)queue_first(&task->threads); !queue_end(&task->threads, (queue_entry_t)thact); ) { addr = (thuniqueid==0)?thact->machine.cthread_self: thact->thread_id; if (addr == thaddr) { count = THREAD_BASIC_INFO_COUNT; if ((kret = thread_info_internal(thact, THREAD_BASIC_INFO, (thread_info_t)&basic_info, &count)) != KERN_SUCCESS) { err = 1; goto out; } ptinfo->pth_user_time = ((basic_info.user_time.seconds * (integer_t)NSEC_PER_SEC) + (basic_info.user_time.microseconds * (integer_t)NSEC_PER_USEC)); ptinfo->pth_system_time = ((basic_info.system_time.seconds * (integer_t)NSEC_PER_SEC) + (basic_info.system_time.microseconds * (integer_t)NSEC_PER_USEC)); ptinfo->pth_cpu_usage = basic_info.cpu_usage; ptinfo->pth_policy = basic_info.policy; ptinfo->pth_run_state = basic_info.run_state; ptinfo->pth_flags = basic_info.flags; ptinfo->pth_sleep_time = basic_info.sleep_time; ptinfo->pth_curpri = thact->sched_pri; ptinfo->pth_priority = thact->priority; ptinfo->pth_maxpriority = thact->max_priority; if ((vpp != NULL) && (thact->uthread != NULL)) bsd_threadcdir(thact->uthread, vpp, vidp); bsd_getthreadname(thact->uthread,ptinfo->pth_name); err = 0; goto out; } thact = (thread_t)(void *)queue_next(&thact->task_threads); } err = 1; out: task_unlock(task); return(err); } int fill_taskthreadlist(task_t task, void * buffer, int thcount) { int numthr=0; thread_t thact; uint64_t * uptr; uint64_t thaddr; uptr = (uint64_t *)buffer; task_lock(task); for (thact = (thread_t)(void *)queue_first(&task->threads); !queue_end(&task->threads, (queue_entry_t)thact); ) { thaddr = thact->machine.cthread_self; *uptr++ = thaddr; numthr++; if (numthr >= thcount) goto out; thact = (thread_t)(void *)queue_next(&thact->task_threads); } out: task_unlock(task); return (int)(numthr * sizeof(uint64_t)); } int get_numthreads(task_t task) { return(task->thread_count); } /* * Gather the various pieces of info about the designated task, * and collect it all into a single rusage_info. */ int fill_task_rusage(task_t task, rusage_info_current *ri) { struct task_power_info powerinfo; assert(task != TASK_NULL); task_lock(task); task_power_info_locked(task, &powerinfo, NULL); ri->ri_pkg_idle_wkups = powerinfo.task_platform_idle_wakeups; ri->ri_interrupt_wkups = powerinfo.task_interrupt_wakeups; ri->ri_user_time = powerinfo.total_user; ri->ri_system_time = powerinfo.total_system; ledger_get_balance(task->ledger, task_ledgers.phys_footprint, (ledger_amount_t *)&ri->ri_phys_footprint); ledger_get_balance(task->ledger, task_ledgers.phys_mem, (ledger_amount_t *)&ri->ri_resident_size); ledger_get_balance(task->ledger, task_ledgers.wired_mem, (ledger_amount_t *)&ri->ri_wired_size); ri->ri_pageins = task->pageins; task_unlock(task); return (0); } void fill_task_billed_usage(task_t task __unused, rusage_info_current *ri) { #if CONFIG_BANK ri->ri_billed_system_time = bank_billed_time(task->bank_context); ri->ri_serviced_system_time = bank_serviced_time(task->bank_context); #else ri->ri_billed_system_time = 0; ri->ri_serviced_system_time = 0; #endif } int fill_task_io_rusage(task_t task, rusage_info_current *ri) { assert(task != TASK_NULL); task_lock(task); if (task->task_io_stats) { ri->ri_diskio_bytesread = task->task_io_stats->disk_reads.size; ri->ri_diskio_byteswritten = (task->task_io_stats->total_io.size - task->task_io_stats->disk_reads.size); } else { /* I/O Stats unavailable */ ri->ri_diskio_bytesread = 0; ri->ri_diskio_byteswritten = 0; } task_unlock(task); return (0); } int fill_task_qos_rusage(task_t task, rusage_info_current *ri) { thread_t thread; assert(task != TASK_NULL); task_lock(task); /* Rollup Qos time of all the threads to task */ queue_iterate(&task->threads, thread, thread_t, task_threads) { if (thread->options & TH_OPT_IDLE_THREAD) continue; thread_mtx_lock(thread); thread_update_qos_cpu_time(thread, TRUE); thread_mtx_unlock(thread); } ri->ri_cpu_time_qos_default = task->cpu_time_qos_stats.cpu_time_qos_default; ri->ri_cpu_time_qos_maintenance = task->cpu_time_qos_stats.cpu_time_qos_maintenance; ri->ri_cpu_time_qos_background = task->cpu_time_qos_stats.cpu_time_qos_background; ri->ri_cpu_time_qos_utility = task->cpu_time_qos_stats.cpu_time_qos_utility; ri->ri_cpu_time_qos_legacy = task->cpu_time_qos_stats.cpu_time_qos_legacy; ri->ri_cpu_time_qos_user_initiated = task->cpu_time_qos_stats.cpu_time_qos_user_initiated; ri->ri_cpu_time_qos_user_interactive = task->cpu_time_qos_stats.cpu_time_qos_user_interactive; task_unlock(task); return (0); }