/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "@(#)output.c 1.16 06/08/22 SMI" /* * Routines for preparing tdata trees for conversion into CTF data, and * for placing the resulting data into an output file. */ #include #include #include #include #include #include #include #include #include #include "ctftools.h" #include "list.h" #include "memory.h" #include "traverse.h" #include "symbol.h" #if defined(__APPLE__) #include #include #include static GElf_Sym * gelf_getsym_macho(Elf_Data * data, int ndx, int nent, GElf_Sym * dst, const char *base) { const struct nlist *nsym = ((const struct nlist *)(data->d_buf)) + ndx; const char *name = base + nsym->n_un.n_strx; char *tmp; if (0 == nsym->n_un.n_strx) // iff a null, "", name. name = "null name"; // return NULL; if ('_' == name[0]) name++; // Lop off omnipresent underscore to match DWARF convention dst->st_name = (GElf_Sxword)(name - base); dst->st_value = nsym->n_value; dst->st_size = 0; dst->st_info = GELF_ST_INFO((STB_GLOBAL), (STT_NOTYPE)); dst->st_other = 0; dst->st_shndx = SHN_MACHO; /* Mark underlying file as Mach-o */ if (nsym->n_type & N_STAB) { switch(nsym->n_type) { case N_FUN: dst->st_info = GELF_ST_INFO((STB_GLOBAL), (STT_FUNC)); break; case N_GSYM: dst->st_info = GELF_ST_INFO((STB_GLOBAL), (STT_OBJECT)); break; default: break; } } else if ((N_ABS | N_EXT) == (nsym->n_type & (N_TYPE | N_EXT)) || (N_SECT | N_EXT) == (nsym->n_type & (N_TYPE | N_EXT))) { dst->st_info = GELF_ST_INFO((STB_GLOBAL), (nsym->n_desc)); } else if ((N_UNDF | N_EXT) == (nsym->n_type & (N_TYPE | N_EXT)) && nsym->n_sect == NO_SECT) { dst->st_info = GELF_ST_INFO((STB_GLOBAL), (STT_OBJECT)); /* Common */ } return dst; } static GElf_Sym * gelf_getsym_macho_64(Elf_Data * data, int ndx, int nent, GElf_Sym * dst, const char *base) { const struct nlist_64 *nsym = ((const struct nlist_64 *)(data->d_buf)) + ndx; const char *name = base + nsym->n_un.n_strx; char *tmp; if (0 == nsym->n_un.n_strx) // iff a null, "", name. name = "null name"; // return NULL; if ('_' == name[0]) name++; // Lop off omnipresent underscore to match DWARF convention dst->st_name = (GElf_Sxword)(name - base); dst->st_value = nsym->n_value; dst->st_size = 0; dst->st_info = GELF_ST_INFO((STB_GLOBAL), (STT_NOTYPE)); dst->st_other = 0; dst->st_shndx = SHN_MACHO_64; /* Mark underlying file as Mach-o 64 */ if (nsym->n_type & N_STAB) { switch(nsym->n_type) { case N_FUN: dst->st_info = GELF_ST_INFO((STB_GLOBAL), (STT_FUNC)); break; case N_GSYM: dst->st_info = GELF_ST_INFO((STB_GLOBAL), (STT_OBJECT)); break; default: break; } } else if ((N_ABS | N_EXT) == (nsym->n_type & (N_TYPE | N_EXT)) || (N_SECT | N_EXT) == (nsym->n_type & (N_TYPE | N_EXT))) { dst->st_info = GELF_ST_INFO((STB_GLOBAL), (nsym->n_desc)); } else if ((N_UNDF | N_EXT) == (nsym->n_type & (N_TYPE | N_EXT)) && nsym->n_sect == NO_SECT) { dst->st_info = GELF_ST_INFO((STB_GLOBAL), (STT_OBJECT)); /* Common */ } return dst; } #endif /* __APPLE__ */ typedef struct iidesc_match { int iim_fuzzy; iidesc_t *iim_ret; char *iim_name; char *iim_file; uchar_t iim_bind; } iidesc_match_t; static int burst_iitypes(void *data, void *arg) { iidesc_t *ii = data; iiburst_t *iiburst = arg; switch (ii->ii_type) { case II_GFUN: case II_SFUN: case II_GVAR: case II_SVAR: if (!(ii->ii_flags & IIDESC_F_USED)) return (0); break; default: break; } ii->ii_dtype->t_flags |= TDESC_F_ISROOT; (void) iitraverse_td(ii, iiburst->iib_tdtd); return (1); } /*ARGSUSED1*/ static int save_type_by_id(tdesc_t *tdp, tdesc_t **tdpp, void *private) { iiburst_t *iiburst = private; /* * Doing this on every node is horribly inefficient, but given that * we may be suppressing some types, we can't trust nextid in the * tdata_t. */ if (tdp->t_id > iiburst->iib_maxtypeid) iiburst->iib_maxtypeid = tdp->t_id; slist_add(&iiburst->iib_types, tdp, tdesc_idcmp); return (1); } static tdtrav_cb_f burst_types_cbs[] = { NULL, save_type_by_id, /* intrinsic */ save_type_by_id, /* pointer */ save_type_by_id, /* array */ save_type_by_id, /* function */ save_type_by_id, /* struct */ save_type_by_id, /* union */ save_type_by_id, /* enum */ save_type_by_id, /* forward */ save_type_by_id, /* typedef */ tdtrav_assert, /* typedef_unres */ save_type_by_id, /* volatile */ save_type_by_id, /* const */ save_type_by_id /* restrict */ }; static iiburst_t * iiburst_new(tdata_t *td, int max) { iiburst_t *iiburst = xcalloc(sizeof (iiburst_t)); iiburst->iib_td = td; iiburst->iib_funcs = xcalloc(sizeof (iidesc_t *) * max); iiburst->iib_nfuncs = 0; iiburst->iib_objts = xcalloc(sizeof (iidesc_t *) * max); iiburst->iib_nobjts = 0; return (iiburst); } static void iiburst_types(iiburst_t *iiburst) { tdtrav_data_t tdtd; tdtrav_init(&tdtd, &iiburst->iib_td->td_curvgen, NULL, burst_types_cbs, NULL, (void *)iiburst); iiburst->iib_tdtd = &tdtd; (void) hash_iter(iiburst->iib_td->td_iihash, burst_iitypes, iiburst); } static void iiburst_free(iiburst_t *iiburst) { free(iiburst->iib_funcs); free(iiburst->iib_objts); list_free(iiburst->iib_types, NULL, NULL); free(iiburst); } /* * See if this iidesc matches the ELF symbol data we pass in. * * A fuzzy match is where we have a local symbol matching the name of a * global type description. This is common when a mapfile is used for a * DSO, but we don't accept it by default. * * A weak fuzzy match is when a weak symbol was resolved and matched to * a global type description. */ static int matching_iidesc(iidesc_t *iidesc, iidesc_match_t *match) { if (streq(iidesc->ii_name, match->iim_name) == 0) return (0); switch (iidesc->ii_type) { case II_GFUN: case II_GVAR: if (match->iim_bind == STB_GLOBAL) { match->iim_ret = iidesc; return (-1); } else if (match->iim_fuzzy && match->iim_ret == NULL) { match->iim_ret = iidesc; /* continue to look for strong match */ return (0); } break; case II_SFUN: case II_SVAR: if (match->iim_bind == STB_LOCAL && match->iim_file != NULL && streq(iidesc->ii_owner, match->iim_file)) { match->iim_ret = iidesc; return (-1); } break; } return (0); } static iidesc_t * find_iidesc(tdata_t *td, iidesc_match_t *match) { match->iim_ret = NULL; iter_iidescs_by_name(td, match->iim_name, (int (*)())matching_iidesc, match); return (match->iim_ret); } /* * If we have a weak symbol, attempt to find the strong symbol it will * resolve to. Note: the code where this actually happens is in * sym_process() in cmd/sgs/libld/common/syms.c * * Finding the matching symbol is unfortunately not trivial. For a * symbol to be a candidate, it must: * * - have the same type (function, object) * - have the same value (address) * - have the same size * - not be another weak symbol * - belong to the same section (checked via section index) * * If such a candidate is global, then we assume we've found it. The * linker generates the symbol table such that the curfile might be * incorrect; this is OK for global symbols, since find_iidesc() doesn't * need to check for the source file for the symbol. * * We might have found a strong local symbol, where the curfile is * accurate and matches that of the weak symbol. We assume this is a * reasonable match. * * If we've got a local symbol with a non-matching curfile, there are * two possibilities. Either this is a completely different symbol, or * it's a once-global symbol that was scoped to local via a mapfile. In * the latter case, curfile is likely inaccurate since the linker does * not preserve the needed curfile in the order of the symbol table (see * the comments about locally scoped symbols in libld's update_osym()). * As we can't tell this case from the former one, we use this symbol * iff no other matching symbol is found. * * What we really need here is a SUNW section containing weak<->strong * mappings that we can consume. */ static int check_for_weak(GElf_Sym *weak, char const *weakfile, Elf_Data *data, int nent, Elf_Data *strdata, GElf_Sym *retsym, char **curfilep) { char *curfile = NULL; char *tmpfile; GElf_Sym tmpsym; int candidate = 0; int i; if (GELF_ST_BIND(weak->st_info) != STB_WEAK) return (0); for (i = 0; i < nent; i++) { GElf_Sym sym; uchar_t type; if (gelf_getsym(data, i, &sym) == NULL) continue; type = GELF_ST_TYPE(sym.st_info); if (type == STT_FILE) curfile = (char *)strdata->d_buf + sym.st_name; if (GELF_ST_TYPE(weak->st_info) != type || weak->st_value != sym.st_value) continue; if (weak->st_size != sym.st_size) continue; if (GELF_ST_BIND(sym.st_info) == STB_WEAK) continue; if (sym.st_shndx != weak->st_shndx) continue; if (GELF_ST_BIND(sym.st_info) == STB_LOCAL && (curfile == NULL || weakfile == NULL || strcmp(curfile, weakfile) != 0)) { candidate = 1; tmpfile = curfile; tmpsym = sym; continue; } *curfilep = curfile; *retsym = sym; return (1); } if (candidate) { *curfilep = tmpfile; *retsym = tmpsym; return (1); } return (0); } /* * When we've found the underlying symbol's type description * for a weak symbol, we need to copy it and rename it to match * the weak symbol. We also need to add it to the td so it's * handled along with the others later. */ static iidesc_t * copy_from_strong(tdata_t *td, GElf_Sym *sym, iidesc_t *strongdesc, const char *weakname, const char *weakfile) { iidesc_t *new = iidesc_dup_rename(strongdesc, weakname, weakfile); uchar_t type = GELF_ST_TYPE(sym->st_info); switch (type) { case STT_OBJECT: new->ii_type = II_GVAR; break; case STT_FUNC: new->ii_type = II_GFUN; break; } hash_add(td->td_iihash, new); return (new); } /* * Process the symbol table of the output file, associating each symbol * with a type description if possible, and sorting them into functions * and data, maintaining symbol table order. */ static iiburst_t * sort_iidescs(Elf *elf, const char *file, tdata_t *td, int fuzzymatch, int dynsym) { iiburst_t *iiburst; Elf_Scn *scn; GElf_Shdr shdr; Elf_Data *data, *strdata; int i, stidx; int nent; iidesc_match_t match; match.iim_fuzzy = fuzzymatch; match.iim_file = NULL; if ((stidx = findelfsecidx(elf, file, dynsym ? ".dynsym" : ".symtab")) < 0) #if !defined(__APPLE__) terminate("%s: Can't open symbol table\n", file); #else terminate(""); /* missing symbol table is most likely an empty binary, * produce no output, but also don't warn the user. */ #endif scn = elf_getscn(elf, stidx); data = elf_getdata(scn, NULL); gelf_getshdr(scn, &shdr); nent = shdr.sh_size / shdr.sh_entsize; #if !defined(__APPLE__) scn = elf_getscn(elf, shdr.sh_link); strdata = elf_getdata(scn, NULL); #else if (SHN_MACHO != shdr.sh_link && SHN_MACHO_64 != shdr.sh_link) { scn = elf_getscn(elf, shdr.sh_link); strdata = elf_getdata(scn, NULL); } else { /* Underlying file is Mach-o */ int dir_idx; if ((dir_idx = findelfsecidx(elf, file, ".dir_str_table")) < 0 || (scn = elf_getscn(elf, dir_idx)) == NULL || (strdata = elf_getdata(scn, NULL)) == NULL) terminate("%s: Can't open direct string table\n", file); } #endif /* __APPLE__ */ iiburst = iiburst_new(td, nent); #if !defined(__APPLE__) for (i = 0; i < nent; i++) { GElf_Sym sym; iidesc_t **tolist; GElf_Sym ssym; iidesc_match_t smatch; int *curr; iidesc_t *iidesc; if (gelf_getsym(data, i, &sym) == NULL) elfterminate(file, "Couldn't read symbol %d", i); match.iim_name = (char *)strdata->d_buf + sym.st_name; match.iim_bind = GELF_ST_BIND(sym.st_info); switch (GELF_ST_TYPE(sym.st_info)) { case STT_FILE: match.iim_file = match.iim_name; continue; case STT_OBJECT: tolist = iiburst->iib_objts; curr = &iiburst->iib_nobjts; break; case STT_FUNC: tolist = iiburst->iib_funcs; curr = &iiburst->iib_nfuncs; break; default: continue; } if (ignore_symbol(&sym, match.iim_name)) continue; iidesc = find_iidesc(td, &match); if (iidesc != NULL) { tolist[*curr] = iidesc; iidesc->ii_flags |= IIDESC_F_USED; (*curr)++; continue; } if (!check_for_weak(&sym, match.iim_file, data, nent, strdata, &ssym, &smatch.iim_file)) { (*curr)++; continue; } smatch.iim_fuzzy = fuzzymatch; smatch.iim_name = (char *)strdata->d_buf + ssym.st_name; smatch.iim_bind = GELF_ST_BIND(ssym.st_info); debug(3, "Weak symbol %s resolved to %s\n", match.iim_name, smatch.iim_name); iidesc = find_iidesc(td, &smatch); if (iidesc != NULL) { tolist[*curr] = copy_from_strong(td, &sym, iidesc, match.iim_name, match.iim_file); tolist[*curr]->ii_flags |= IIDESC_F_USED; } (*curr)++; } #else for (i = 0; i < nent; i++) { GElf_Sym sym; iidesc_t **tolist; int *curr; iidesc_t *iidesc; if (SHN_MACHO == shdr.sh_link) { if (gelf_getsym_macho(data, i, nent, &sym, (const char *)strdata->d_buf) == NULL) elfterminate(file, "Couldn't read symbol %d", i); } else if (SHN_MACHO_64 == shdr.sh_link) { if (gelf_getsym_macho_64(data, i, nent, &sym, (const char *)strdata->d_buf) == NULL) elfterminate(file, "Couldn't read symbol %d", i); } match.iim_name = (char *)strdata->d_buf + sym.st_name; match.iim_bind = GELF_ST_BIND(sym.st_info); switch (GELF_ST_TYPE(sym.st_info)) { case STT_FILE: match.iim_file = match.iim_name; continue; case STT_OBJECT: tolist = iiburst->iib_objts; curr = &iiburst->iib_nobjts; break; case STT_FUNC: tolist = iiburst->iib_funcs; curr = &iiburst->iib_nfuncs; break; default: continue; } if (ignore_symbol(&sym, match.iim_name)) continue; iidesc = find_iidesc(td, &match); if (iidesc != NULL) { tolist[*curr] = iidesc; iidesc->ii_flags |= IIDESC_F_USED; (*curr)++; continue; } if (ignore_symbol(&sym, match.iim_name)) continue; #warning FIXME: deal with weak bindings. (*curr)++; } #endif /* __APPLE__ */ /* * Stabs are generated for every function declared in a given C source * file. When converting an object file, we may encounter a stab that * has no symbol table entry because the optimizer has decided to omit * that item (for example, an unreferenced static function). We may * see iidescs that do not have an associated symtab entry, and so * we do not write records for those functions into the CTF data. * All others get marked as a root by this function. */ iiburst_types(iiburst); /* * By not adding some of the functions and/or objects, we may have * caused some types that were referenced solely by those * functions/objects to be suppressed. This could cause a label, * generated prior to the evisceration, to be incorrect. Find the * highest type index, and change the label indicies to be no higher * than this value. */ tdata_label_newmax(td, iiburst->iib_maxtypeid); return (iiburst); } #if !defined(__APPLE__) static void write_file(Elf *src, const char *srcname, Elf *dst, const char *dstname, caddr_t ctfdata, size_t ctfsize, int flags) { GElf_Ehdr sehdr, dehdr; Elf_Scn *sscn, *dscn; Elf_Data *sdata, *ddata; GElf_Shdr shdr; GElf_Word symtab_type; int symtab_idx = -1; off_t new_offset = 0; off_t ctfnameoff = 0; int dynsym = (flags & CTF_USE_DYNSYM); int keep_stabs = (flags & CTF_KEEP_STABS); int *secxlate; int srcidx, dstidx; int curnmoff = 0; int changing = 0; int pad; int i; if (gelf_newehdr(dst, gelf_getclass(src)) == NULL) elfterminate(dstname, "Cannot copy ehdr to temp file"); gelf_getehdr(src, &sehdr); memcpy(&dehdr, &sehdr, sizeof (GElf_Ehdr)); gelf_update_ehdr(dst, &dehdr); symtab_type = dynsym ? SHT_DYNSYM : SHT_SYMTAB; /* * Neither the existing stab sections nor the SUNW_ctf sections (new or * existing) are SHF_ALLOC'd, so they won't be in areas referenced by * program headers. As such, we can just blindly copy the program * headers from the existing file to the new file. */ if (sehdr.e_phnum != 0) { (void) elf_flagelf(dst, ELF_C_SET, ELF_F_LAYOUT); if (gelf_newphdr(dst, sehdr.e_phnum) == NULL) elfterminate(dstname, "Cannot make phdrs in temp file"); for (i = 0; i < sehdr.e_phnum; i++) { GElf_Phdr phdr; gelf_getphdr(src, i, &phdr); gelf_update_phdr(dst, i, &phdr); } } secxlate = xmalloc(sizeof (int) * sehdr.e_shnum); for (srcidx = dstidx = 0; srcidx < sehdr.e_shnum; srcidx++) { Elf_Scn *scn = elf_getscn(src, srcidx); GElf_Shdr shdr; char *sname; gelf_getshdr(scn, &shdr); sname = elf_strptr(src, sehdr.e_shstrndx, shdr.sh_name); if (sname == NULL) { elfterminate(srcname, "Can't find string at %u", shdr.sh_name); } if (strcmp(sname, CTF_ELF_SCN_NAME) == 0) { secxlate[srcidx] = -1; } else if (!keep_stabs && (strncmp(sname, ".stab", 5) == 0 || strncmp(sname, ".debug", 6) == 0 || strncmp(sname, ".rel.debug", 10) == 0 || strncmp(sname, ".rela.debug", 11) == 0)) { secxlate[srcidx] = -1; } else if (dynsym && shdr.sh_type == SHT_SYMTAB) { /* * If we're building CTF against the dynsym, * we'll rip out the symtab so debuggers aren't * confused. */ secxlate[srcidx] = -1; } else { secxlate[srcidx] = dstidx++; curnmoff += strlen(sname) + 1; } new_offset = (off_t)dehdr.e_phoff; } for (srcidx = 1; srcidx < sehdr.e_shnum; srcidx++) { char *sname; sscn = elf_getscn(src, srcidx); gelf_getshdr(sscn, &shdr); if (secxlate[srcidx] == -1) { changing = 1; continue; } dscn = elf_newscn(dst); /* * If this file has program headers, we need to explicitly lay * out sections. If none of the sections prior to this one have * been removed, then we can just use the existing location. If * one or more sections have been changed, then we need to * adjust this one to avoid holes. */ if (changing && sehdr.e_phnum != 0) { pad = new_offset % shdr.sh_addralign; if (pad) new_offset += shdr.sh_addralign - pad; shdr.sh_offset = new_offset; } shdr.sh_link = secxlate[shdr.sh_link]; if (shdr.sh_type == SHT_REL || shdr.sh_type == SHT_RELA) shdr.sh_info = secxlate[shdr.sh_info]; sname = elf_strptr(src, sehdr.e_shstrndx, shdr.sh_name); if (sname == NULL) { elfterminate(srcname, "Can't find string at %u", shdr.sh_name); } if ((sdata = elf_getdata(sscn, NULL)) == NULL) elfterminate(srcname, "Cannot get sect %s data", sname); if ((ddata = elf_newdata(dscn)) == NULL) elfterminate(dstname, "Can't make sect %s data", sname); bcopy(sdata, ddata, sizeof (Elf_Data)); if (srcidx == sehdr.e_shstrndx) { char seclen = strlen(CTF_ELF_SCN_NAME); ddata->d_buf = xmalloc(ddata->d_size + shdr.sh_size + seclen + 1); bcopy(sdata->d_buf, ddata->d_buf, shdr.sh_size); strcpy((caddr_t)ddata->d_buf + shdr.sh_size, CTF_ELF_SCN_NAME); ctfnameoff = (off_t)shdr.sh_size; shdr.sh_size += seclen + 1; ddata->d_size += seclen + 1; if (sehdr.e_phnum != 0) changing = 1; } if (shdr.sh_type == symtab_type && shdr.sh_entsize != 0) { int nsym = shdr.sh_size / shdr.sh_entsize; symtab_idx = secxlate[srcidx]; ddata->d_buf = xmalloc(shdr.sh_size); bcopy(sdata->d_buf, ddata->d_buf, shdr.sh_size); for (i = 0; i < nsym; i++) { GElf_Sym sym; short newscn; (void) gelf_getsym(ddata, i, &sym); if (sym.st_shndx >= SHN_LORESERVE) continue; if ((newscn = secxlate[sym.st_shndx]) != sym.st_shndx) { sym.st_shndx = (newscn == -1 ? 1 : newscn); gelf_update_sym(ddata, i, &sym); } } } if (gelf_update_shdr(dscn, &shdr) == NULL) elfterminate(dstname, "Cannot update sect %s", sname); new_offset = (off_t)shdr.sh_offset; if (shdr.sh_type != SHT_NOBITS) new_offset += shdr.sh_size; } if (symtab_idx == -1) { terminate("%s: Cannot find %s section\n", srcname, dynsym ? "SHT_DYNSYM" : "SHT_SYMTAB"); } /* Add the ctf section */ dscn = elf_newscn(dst); gelf_getshdr(dscn, &shdr); shdr.sh_name = ctfnameoff; shdr.sh_type = SHT_PROGBITS; shdr.sh_size = ctfsize; shdr.sh_link = symtab_idx; shdr.sh_addralign = 4; if (changing && sehdr.e_phnum != 0) { pad = new_offset % shdr.sh_addralign; if (pad) new_offset += shdr.sh_addralign - pad; shdr.sh_offset = new_offset; new_offset += shdr.sh_size; } ddata = elf_newdata(dscn); ddata->d_buf = ctfdata; ddata->d_size = ctfsize; ddata->d_align = shdr.sh_addralign; gelf_update_shdr(dscn, &shdr); /* update the section header location */ if (sehdr.e_phnum != 0) { size_t align = gelf_fsize(dst, ELF_T_ADDR, 1, EV_CURRENT); size_t r = new_offset % align; if (r) new_offset += align - r; dehdr.e_shoff = new_offset; } /* commit to disk */ dehdr.e_shstrndx = secxlate[sehdr.e_shstrndx]; gelf_update_ehdr(dst, &dehdr); if (elf_update(dst, ELF_C_WRITE) < 0) elfterminate(dstname, "Cannot finalize temp file"); free(secxlate); } #else #include "decl.h" static void write_file_64(Elf *src, const char *srcname, Elf *dst, const char *dstname, caddr_t ctfdata, size_t ctfsize, int flags); /* Forward reference. */ static void fill_ctf_segments(struct segment_command *seg, struct section *sect, uint32_t vmaddr, size_t size, uint32_t offset, int swap) { struct segment_command tmpseg = { LC_SEGMENT, sizeof(struct segment_command) + sizeof(struct section), SEG_CTF, vmaddr, 0, /* Do not map. Do not reserve virtual address range. */ offset, size, VM_PROT_READ, VM_PROT_READ, 1, 0 }; struct section tmpsect = { SECT_CTF, SEG_CTF, vmaddr, size, offset, 0, /* byte aligned */ 0, 0, 0, 0, 0 }; if (swap) { __swap_segment_command(&tmpseg); __swap_section(&tmpsect); } *seg = tmpseg; *sect = tmpsect; } void write_file(Elf *src, const char *srcname, Elf *dst, const char *dstname, caddr_t ctfdata, size_t ctfsize, int flags) { struct mach_header hdr, *mh = (struct mach_header *)src->ed_image; struct segment_command ctfseg_command; struct section ctf_sect; struct segment_command *curcmd, *ctfcmd; int fd, cmdsleft, swap = (MH_CIGAM == mh->magic); size_t sz; char *p; uint32_t ctf_vmaddr = 0, t; if (ELFCLASS64 == src->ed_class) { write_file_64(src, srcname, dst, dstname, ctfdata, ctfsize, flags); return; } /* Swap mach header to host order so we can do arithmetic */ if (swap) { hdr = *mh; mh = &hdr; __swap_mach_header(mh); } /* Get a pristine instance of the source mach-o */ if ((fd = open(srcname, O_RDONLY)) < 0) terminate("%s: Cannot open for re-reading", srcname); sz = (size_t)lseek(fd, (off_t)0, SEEK_END); p = mmap((char *)0, sz, PROT_READ, MAP_PRIVATE, fd, (off_t)0); if ((char *)-1 == p) terminate("%s: Cannot mmap for re-reading", srcname); if ((MH_MAGIC != ((struct mach_header *)p)->magic) && (MH_CIGAM != ((struct mach_header *)p)->magic)) terminate("%s: is not a thin (single architecture) mach-o binary.\n", srcname); /* Iterate through load commands looking for CTF data */ ctfcmd = NULL; cmdsleft = mh->ncmds; curcmd = (struct segment_command *) (p + sizeof(struct mach_header)); if (cmdsleft < 1) terminate("%s: Has no load commands.\n", srcname); while (cmdsleft-- > 0) { int size = curcmd->cmdsize; uint32_t thecmd = curcmd->cmd; if (swap) { SWAP32(size); SWAP32(thecmd); } if (LC_SEGMENT == thecmd) { uint32_t vmaddr = curcmd->vmaddr; uint32_t vmsize = curcmd->vmsize; if (swap) { SWAP32(vmaddr); SWAP32(vmsize); } t = vmaddr + vmsize; if (t > ctf_vmaddr) ctf_vmaddr = t; } if ((LC_SEGMENT == thecmd) && (!strcmp(curcmd->segname, SEG_CTF))) { ctfcmd = curcmd; } curcmd = (struct segment_command *) (((char *)curcmd) + size); } ctf_vmaddr = (ctf_vmaddr + getpagesize() - 1) & (~(getpagesize() - 1)); // page aligned if (ctfcmd) { /* CTF segment command exists: overwrite it */ fill_ctf_segments(&ctfseg_command, &ctf_sect, ((struct segment_command *)ctfcmd)->vmaddr, ctfsize, sz /* file offset */, swap); write(dst->ed_fd, p, sz); // byte-for-byte copy of input mach-o file write(dst->ed_fd, ctfdata, ctfsize); // append CTF lseek(dst->ed_fd, (off_t)((char *)ctfcmd - p), SEEK_SET); write(dst->ed_fd, &ctfseg_command, sizeof(ctfseg_command)); // lay down CTF_SEG write(dst->ed_fd, &ctf_sect, sizeof(ctf_sect)); // lay down CTF_SECT } else { int cmdlength, dataoffset, datalength; int ctfhdrsz = (sizeof(ctfseg_command) + sizeof(ctf_sect)); cmdlength = mh->sizeofcmds; // where to write CTF seg/sect dataoffset = sizeof(*mh) + mh->sizeofcmds; // where all real data starts datalength = src->ed_imagesz - dataoffset; /* Add one segment command to header */ mh->sizeofcmds += ctfhdrsz; mh->ncmds++; /* * Chop the first ctfhdrsz bytes out of the generic data so * that all the internal offsets stay the same * (required for ELF parsing) * FIXME: This isn't pretty. */ dataoffset += ctfhdrsz; datalength -= ctfhdrsz; fill_ctf_segments(&ctfseg_command, &ctf_sect, ctf_vmaddr, ctfsize, (sizeof(*mh) + cmdlength + ctfhdrsz + datalength) /* file offset */, swap); if (swap) { __swap_mach_header(mh); } write(dst->ed_fd, mh, sizeof(*mh)); write(dst->ed_fd, p + sizeof(*mh), cmdlength); write(dst->ed_fd, &ctfseg_command, sizeof(ctfseg_command)); write(dst->ed_fd, &ctf_sect, sizeof(ctf_sect)); write(dst->ed_fd, p + dataoffset, datalength); write(dst->ed_fd, ctfdata, ctfsize); } (void)munmap(p, sz); (void)close(fd); return; } static void fill_ctf_segments_64(struct segment_command_64 *seg, struct section_64 *sect, uint64_t vmaddr, size_t size, uint32_t offset, int swap) { struct segment_command_64 tmpseg = { LC_SEGMENT_64, sizeof(struct segment_command_64) + sizeof(struct section_64), SEG_CTF, vmaddr, 0, /* Do not map. Do not reserve virtual address range. */ offset, size, VM_PROT_READ, VM_PROT_READ, 1, 0 }; struct section_64 tmpsect = { SECT_CTF, SEG_CTF, vmaddr, size, offset, 0, /* byte aligned */ 0, 0, 0, 0, 0 }; if (swap) { __swap_segment_command_64(&tmpseg); __swap_section_64(&tmpsect); } *seg = tmpseg; *sect = tmpsect; } static void write_file_64(Elf *src, const char *srcname, Elf *dst, const char *dstname, caddr_t ctfdata, size_t ctfsize, int flags) { struct mach_header_64 hdr, *mh = (struct mach_header_64 *)src->ed_image; struct segment_command_64 ctfseg_command; struct section_64 ctf_sect; struct segment_command_64 *curcmd, *ctfcmd; int fd, cmdsleft, swap = (MH_CIGAM_64 == mh->magic); size_t sz; char *p; uint64_t ctf_vmaddr = 0, t; /* Swap mach header to host order so we can do arithmetic */ if (swap) { hdr = *mh; mh = &hdr; __swap_mach_header_64(mh); } /* Get a pristine instance of the source mach-o */ if ((fd = open(srcname, O_RDONLY)) < 0) terminate("%s: Cannot open for re-reading", srcname); sz = (size_t)lseek(fd, (off_t)0, SEEK_END); p = mmap((char *)0, sz, PROT_READ, MAP_PRIVATE, fd, (off_t)0); if ((char *)-1 == p) terminate("%s: Cannot mmap for re-reading", srcname); if ((MH_MAGIC_64 != ((struct mach_header *)p)->magic) && (MH_CIGAM_64 != ((struct mach_header *)p)->magic)) terminate("%s: is not a thin (single architecture) mach-o binary.\n", srcname); /* Iterate through load commands looking for CTF data */ ctfcmd = NULL; cmdsleft = mh->ncmds; curcmd = (struct segment_command_64 *) (p + sizeof(struct mach_header_64)); if (cmdsleft < 1) terminate("%s: Has no load commands.\n", srcname); while (cmdsleft-- > 0) { int size = curcmd->cmdsize; uint32_t thecmd = curcmd->cmd; if (swap) { SWAP32(size); SWAP32(thecmd); } if (LC_SEGMENT_64 == thecmd) { uint64_t vmaddr = curcmd->vmaddr; uint64_t vmsize = curcmd->vmsize; if (swap) { SWAP64(vmaddr); SWAP64(vmsize); } t = vmaddr + vmsize; if (t > ctf_vmaddr) ctf_vmaddr = t; } if ((LC_SEGMENT_64 == thecmd) && (!strcmp(curcmd->segname, SEG_CTF))) { ctfcmd = curcmd; } curcmd = (struct segment_command_64 *) (((char *)curcmd) + size); } ctf_vmaddr = (ctf_vmaddr + getpagesize() - 1) & (~(getpagesize() - 1)); // page aligned if (ctfcmd) { /* CTF segment command exists: overwrite it */ fill_ctf_segments_64(&ctfseg_command, &ctf_sect, ((struct segment_command_64 *)curcmd)->vmaddr, ctfsize, sz /* file offset */, swap); write(dst->ed_fd, p, sz); // byte-for-byte copy of input mach-o file write(dst->ed_fd, ctfdata, ctfsize); // append CTF lseek(dst->ed_fd, (off_t)((char *)ctfcmd - p), SEEK_SET); write(dst->ed_fd, &ctfseg_command, sizeof(ctfseg_command)); // lay down CTF_SEG write(dst->ed_fd, &ctf_sect, sizeof(ctf_sect)); // lay down CTF_SECT } else { int cmdlength, dataoffset, datalength; int ctfhdrsz = (sizeof(ctfseg_command) + sizeof(ctf_sect)); cmdlength = mh->sizeofcmds; // where to write CTF seg/sect dataoffset = sizeof(*mh) + mh->sizeofcmds; // where all real data starts datalength = src->ed_imagesz - dataoffset; /* Add one segment command to header */ mh->sizeofcmds += ctfhdrsz; mh->ncmds++; /* * Chop the first ctfhdrsz bytes out of the generic data so * that all the internal offsets stay the same * (required for ELF parsing) * FIXME: This isn't pretty. */ dataoffset += ctfhdrsz; datalength -= ctfhdrsz; fill_ctf_segments_64(&ctfseg_command, &ctf_sect, ctf_vmaddr, ctfsize, (sizeof(*mh) + cmdlength + ctfhdrsz + datalength) /* file offset */, swap); if (swap) { __swap_mach_header_64(mh); } write(dst->ed_fd, mh, sizeof(*mh)); write(dst->ed_fd, p + sizeof(*mh), cmdlength); write(dst->ed_fd, &ctfseg_command, sizeof(ctfseg_command)); write(dst->ed_fd, &ctf_sect, sizeof(ctf_sect)); write(dst->ed_fd, p + dataoffset, datalength); write(dst->ed_fd, ctfdata, ctfsize); } (void)munmap(p, sz); (void)close(fd); return; } #endif /* __APPLE__ */ static caddr_t make_ctf_data(tdata_t *td, Elf *elf, const char *file, size_t *lenp, int flags) { iiburst_t *iiburst; caddr_t data; iiburst = sort_iidescs(elf, file, td, flags & CTF_FUZZY_MATCH, flags & CTF_USE_DYNSYM); #if !defined(__APPLE__) data = ctf_gen(iiburst, lenp, flags & CTF_COMPRESS); #else data = ctf_gen(iiburst, lenp, flags & (CTF_COMPRESS | CTF_BYTESWAP)); #endif /* __APPLE__ */ iiburst_free(iiburst); return (data); } void write_ctf(tdata_t *td, const char *curname, const char *newname, int flags) { struct stat st; Elf *elf = NULL; Elf *telf = NULL; caddr_t data; size_t len; int fd = -1; int tfd = -1; (void) elf_version(EV_CURRENT); if ((fd = open(curname, O_RDONLY)) < 0 || fstat(fd, &st) < 0) terminate("%s: Cannot open for re-reading", curname); if ((elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) elfterminate(curname, "Cannot re-read"); if ((tfd = open(newname, O_RDWR | O_CREAT | O_TRUNC, st.st_mode)) < 0) terminate("Cannot open temp file %s for writing", newname); if ((telf = elf_begin(tfd, ELF_C_WRITE, NULL)) == NULL) elfterminate(curname, "Cannot write"); #if defined(__APPLE__) /* * If the caller has advised CTF_BYTESWAP but the target is the same * byte order as this processor then clear CTF_BYTESWAP. Otherwise CTF_BYTESWAP * stays lit and the output (typically from ctfmerge) is swapped to final form. */ if (ELFCLASS32 == elf->ed_class) { struct mach_header *mh = (struct mach_header *)elf->ed_image; if ((flags & CTF_BYTESWAP) && (MH_CIGAM != mh->magic)) flags &= ~CTF_BYTESWAP; data = make_ctf_data(td, elf, curname, &len, flags); if (flags & CTF_RAW_OUTPUT) { if (write(tfd, data, len) != len) { perror("Attempt to write raw CTF data failed"); terminate("Attempt to write raw CTF data failed"); } } else { write_file(elf, curname, telf, newname, data, len, flags); } } else if (ELFCLASS64 == elf->ed_class) { struct mach_header_64 *mh_64 = (struct mach_header_64 *)elf->ed_image; if ((flags & CTF_BYTESWAP) && (MH_CIGAM_64 != mh_64->magic)) flags &= ~CTF_BYTESWAP; data = make_ctf_data(td, elf, curname, &len, flags); if (flags & CTF_RAW_OUTPUT) { if (write(tfd, data, len) != len) { perror("Attempt to write raw CTF data failed"); terminate("Attempt to write raw CTF data failed"); } } else { write_file_64(elf, curname, telf, newname, data, len, flags); } } else terminate("%s: Unknown ed_class", curname); #else data = make_ctf_data(td, elf, curname, &len, flags); write_file(elf, curname, telf, newname, data, len, flags); #endif /* __APPLE__ */ free(data); elf_end(telf); elf_end(elf); (void) close(fd); (void) close(tfd); }