/* * Copyright (c) 2000-2001,2011-2014 Apple Inc. All Rights Reserved. * * The contents of this file constitute Original Code as defined in and are * subject to the Apple Public Source License Version 1.2 (the 'License'). * You may not use this file except in compliance with the License. Please obtain * a copy of the License at http://www.apple.com/publicsource and read it before * using this file. * * This Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS * OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, INCLUDING WITHOUT * LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR * PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. Please see the License for the * specific language governing rights and limitations under the License. */ /* File: HmacSha1Legacy.c Contains: HMAC/SHA1, bug-for-bug compatible with BSAFE 4.0. Copyright (c) 2001,2011-2014 Apple Inc. All Rights Reserved. */ #include "ckconfig.h" #if CRYPTKIT_HMAC_LEGACY #include "HmacSha1Legacy.h" #include "ckSHA1.h" #include #include #include #define kHMACSHA1DigestSize 20 /* XXX These should really be in ckSHA1.h */ #define kSHA1DigestSize 20 #define kSHA1BlockSize 64 /* * bug-for-bug compatible with BSAFE 4.0. See * BSafe/bsource/algs/ahchhmac.c. * * This implementation, and the BSAFE implementation it emulates, work fine * when calculating a MAC in a single update (init, update, final). They * generate nonconforming MACs when performing multiple updates because * the entire algorithm - both inner and outer digests - are performed * in the update() step. As a result, if one e.g. calculates a MAC of * a block of text with one update, and then calculates the MAC over the * same block of text via two updates, different results will obtain.ĘThe * incorrect result from the multiple-update scenario is repeatable if and * only if the same boundaries (same update sizes) are observed on each operation. * * Because all of the data to be MAC'd is in fact protected by both levels of * SHA1, and all of the key bits are used, this nonconforming implementation is * believed to be as strong, cryptographically, as a conforming SHA1HMAC * implementation. */ struct hmacLegacyContext { sha1Obj sha1Context; UInt8 k_ipad[kSHA1BlockSize]; UInt8 k_opad[kSHA1BlockSize]; }; hmacLegacyContextRef hmacLegacyAlloc(void) { hmacLegacyContextRef hmac = (hmacLegacyContextRef)malloc(sizeof(struct hmacLegacyContext)); memset(hmac, 0, sizeof(struct hmacLegacyContext)); return hmac; } void hmacLegacyFree( hmacLegacyContextRef hmac) { if(hmac != NULL) { if(hmac->sha1Context != NULL) { sha1Free (hmac->sha1Context); } memset(hmac, 0, sizeof(struct hmacLegacyContext)); free(hmac); } } /* reusable init */ OSStatus hmacLegacyInit( hmacLegacyContextRef hmac, const void *keyPtr, UInt32 keyLen) { UInt8 *key; UInt32 byte; if(hmac->sha1Context == NULL) { hmac->sha1Context = sha1Alloc(); if(hmac->sha1Context == NULL) { return errSecAllocate; } } else { sha1Reinit(hmac->sha1Context); } /* this implementation requires a 20-byte key */ if (keyLen != kSHA1DigestSize) { /* FIXME */ return errSecParam; } key = (UInt8*)keyPtr; /* The HMAC_SHA_1 transform looks like: SHA1 (K XOR opad || SHA1 (K XOR ipad || text)) Where K is a n byte key ipad is the byte 0x36 repeated 64 times. opad is the byte 0x5c repeated 64 times. text is the data being protected. */ /* Copy the key into k_ipad and k_opad while doing the XOR. */ for (byte = 0; byte < keyLen; byte++) { hmac->k_ipad[byte] = key[byte] ^ 0x36; hmac->k_opad[byte] = key[byte] ^ 0x5c; } /* Fill the remainder of k_ipad and k_opad with 0 XORed with * appropriate value. */ memset (hmac->k_ipad + keyLen, 0x36, kSHA1BlockSize - keyLen); memset (hmac->k_opad + keyLen, 0x5c, kSHA1BlockSize - keyLen); /* remainder happens in update */ return errSecSuccess; } OSStatus hmacLegacyUpdate( hmacLegacyContextRef hmac, const void *textPtr, UInt32 textLen) { UInt8 innerDigest[kSHA1DigestSize]; /* compute SHA1(k_ipad || data) ==> innerDigest */ sha1AddData (hmac->sha1Context, hmac->k_ipad, kSHA1BlockSize); sha1AddData (hmac->sha1Context, (UInt8*)textPtr, textLen); memcpy (innerDigest, sha1Digest(hmac->sha1Context), kSHA1DigestSize); /* reset context (BSAFE does this implicitly in a final() call) */ sha1Reinit(hmac->sha1Context); /* compute SHA1(k_opad || innerDigest) */ sha1AddData (hmac->sha1Context, hmac->k_opad, kSHA1BlockSize); sha1AddData (hmac->sha1Context, innerDigest, kSHA1DigestSize); /* if there is another update coming, it gets added in to existing * context; if the next step is a final, the current digest state is used. */ return errSecSuccess; } OSStatus hmacLegacyFinal( hmacLegacyContextRef hmac, void *resultPtr) // caller mallocs, must be HMACSHA1_OUT_SIZE bytes { memcpy (resultPtr, sha1Digest (hmac->sha1Context), kSHA1DigestSize); return errSecSuccess; } #endif /* CRYPTKIT_HMAC_LEGACY */