/* * Copyright (C) 2008 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #if ENABLE(JIT) #if USE(JSVALUE32_64) #include "JIT.h" #include "CodeBlock.h" #include "JITInlines.h" #include "JITStubs.h" #include "JSArray.h" #include "JSFunction.h" #include "Interpreter.h" #include "JSCInlines.h" #include "ResultType.h" #include "SamplingTool.h" #include "SlowPathCall.h" namespace JSC { void JIT::emit_op_negate(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int src = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump srcNotInt = branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)); addSlowCase(branchTest32(Zero, regT0, TrustedImm32(0x7fffffff))); neg32(regT0); emitStoreInt32(dst, regT0, (dst == src)); Jump end = jump(); srcNotInt.link(this); addSlowCase(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag))); xor32(TrustedImm32(1 << 31), regT1); store32(regT1, tagFor(dst)); if (dst != src) store32(regT0, payloadFor(dst)); end.link(this); } void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); // 0x7fffffff check linkSlowCase(iter); // double check JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_negate); slowPathCall.call(); } void JIT::emit_compareAndJump(OpcodeID opcode, int op1, int op2, unsigned target, RelationalCondition condition) { JumpList notInt32Op1; JumpList notInt32Op2; // Character less. if (isOperandConstantImmediateChar(op1)) { emitLoad(op2, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag))); JumpList failures; emitLoadCharacterString(regT0, regT0, failures); addSlowCase(failures); addJump(branch32(commute(condition), regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target); return; } if (isOperandConstantImmediateChar(op2)) { emitLoad(op1, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag))); JumpList failures; emitLoadCharacterString(regT0, regT0, failures); addSlowCase(failures); addJump(branch32(condition, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target); return; } if (isOperandConstantImmediateInt(op1)) { emitLoad(op2, regT3, regT2); notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); addJump(branch32(commute(condition), regT2, Imm32(getConstantOperand(op1).asInt32())), target); } else if (isOperandConstantImmediateInt(op2)) { emitLoad(op1, regT1, regT0); notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addJump(branch32(condition, regT0, Imm32(getConstantOperand(op2).asInt32())), target); } else { emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); addJump(branch32(condition, regT0, regT2), target); } if (!supportsFloatingPoint()) { addSlowCase(notInt32Op1); addSlowCase(notInt32Op2); return; } Jump end = jump(); // Double less. emitBinaryDoubleOp(opcode, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)); end.link(this); } void JIT::emit_compareAndJumpSlow(int op1, int op2, unsigned target, DoubleCondition, size_t (JIT_OPERATION *operation)(ExecState*, EncodedJSValue, EncodedJSValue), bool invert, Vector::iterator& iter) { if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) { linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); } else { if (!supportsFloatingPoint()) { if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check } else { if (!isOperandConstantImmediateInt(op1)) { linkSlowCase(iter); // double check linkSlowCase(iter); // int32 check } if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // double check } } emitLoad(op1, regT1, regT0); emitLoad(op2, regT3, regT2); callOperation(operation, regT1, regT0, regT3, regT2); emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target); } // LeftShift (<<) void JIT::emit_op_lshift(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int op1 = currentInstruction[2].u.operand; int op2 = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { emitLoad(op1, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); lshift32(Imm32(getConstantOperand(op2).asInt32()), regT0); emitStoreInt32(dst, regT0, dst == op1); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); if (!isOperandConstantImmediateInt(op1)) addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); lshift32(regT2, regT0); emitStoreInt32(dst, regT0, dst == op1 || dst == op2); } void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector::iterator& iter) { int op1 = currentInstruction[2].u.operand; int op2 = currentInstruction[3].u.operand; if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_lshift); slowPathCall.call(); } // RightShift (>>) and UnsignedRightShift (>>>) helper void JIT::emitRightShift(Instruction* currentInstruction, bool isUnsigned) { int dst = currentInstruction[1].u.operand; int op1 = currentInstruction[2].u.operand; int op2 = currentInstruction[3].u.operand; // Slow case of rshift makes assumptions about what registers hold the // shift arguments, so any changes must be updated there as well. if (isOperandConstantImmediateInt(op2)) { emitLoad(op1, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); int shift = getConstantOperand(op2).asInt32() & 0x1f; if (shift) { if (isUnsigned) urshift32(Imm32(shift), regT0); else rshift32(Imm32(shift), regT0); } emitStoreInt32(dst, regT0, dst == op1); } else { emitLoad2(op1, regT1, regT0, op2, regT3, regT2); if (!isOperandConstantImmediateInt(op1)) addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); if (isUnsigned) urshift32(regT2, regT0); else rshift32(regT2, regT0); emitStoreInt32(dst, regT0, dst == op1); } } void JIT::emitRightShiftSlowCase(Instruction* currentInstruction, Vector::iterator& iter, bool isUnsigned) { int dst = currentInstruction[1].u.operand; int op1 = currentInstruction[2].u.operand; int op2 = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { int shift = getConstantOperand(op2).asInt32() & 0x1f; // op1 = regT1:regT0 linkSlowCase(iter); // int32 check if (supportsFloatingPointTruncate()) { JumpList failures; failures.append(branch32(AboveOrEqual, regT1, TrustedImm32(JSValue::LowestTag))); emitLoadDouble(op1, fpRegT0); failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0)); if (shift) { if (isUnsigned) urshift32(Imm32(shift), regT0); else rshift32(Imm32(shift), regT0); } move(TrustedImm32(JSValue::Int32Tag), regT1); emitStoreInt32(dst, regT0, false); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift)); failures.link(this); } } else { // op1 = regT1:regT0 // op2 = regT3:regT2 if (!isOperandConstantImmediateInt(op1)) { linkSlowCase(iter); // int32 check -- op1 is not an int if (supportsFloatingPointTruncate()) { JumpList failures; failures.append(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag))); // op1 is not a double emitLoadDouble(op1, fpRegT0); failures.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); // op2 is not an int failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0)); if (isUnsigned) urshift32(regT2, regT0); else rshift32(regT2, regT0); move(TrustedImm32(JSValue::Int32Tag), regT1); emitStoreInt32(dst, regT0, false); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift)); failures.link(this); } } linkSlowCase(iter); // int32 check - op2 is not an int } JITSlowPathCall slowPathCall(this, currentInstruction, isUnsigned ? slow_path_urshift : slow_path_rshift); slowPathCall.call(); } // RightShift (>>) void JIT::emit_op_rshift(Instruction* currentInstruction) { emitRightShift(currentInstruction, false); } void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector::iterator& iter) { emitRightShiftSlowCase(currentInstruction, iter, false); } // UnsignedRightShift (>>>) void JIT::emit_op_urshift(Instruction* currentInstruction) { emitRightShift(currentInstruction, true); } void JIT::emitSlow_op_urshift(Instruction* currentInstruction, Vector::iterator& iter) { emitRightShiftSlowCase(currentInstruction, iter, true); } void JIT::emit_op_unsigned(Instruction* currentInstruction) { int result = currentInstruction[1].u.operand; int op1 = currentInstruction[2].u.operand; emitLoad(op1, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(LessThan, regT0, TrustedImm32(0))); emitStoreInt32(result, regT0, result == op1); } void JIT::emitSlow_op_unsigned(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); linkSlowCase(iter); JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_unsigned); slowPathCall.call(); } // BitAnd (&) void JIT::emit_op_bitand(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int op1 = currentInstruction[2].u.operand; int op2 = currentInstruction[3].u.operand; int op; int32_t constant; if (getOperandConstantImmediateInt(op1, op2, op, constant)) { emitLoad(op, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); and32(Imm32(constant), regT0); emitStoreInt32(dst, regT0, dst == op); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); and32(regT2, regT0); emitStoreInt32(dst, regT0, op1 == dst || op2 == dst); } void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector::iterator& iter) { int op1 = currentInstruction[2].u.operand; int op2 = currentInstruction[3].u.operand; if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_bitand); slowPathCall.call(); } // BitOr (|) void JIT::emit_op_bitor(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int op1 = currentInstruction[2].u.operand; int op2 = currentInstruction[3].u.operand; int op; int32_t constant; if (getOperandConstantImmediateInt(op1, op2, op, constant)) { emitLoad(op, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); or32(Imm32(constant), regT0); emitStoreInt32(dst, regT0, op == dst); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); or32(regT2, regT0); emitStoreInt32(dst, regT0, op1 == dst || op2 == dst); } void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector::iterator& iter) { int op1 = currentInstruction[2].u.operand; int op2 = currentInstruction[3].u.operand; if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_bitor); slowPathCall.call(); } // BitXor (^) void JIT::emit_op_bitxor(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int op1 = currentInstruction[2].u.operand; int op2 = currentInstruction[3].u.operand; int op; int32_t constant; if (getOperandConstantImmediateInt(op1, op2, op, constant)) { emitLoad(op, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); xor32(Imm32(constant), regT0); emitStoreInt32(dst, regT0, op == dst); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); xor32(regT2, regT0); emitStoreInt32(dst, regT0, op1 == dst || op2 == dst); } void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector::iterator& iter) { int op1 = currentInstruction[2].u.operand; int op2 = currentInstruction[3].u.operand; if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_bitxor); slowPathCall.call(); } void JIT::emit_op_inc(Instruction* currentInstruction) { int srcDst = currentInstruction[1].u.operand; emitLoad(srcDst, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT0)); emitStoreInt32(srcDst, regT0, true); } void JIT::emitSlow_op_inc(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // overflow check JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_inc); slowPathCall.call(); } void JIT::emit_op_dec(Instruction* currentInstruction) { int srcDst = currentInstruction[1].u.operand; emitLoad(srcDst, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT0)); emitStoreInt32(srcDst, regT0, true); } void JIT::emitSlow_op_dec(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // overflow check JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_dec); slowPathCall.call(); } // Addition (+) void JIT::emit_op_add(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int op1 = currentInstruction[2].u.operand; int op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { addSlowCase(); JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_add); slowPathCall.call(); return; } JumpList notInt32Op1; JumpList notInt32Op2; int op; int32_t constant; if (getOperandConstantImmediateInt(op1, op2, op, constant)) { emitAdd32Constant(dst, op, constant, op == op1 ? types.first() : types.second()); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); // Int32 case. addSlowCase(branchAdd32(Overflow, regT2, regT0)); emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); if (!supportsFloatingPoint()) { addSlowCase(notInt32Op1); addSlowCase(notInt32Op2); return; } Jump end = jump(); // Double case. emitBinaryDoubleOp(op_add, dst, op1, op2, types, notInt32Op1, notInt32Op2); end.link(this); } void JIT::emitAdd32Constant(int dst, int op, int32_t constant, ResultType opType) { // Int32 case. emitLoad(op, regT1, regT2); Jump notInt32 = branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)); addSlowCase(branchAdd32(Overflow, regT2, Imm32(constant), regT0)); emitStoreInt32(dst, regT0, (op == dst)); // Double case. if (!supportsFloatingPoint()) { addSlowCase(notInt32); return; } Jump end = jump(); notInt32.link(this); if (!opType.definitelyIsNumber()) addSlowCase(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag))); move(Imm32(constant), regT2); convertInt32ToDouble(regT2, fpRegT0); emitLoadDouble(op, fpRegT1); addDouble(fpRegT1, fpRegT0); emitStoreDouble(dst, fpRegT0); end.link(this); } void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector::iterator& iter) { int op1 = currentInstruction[2].u.operand; int op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { linkDummySlowCase(iter); return; } int op; int32_t constant; if (getOperandConstantImmediateInt(op1, op2, op, constant)) { linkSlowCase(iter); // overflow check if (!supportsFloatingPoint()) linkSlowCase(iter); // non-sse case else { ResultType opType = op == op1 ? types.first() : types.second(); if (!opType.definitelyIsNumber()) linkSlowCase(iter); // double check } } else { linkSlowCase(iter); // overflow check if (!supportsFloatingPoint()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check } else { if (!types.first().definitelyIsNumber()) linkSlowCase(iter); // double check if (!types.second().definitelyIsNumber()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // double check } } } JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_add); slowPathCall.call(); } // Subtraction (-) void JIT::emit_op_sub(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int op1 = currentInstruction[2].u.operand; int op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); JumpList notInt32Op1; JumpList notInt32Op2; if (isOperandConstantImmediateInt(op2)) { emitSub32Constant(dst, op1, getConstantOperand(op2).asInt32(), types.first()); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); // Int32 case. addSlowCase(branchSub32(Overflow, regT2, regT0)); emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); if (!supportsFloatingPoint()) { addSlowCase(notInt32Op1); addSlowCase(notInt32Op2); return; } Jump end = jump(); // Double case. emitBinaryDoubleOp(op_sub, dst, op1, op2, types, notInt32Op1, notInt32Op2); end.link(this); } void JIT::emitSub32Constant(int dst, int op, int32_t constant, ResultType opType) { // Int32 case. emitLoad(op, regT1, regT0); Jump notInt32 = branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)); addSlowCase(branchSub32(Overflow, regT0, Imm32(constant), regT2, regT3)); emitStoreInt32(dst, regT2, (op == dst)); // Double case. if (!supportsFloatingPoint()) { addSlowCase(notInt32); return; } Jump end = jump(); notInt32.link(this); if (!opType.definitelyIsNumber()) addSlowCase(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag))); move(Imm32(constant), regT2); convertInt32ToDouble(regT2, fpRegT0); emitLoadDouble(op, fpRegT1); subDouble(fpRegT0, fpRegT1); emitStoreDouble(dst, fpRegT1); end.link(this); } void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector::iterator& iter) { int op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (isOperandConstantImmediateInt(op2)) { linkSlowCase(iter); // overflow check if (!supportsFloatingPoint() || !types.first().definitelyIsNumber()) linkSlowCase(iter); // int32 or double check } else { linkSlowCase(iter); // overflow check if (!supportsFloatingPoint()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check } else { if (!types.first().definitelyIsNumber()) linkSlowCase(iter); // double check if (!types.second().definitelyIsNumber()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // double check } } } JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_sub); slowPathCall.call(); } void JIT::emitBinaryDoubleOp(OpcodeID opcodeID, int dst, int op1, int op2, OperandTypes types, JumpList& notInt32Op1, JumpList& notInt32Op2, bool op1IsInRegisters, bool op2IsInRegisters) { JumpList end; if (!notInt32Op1.empty()) { // Double case 1: Op1 is not int32; Op2 is unknown. notInt32Op1.link(this); ASSERT(op1IsInRegisters); // Verify Op1 is double. if (!types.first().definitelyIsNumber()) addSlowCase(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag))); if (!op2IsInRegisters) emitLoad(op2, regT3, regT2); Jump doubleOp2 = branch32(Below, regT3, TrustedImm32(JSValue::LowestTag)); if (!types.second().definitelyIsNumber()) addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); convertInt32ToDouble(regT2, fpRegT0); Jump doTheMath = jump(); // Load Op2 as double into double register. doubleOp2.link(this); emitLoadDouble(op2, fpRegT0); // Do the math. doTheMath.link(this); switch (opcodeID) { case op_mul: emitLoadDouble(op1, fpRegT2); mulDouble(fpRegT2, fpRegT0); emitStoreDouble(dst, fpRegT0); break; case op_add: emitLoadDouble(op1, fpRegT2); addDouble(fpRegT2, fpRegT0); emitStoreDouble(dst, fpRegT0); break; case op_sub: emitLoadDouble(op1, fpRegT1); subDouble(fpRegT0, fpRegT1); emitStoreDouble(dst, fpRegT1); break; case op_div: { emitLoadDouble(op1, fpRegT1); divDouble(fpRegT0, fpRegT1); // Is the result actually an integer? The DFG JIT would really like to know. If it's // not an integer, we increment a count. If this together with the slow case counter // are below threshold then the DFG JIT will compile this division with a specualtion // that the remainder is zero. // As well, there are cases where a double result here would cause an important field // in the heap to sometimes have doubles in it, resulting in double predictions getting // propagated to a use site where it might cause damage (such as the index to an array // access). So if we are DFG compiling anything in the program, we want this code to // ensure that it produces integers whenever possible. // FIXME: This will fail to convert to integer if the result is zero. We should // distinguish between positive zero and negative zero here. JumpList notInteger; branchConvertDoubleToInt32(fpRegT1, regT2, notInteger, fpRegT0); // If we've got an integer, we might as well make that the result of the division. emitStoreInt32(dst, regT2); Jump isInteger = jump(); notInteger.link(this); add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter)); emitStoreDouble(dst, fpRegT1); isInteger.link(this); break; } case op_jless: emitLoadDouble(op1, fpRegT2); addJump(branchDouble(DoubleLessThan, fpRegT2, fpRegT0), dst); break; case op_jlesseq: emitLoadDouble(op1, fpRegT2); addJump(branchDouble(DoubleLessThanOrEqual, fpRegT2, fpRegT0), dst); break; case op_jgreater: emitLoadDouble(op1, fpRegT2); addJump(branchDouble(DoubleGreaterThan, fpRegT2, fpRegT0), dst); break; case op_jgreatereq: emitLoadDouble(op1, fpRegT2); addJump(branchDouble(DoubleGreaterThanOrEqual, fpRegT2, fpRegT0), dst); break; case op_jnless: emitLoadDouble(op1, fpRegT2); addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT0, fpRegT2), dst); break; case op_jnlesseq: emitLoadDouble(op1, fpRegT2); addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT0, fpRegT2), dst); break; case op_jngreater: emitLoadDouble(op1, fpRegT2); addJump(branchDouble(DoubleGreaterThanOrEqualOrUnordered, fpRegT0, fpRegT2), dst); break; case op_jngreatereq: emitLoadDouble(op1, fpRegT2); addJump(branchDouble(DoubleGreaterThanOrUnordered, fpRegT0, fpRegT2), dst); break; default: RELEASE_ASSERT_NOT_REACHED(); } if (!notInt32Op2.empty()) end.append(jump()); } if (!notInt32Op2.empty()) { // Double case 2: Op1 is int32; Op2 is not int32. notInt32Op2.link(this); ASSERT(op2IsInRegisters); if (!op1IsInRegisters) emitLoadPayload(op1, regT0); convertInt32ToDouble(regT0, fpRegT0); // Verify op2 is double. if (!types.second().definitelyIsNumber()) addSlowCase(branch32(Above, regT3, TrustedImm32(JSValue::LowestTag))); // Do the math. switch (opcodeID) { case op_mul: emitLoadDouble(op2, fpRegT2); mulDouble(fpRegT2, fpRegT0); emitStoreDouble(dst, fpRegT0); break; case op_add: emitLoadDouble(op2, fpRegT2); addDouble(fpRegT2, fpRegT0); emitStoreDouble(dst, fpRegT0); break; case op_sub: emitLoadDouble(op2, fpRegT2); subDouble(fpRegT2, fpRegT0); emitStoreDouble(dst, fpRegT0); break; case op_div: { emitLoadDouble(op2, fpRegT2); divDouble(fpRegT2, fpRegT0); // Is the result actually an integer? The DFG JIT would really like to know. If it's // not an integer, we increment a count. If this together with the slow case counter // are below threshold then the DFG JIT will compile this division with a specualtion // that the remainder is zero. // As well, there are cases where a double result here would cause an important field // in the heap to sometimes have doubles in it, resulting in double predictions getting // propagated to a use site where it might cause damage (such as the index to an array // access). So if we are DFG compiling anything in the program, we want this code to // ensure that it produces integers whenever possible. // FIXME: This will fail to convert to integer if the result is zero. We should // distinguish between positive zero and negative zero here. JumpList notInteger; branchConvertDoubleToInt32(fpRegT0, regT2, notInteger, fpRegT1); // If we've got an integer, we might as well make that the result of the division. emitStoreInt32(dst, regT2); Jump isInteger = jump(); notInteger.link(this); add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter)); emitStoreDouble(dst, fpRegT0); isInteger.link(this); break; } case op_jless: emitLoadDouble(op2, fpRegT1); addJump(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), dst); break; case op_jlesseq: emitLoadDouble(op2, fpRegT1); addJump(branchDouble(DoubleLessThanOrEqual, fpRegT0, fpRegT1), dst); break; case op_jgreater: emitLoadDouble(op2, fpRegT1); addJump(branchDouble(DoubleGreaterThan, fpRegT0, fpRegT1), dst); break; case op_jgreatereq: emitLoadDouble(op2, fpRegT1); addJump(branchDouble(DoubleGreaterThanOrEqual, fpRegT0, fpRegT1), dst); break; case op_jnless: emitLoadDouble(op2, fpRegT1); addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), dst); break; case op_jnlesseq: emitLoadDouble(op2, fpRegT1); addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), dst); break; case op_jngreater: emitLoadDouble(op2, fpRegT1); addJump(branchDouble(DoubleGreaterThanOrEqualOrUnordered, fpRegT1, fpRegT0), dst); break; case op_jngreatereq: emitLoadDouble(op2, fpRegT1); addJump(branchDouble(DoubleGreaterThanOrUnordered, fpRegT1, fpRegT0), dst); break; default: RELEASE_ASSERT_NOT_REACHED(); } } end.link(this); } // Multiplication (*) void JIT::emit_op_mul(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int op1 = currentInstruction[2].u.operand; int op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); JumpList notInt32Op1; JumpList notInt32Op2; emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); // Int32 case. move(regT0, regT3); addSlowCase(branchMul32(Overflow, regT2, regT0)); addSlowCase(branchTest32(Zero, regT0)); emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); if (!supportsFloatingPoint()) { addSlowCase(notInt32Op1); addSlowCase(notInt32Op2); return; } Jump end = jump(); // Double case. emitBinaryDoubleOp(op_mul, dst, op1, op2, types, notInt32Op1, notInt32Op2); end.link(this); } void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector::iterator& iter) { int dst = currentInstruction[1].u.operand; int op1 = currentInstruction[2].u.operand; int op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); Jump overflow = getSlowCase(iter); // overflow check linkSlowCase(iter); // zero result check Jump negZero = branchOr32(Signed, regT2, regT3); emitStoreInt32(dst, TrustedImm32(0), (op1 == dst || op2 == dst)); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_mul)); negZero.link(this); // We only get here if we have a genuine negative zero. Record this, // so that the speculative JIT knows that we failed speculation // because of a negative zero. add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter)); overflow.link(this); if (!supportsFloatingPoint()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check } if (supportsFloatingPoint()) { if (!types.first().definitelyIsNumber()) linkSlowCase(iter); // double check if (!types.second().definitelyIsNumber()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // double check } } JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_mul); slowPathCall.call(); } // Division (/) void JIT::emit_op_div(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int op1 = currentInstruction[2].u.operand; int op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); if (!supportsFloatingPoint()) { addSlowCase(jump()); return; } // Int32 divide. JumpList notInt32Op1; JumpList notInt32Op2; JumpList end; emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); convertInt32ToDouble(regT0, fpRegT0); convertInt32ToDouble(regT2, fpRegT1); divDouble(fpRegT1, fpRegT0); // Is the result actually an integer? The DFG JIT would really like to know. If it's // not an integer, we increment a count. If this together with the slow case counter // are below threshold then the DFG JIT will compile this division with a specualtion // that the remainder is zero. // As well, there are cases where a double result here would cause an important field // in the heap to sometimes have doubles in it, resulting in double predictions getting // propagated to a use site where it might cause damage (such as the index to an array // access). So if we are DFG compiling anything in the program, we want this code to // ensure that it produces integers whenever possible. // FIXME: This will fail to convert to integer if the result is zero. We should // distinguish between positive zero and negative zero here. JumpList notInteger; branchConvertDoubleToInt32(fpRegT0, regT2, notInteger, fpRegT1); // If we've got an integer, we might as well make that the result of the division. emitStoreInt32(dst, regT2); end.append(jump()); notInteger.link(this); add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter)); emitStoreDouble(dst, fpRegT0); end.append(jump()); // Double divide. emitBinaryDoubleOp(op_div, dst, op1, op2, types, notInt32Op1, notInt32Op2); end.link(this); } void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector::iterator& iter) { OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (!supportsFloatingPoint()) linkSlowCase(iter); else { if (!types.first().definitelyIsNumber()) linkSlowCase(iter); // double check if (!types.second().definitelyIsNumber()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // double check } } JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_div); slowPathCall.call(); } // Mod (%) /* ------------------------------ BEGIN: OP_MOD ------------------------------ */ void JIT::emit_op_mod(Instruction* currentInstruction) { #if CPU(X86) || CPU(X86_64) int dst = currentInstruction[1].u.operand; int op1 = currentInstruction[2].u.operand; int op2 = currentInstruction[3].u.operand; // Make sure registers are correct for x86 IDIV instructions. ASSERT(regT0 == X86Registers::eax); ASSERT(regT1 == X86Registers::edx); ASSERT(regT2 == X86Registers::ecx); ASSERT(regT3 == X86Registers::ebx); emitLoad2(op1, regT0, regT3, op2, regT1, regT2); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT0, TrustedImm32(JSValue::Int32Tag))); move(regT3, regT0); addSlowCase(branchTest32(Zero, regT2)); Jump denominatorNotNeg1 = branch32(NotEqual, regT2, TrustedImm32(-1)); addSlowCase(branch32(Equal, regT0, TrustedImm32(-2147483647-1))); denominatorNotNeg1.link(this); m_assembler.cdq(); m_assembler.idivl_r(regT2); Jump numeratorPositive = branch32(GreaterThanOrEqual, regT3, TrustedImm32(0)); addSlowCase(branchTest32(Zero, regT1)); numeratorPositive.link(this); emitStoreInt32(dst, regT1, (op1 == dst || op2 == dst)); #else JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_mod); slowPathCall.call(); #endif } void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector::iterator& iter) { #if CPU(X86) || CPU(X86_64) linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_mod); slowPathCall.call(); #else UNUSED_PARAM(currentInstruction); UNUSED_PARAM(iter); // We would have really useful assertions here if it wasn't for the compiler's // insistence on attribute noreturn. // RELEASE_ASSERT_NOT_REACHED(); #endif } /* ------------------------------ END: OP_MOD ------------------------------ */ } // namespace JSC #endif // USE(JSVALUE32_64) #endif // ENABLE(JIT)