/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ARCH_POWERPC_EXTABLE_H #define _ARCH_POWERPC_EXTABLE_H /* * The exception table consists of pairs of relative addresses: the first is * the address of an instruction that is allowed to fault, and the second is * the address at which the program should continue. No registers are * modified, so it is entirely up to the continuation code to figure out what * to do. * * All the routines below use bits of fixup code that are out of line with the * main instruction path. This means when everything is well, we don't even * have to jump over them. Further, they do not intrude on our cache or tlb * entries. */ #define ARCH_HAS_RELATIVE_EXTABLE #ifndef __ASSEMBLY__ struct exception_table_entry { int insn; int fixup; }; static inline unsigned long extable_fixup(const struct exception_table_entry *x) { return (unsigned long)&x->fixup + x->fixup; } #endif /* * Helper macro for exception table entries */ #define EX_TABLE(_fault, _target) \ stringify_in_c(.section __ex_table,"a";)\ stringify_in_c(.balign 4;) \ stringify_in_c(.long (_fault) - . ;) \ stringify_in_c(.long (_target) - . ;) \ stringify_in_c(.previous) #endif