// SPDX-License-Identifier: GPL-2.0-only /* * tools/testing/selftests/kvm/lib/x86_64/processor.c * * Copyright (C) 2018, Google LLC. */ #include "linux/bitmap.h" #include "test_util.h" #include "kvm_util.h" #include "processor.h" #include "sev.h" #ifndef NUM_INTERRUPTS #define NUM_INTERRUPTS 256 #endif #define DEFAULT_CODE_SELECTOR 0x8 #define DEFAULT_DATA_SELECTOR 0x10 #define MAX_NR_CPUID_ENTRIES 100 vm_vaddr_t exception_handlers; bool host_cpu_is_amd; bool host_cpu_is_intel; static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent) { fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx " "rcx: 0x%.16llx rdx: 0x%.16llx\n", indent, "", regs->rax, regs->rbx, regs->rcx, regs->rdx); fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx " "rsp: 0x%.16llx rbp: 0x%.16llx\n", indent, "", regs->rsi, regs->rdi, regs->rsp, regs->rbp); fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx " "r10: 0x%.16llx r11: 0x%.16llx\n", indent, "", regs->r8, regs->r9, regs->r10, regs->r11); fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx " "r14: 0x%.16llx r15: 0x%.16llx\n", indent, "", regs->r12, regs->r13, regs->r14, regs->r15); fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n", indent, "", regs->rip, regs->rflags); } static void segment_dump(FILE *stream, struct kvm_segment *segment, uint8_t indent) { fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x " "selector: 0x%.4x type: 0x%.2x\n", indent, "", segment->base, segment->limit, segment->selector, segment->type); fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x " "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n", indent, "", segment->present, segment->dpl, segment->db, segment->s, segment->l); fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x " "unusable: 0x%.2x padding: 0x%.2x\n", indent, "", segment->g, segment->avl, segment->unusable, segment->padding); } static void dtable_dump(FILE *stream, struct kvm_dtable *dtable, uint8_t indent) { fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x " "padding: 0x%.4x 0x%.4x 0x%.4x\n", indent, "", dtable->base, dtable->limit, dtable->padding[0], dtable->padding[1], dtable->padding[2]); } static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent) { unsigned int i; fprintf(stream, "%*scs:\n", indent, ""); segment_dump(stream, &sregs->cs, indent + 2); fprintf(stream, "%*sds:\n", indent, ""); segment_dump(stream, &sregs->ds, indent + 2); fprintf(stream, "%*ses:\n", indent, ""); segment_dump(stream, &sregs->es, indent + 2); fprintf(stream, "%*sfs:\n", indent, ""); segment_dump(stream, &sregs->fs, indent + 2); fprintf(stream, "%*sgs:\n", indent, ""); segment_dump(stream, &sregs->gs, indent + 2); fprintf(stream, "%*sss:\n", indent, ""); segment_dump(stream, &sregs->ss, indent + 2); fprintf(stream, "%*str:\n", indent, ""); segment_dump(stream, &sregs->tr, indent + 2); fprintf(stream, "%*sldt:\n", indent, ""); segment_dump(stream, &sregs->ldt, indent + 2); fprintf(stream, "%*sgdt:\n", indent, ""); dtable_dump(stream, &sregs->gdt, indent + 2); fprintf(stream, "%*sidt:\n", indent, ""); dtable_dump(stream, &sregs->idt, indent + 2); fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx " "cr3: 0x%.16llx cr4: 0x%.16llx\n", indent, "", sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4); fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx " "apic_base: 0x%.16llx\n", indent, "", sregs->cr8, sregs->efer, sregs->apic_base); fprintf(stream, "%*sinterrupt_bitmap:\n", indent, ""); for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) { fprintf(stream, "%*s%.16llx\n", indent + 2, "", sregs->interrupt_bitmap[i]); } } bool kvm_is_tdp_enabled(void) { if (host_cpu_is_intel) return get_kvm_intel_param_bool("ept"); else return get_kvm_amd_param_bool("npt"); } void virt_arch_pgd_alloc(struct kvm_vm *vm) { TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " "unknown or unsupported guest mode, mode: 0x%x", vm->mode); /* If needed, create page map l4 table. */ if (!vm->pgd_created) { vm->pgd = vm_alloc_page_table(vm); vm->pgd_created = true; } } static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte, uint64_t vaddr, int level) { uint64_t pt_gpa = PTE_GET_PA(*parent_pte); uint64_t *page_table = addr_gpa2hva(vm, pt_gpa); int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu; TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd, "Parent PTE (level %d) not PRESENT for gva: 0x%08lx", level + 1, vaddr); return &page_table[index]; } static uint64_t *virt_create_upper_pte(struct kvm_vm *vm, uint64_t *parent_pte, uint64_t vaddr, uint64_t paddr, int current_level, int target_level) { uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level); paddr = vm_untag_gpa(vm, paddr); if (!(*pte & PTE_PRESENT_MASK)) { *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK; if (current_level == target_level) *pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK); else *pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK; } else { /* * Entry already present. Assert that the caller doesn't want * a hugepage at this level, and that there isn't a hugepage at * this level. */ TEST_ASSERT(current_level != target_level, "Cannot create hugepage at level: %u, vaddr: 0x%lx", current_level, vaddr); TEST_ASSERT(!(*pte & PTE_LARGE_MASK), "Cannot create page table at level: %u, vaddr: 0x%lx", current_level, vaddr); } return pte; } void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level) { const uint64_t pg_size = PG_LEVEL_SIZE(level); uint64_t *pml4e, *pdpe, *pde; uint64_t *pte; TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Unknown or unsupported guest mode, mode: 0x%x", vm->mode); TEST_ASSERT((vaddr % pg_size) == 0, "Virtual address not aligned,\n" "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size); TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)), "Invalid virtual address, vaddr: 0x%lx", vaddr); TEST_ASSERT((paddr % pg_size) == 0, "Physical address not aligned,\n" " paddr: 0x%lx page size: 0x%lx", paddr, pg_size); TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, "Physical address beyond maximum supported,\n" " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", paddr, vm->max_gfn, vm->page_size); TEST_ASSERT(vm_untag_gpa(vm, paddr) == paddr, "Unexpected bits in paddr: %lx", paddr); /* * Allocate upper level page tables, if not already present. Return * early if a hugepage was created. */ pml4e = virt_create_upper_pte(vm, &vm->pgd, vaddr, paddr, PG_LEVEL_512G, level); if (*pml4e & PTE_LARGE_MASK) return; pdpe = virt_create_upper_pte(vm, pml4e, vaddr, paddr, PG_LEVEL_1G, level); if (*pdpe & PTE_LARGE_MASK) return; pde = virt_create_upper_pte(vm, pdpe, vaddr, paddr, PG_LEVEL_2M, level); if (*pde & PTE_LARGE_MASK) return; /* Fill in page table entry. */ pte = virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K); TEST_ASSERT(!(*pte & PTE_PRESENT_MASK), "PTE already present for 4k page at vaddr: 0x%lx", vaddr); *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK); /* * Neither SEV nor TDX supports shared page tables, so only the final * leaf PTE needs manually set the C/S-bit. */ if (vm_is_gpa_protected(vm, paddr)) *pte |= vm->arch.c_bit; else *pte |= vm->arch.s_bit; } void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) { __virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K); } void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, uint64_t nr_bytes, int level) { uint64_t pg_size = PG_LEVEL_SIZE(level); uint64_t nr_pages = nr_bytes / pg_size; int i; TEST_ASSERT(nr_bytes % pg_size == 0, "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx", nr_bytes, pg_size); for (i = 0; i < nr_pages; i++) { __virt_pg_map(vm, vaddr, paddr, level); vaddr += pg_size; paddr += pg_size; } } static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level) { if (*pte & PTE_LARGE_MASK) { TEST_ASSERT(*level == PG_LEVEL_NONE || *level == current_level, "Unexpected hugepage at level %d", current_level); *level = current_level; } return *level == current_level; } uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr, int *level) { uint64_t *pml4e, *pdpe, *pde; TEST_ASSERT(!vm->arch.is_pt_protected, "Walking page tables of protected guests is impossible"); TEST_ASSERT(*level >= PG_LEVEL_NONE && *level < PG_LEVEL_NUM, "Invalid PG_LEVEL_* '%d'", *level); TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " "unknown or unsupported guest mode, mode: 0x%x", vm->mode); TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)), "Invalid virtual address, vaddr: 0x%lx", vaddr); /* * Based on the mode check above there are 48 bits in the vaddr, so * shift 16 to sign extend the last bit (bit-47), */ TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16), "Canonical check failed. The virtual address is invalid."); pml4e = virt_get_pte(vm, &vm->pgd, vaddr, PG_LEVEL_512G); if (vm_is_target_pte(pml4e, level, PG_LEVEL_512G)) return pml4e; pdpe = virt_get_pte(vm, pml4e, vaddr, PG_LEVEL_1G); if (vm_is_target_pte(pdpe, level, PG_LEVEL_1G)) return pdpe; pde = virt_get_pte(vm, pdpe, vaddr, PG_LEVEL_2M); if (vm_is_target_pte(pde, level, PG_LEVEL_2M)) return pde; return virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K); } uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr) { int level = PG_LEVEL_4K; return __vm_get_page_table_entry(vm, vaddr, &level); } void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) { uint64_t *pml4e, *pml4e_start; uint64_t *pdpe, *pdpe_start; uint64_t *pde, *pde_start; uint64_t *pte, *pte_start; if (!vm->pgd_created) return; fprintf(stream, "%*s " " no\n", indent, ""); fprintf(stream, "%*s index hvaddr gpaddr " "addr w exec dirty\n", indent, ""); pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd); for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) { pml4e = &pml4e_start[n1]; if (!(*pml4e & PTE_PRESENT_MASK)) continue; fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u " " %u\n", indent, "", pml4e - pml4e_start, pml4e, addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e), !!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK)); pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK); for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) { pdpe = &pdpe_start[n2]; if (!(*pdpe & PTE_PRESENT_MASK)) continue; fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10llx " "%u %u\n", indent, "", pdpe - pdpe_start, pdpe, addr_hva2gpa(vm, pdpe), PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK), !!(*pdpe & PTE_NX_MASK)); pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK); for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) { pde = &pde_start[n3]; if (!(*pde & PTE_PRESENT_MASK)) continue; fprintf(stream, "%*spde 0x%-3zx %p " "0x%-12lx 0x%-10llx %u %u\n", indent, "", pde - pde_start, pde, addr_hva2gpa(vm, pde), PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK), !!(*pde & PTE_NX_MASK)); pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK); for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) { pte = &pte_start[n4]; if (!(*pte & PTE_PRESENT_MASK)) continue; fprintf(stream, "%*spte 0x%-3zx %p " "0x%-12lx 0x%-10llx %u %u " " %u 0x%-10lx\n", indent, "", pte - pte_start, pte, addr_hva2gpa(vm, pte), PTE_GET_PFN(*pte), !!(*pte & PTE_WRITABLE_MASK), !!(*pte & PTE_NX_MASK), !!(*pte & PTE_DIRTY_MASK), ((uint64_t) n1 << 27) | ((uint64_t) n2 << 18) | ((uint64_t) n3 << 9) | ((uint64_t) n4)); } } } } } /* * Set Unusable Segment * * Input Args: None * * Output Args: * segp - Pointer to segment register * * Return: None * * Sets the segment register pointed to by @segp to an unusable state. */ static void kvm_seg_set_unusable(struct kvm_segment *segp) { memset(segp, 0, sizeof(*segp)); segp->unusable = true; } static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp) { void *gdt = addr_gva2hva(vm, vm->gdt); struct desc64 *desc = gdt + (segp->selector >> 3) * 8; desc->limit0 = segp->limit & 0xFFFF; desc->base0 = segp->base & 0xFFFF; desc->base1 = segp->base >> 16; desc->type = segp->type; desc->s = segp->s; desc->dpl = segp->dpl; desc->p = segp->present; desc->limit1 = segp->limit >> 16; desc->avl = segp->avl; desc->l = segp->l; desc->db = segp->db; desc->g = segp->g; desc->base2 = segp->base >> 24; if (!segp->s) desc->base3 = segp->base >> 32; } /* * Set Long Mode Flat Kernel Code Segment * * Input Args: * vm - VM whose GDT is being filled, or NULL to only write segp * selector - selector value * * Output Args: * segp - Pointer to KVM segment * * Return: None * * Sets up the KVM segment pointed to by @segp, to be a code segment * with the selector value given by @selector. */ static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector, struct kvm_segment *segp) { memset(segp, 0, sizeof(*segp)); segp->selector = selector; segp->limit = 0xFFFFFFFFu; segp->s = 0x1; /* kTypeCodeData */ segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed * | kFlagCodeReadable */ segp->g = true; segp->l = true; segp->present = 1; if (vm) kvm_seg_fill_gdt_64bit(vm, segp); } /* * Set Long Mode Flat Kernel Data Segment * * Input Args: * vm - VM whose GDT is being filled, or NULL to only write segp * selector - selector value * * Output Args: * segp - Pointer to KVM segment * * Return: None * * Sets up the KVM segment pointed to by @segp, to be a data segment * with the selector value given by @selector. */ static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector, struct kvm_segment *segp) { memset(segp, 0, sizeof(*segp)); segp->selector = selector; segp->limit = 0xFFFFFFFFu; segp->s = 0x1; /* kTypeCodeData */ segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed * | kFlagDataWritable */ segp->g = true; segp->present = true; if (vm) kvm_seg_fill_gdt_64bit(vm, segp); } vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) { int level = PG_LEVEL_NONE; uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level); TEST_ASSERT(*pte & PTE_PRESENT_MASK, "Leaf PTE not PRESENT for gva: 0x%08lx", gva); /* * No need for a hugepage mask on the PTE, x86-64 requires the "unused" * address bits to be zero. */ return vm_untag_gpa(vm, PTE_GET_PA(*pte)) | (gva & ~HUGEPAGE_MASK(level)); } static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt) { if (!vm->gdt) vm->gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); dt->base = vm->gdt; dt->limit = getpagesize(); } static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp, int selector) { if (!vm->tss) vm->tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); memset(segp, 0, sizeof(*segp)); segp->base = vm->tss; segp->limit = 0x67; segp->selector = selector; segp->type = 0xb; segp->present = 1; kvm_seg_fill_gdt_64bit(vm, segp); } static void vcpu_setup(struct kvm_vm *vm, struct kvm_vcpu *vcpu) { struct kvm_sregs sregs; /* Set mode specific system register values. */ vcpu_sregs_get(vcpu, &sregs); sregs.idt.limit = 0; kvm_setup_gdt(vm, &sregs.gdt); switch (vm->mode) { case VM_MODE_PXXV48_4K: sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG; sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR; sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX); kvm_seg_set_unusable(&sregs.ldt); kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs); kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds); kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es); kvm_setup_tss_64bit(vm, &sregs.tr, 0x18); break; default: TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode); } sregs.cr3 = vm->pgd; vcpu_sregs_set(vcpu, &sregs); } void kvm_arch_vm_post_create(struct kvm_vm *vm) { vm_create_irqchip(vm); sync_global_to_guest(vm, host_cpu_is_intel); sync_global_to_guest(vm, host_cpu_is_amd); if (vm->subtype == VM_SUBTYPE_SEV) sev_vm_init(vm); else if (vm->subtype == VM_SUBTYPE_SEV_ES) sev_es_vm_init(vm); } void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code) { struct kvm_regs regs; vcpu_regs_get(vcpu, ®s); regs.rip = (unsigned long) guest_code; vcpu_regs_set(vcpu, ®s); } struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id) { struct kvm_mp_state mp_state; struct kvm_regs regs; vm_vaddr_t stack_vaddr; struct kvm_vcpu *vcpu; stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(), DEFAULT_GUEST_STACK_VADDR_MIN, MEM_REGION_DATA); stack_vaddr += DEFAULT_STACK_PGS * getpagesize(); /* * Align stack to match calling sequence requirements in section "The * Stack Frame" of the System V ABI AMD64 Architecture Processor * Supplement, which requires the value (%rsp + 8) to be a multiple of * 16 when control is transferred to the function entry point. * * If this code is ever used to launch a vCPU with 32-bit entry point it * may need to subtract 4 bytes instead of 8 bytes. */ TEST_ASSERT(IS_ALIGNED(stack_vaddr, PAGE_SIZE), "__vm_vaddr_alloc() did not provide a page-aligned address"); stack_vaddr -= 8; vcpu = __vm_vcpu_add(vm, vcpu_id); vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid()); vcpu_setup(vm, vcpu); /* Setup guest general purpose registers */ vcpu_regs_get(vcpu, ®s); regs.rflags = regs.rflags | 0x2; regs.rsp = stack_vaddr; vcpu_regs_set(vcpu, ®s); /* Setup the MP state */ mp_state.mp_state = 0; vcpu_mp_state_set(vcpu, &mp_state); return vcpu; } struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id) { struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id); vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid()); return vcpu; } void vcpu_arch_free(struct kvm_vcpu *vcpu) { if (vcpu->cpuid) free(vcpu->cpuid); } /* Do not use kvm_supported_cpuid directly except for validity checks. */ static void *kvm_supported_cpuid; const struct kvm_cpuid2 *kvm_get_supported_cpuid(void) { int kvm_fd; if (kvm_supported_cpuid) return kvm_supported_cpuid; kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); kvm_fd = open_kvm_dev_path_or_exit(); kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, (struct kvm_cpuid2 *)kvm_supported_cpuid); close(kvm_fd); return kvm_supported_cpuid; } static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid, uint32_t function, uint32_t index, uint8_t reg, uint8_t lo, uint8_t hi) { const struct kvm_cpuid_entry2 *entry; int i; for (i = 0; i < cpuid->nent; i++) { entry = &cpuid->entries[i]; /* * The output registers in kvm_cpuid_entry2 are in alphabetical * order, but kvm_x86_cpu_feature matches that mess, so yay * pointer shenanigans! */ if (entry->function == function && entry->index == index) return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo; } return 0; } bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid, struct kvm_x86_cpu_feature feature) { return __kvm_cpu_has(cpuid, feature.function, feature.index, feature.reg, feature.bit, feature.bit); } uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid, struct kvm_x86_cpu_property property) { return __kvm_cpu_has(cpuid, property.function, property.index, property.reg, property.lo_bit, property.hi_bit); } uint64_t kvm_get_feature_msr(uint64_t msr_index) { struct { struct kvm_msrs header; struct kvm_msr_entry entry; } buffer = {}; int r, kvm_fd; buffer.header.nmsrs = 1; buffer.entry.index = msr_index; kvm_fd = open_kvm_dev_path_or_exit(); r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header); TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r)); close(kvm_fd); return buffer.entry.data; } void __vm_xsave_require_permission(uint64_t xfeature, const char *name) { int kvm_fd; u64 bitmask; long rc; struct kvm_device_attr attr = { .group = 0, .attr = KVM_X86_XCOMP_GUEST_SUPP, .addr = (unsigned long) &bitmask, }; TEST_ASSERT(!kvm_supported_cpuid, "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM"); TEST_ASSERT(is_power_of_2(xfeature), "Dynamic XFeatures must be enabled one at a time"); kvm_fd = open_kvm_dev_path_or_exit(); rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr); close(kvm_fd); if (rc == -1 && (errno == ENXIO || errno == EINVAL)) __TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported"); TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc); __TEST_REQUIRE(bitmask & xfeature, "Required XSAVE feature '%s' not supported", name); TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, ilog2(xfeature))); rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask); TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc); TEST_ASSERT(bitmask & xfeature, "'%s' (0x%lx) not permitted after prctl(ARCH_REQ_XCOMP_GUEST_PERM) permitted=0x%lx", name, xfeature, bitmask); } void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid) { TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID"); /* Allow overriding the default CPUID. */ if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) { free(vcpu->cpuid); vcpu->cpuid = NULL; } if (!vcpu->cpuid) vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent); memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent)); vcpu_set_cpuid(vcpu); } void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu, struct kvm_x86_cpu_property property, uint32_t value) { struct kvm_cpuid_entry2 *entry; entry = __vcpu_get_cpuid_entry(vcpu, property.function, property.index); (&entry->eax)[property.reg] &= ~GENMASK(property.hi_bit, property.lo_bit); (&entry->eax)[property.reg] |= value << property.lo_bit; vcpu_set_cpuid(vcpu); /* Sanity check that @value doesn't exceed the bounds in any way. */ TEST_ASSERT_EQ(kvm_cpuid_property(vcpu->cpuid, property), value); } void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function) { struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function); entry->eax = 0; entry->ebx = 0; entry->ecx = 0; entry->edx = 0; vcpu_set_cpuid(vcpu); } void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu, struct kvm_x86_cpu_feature feature, bool set) { struct kvm_cpuid_entry2 *entry; u32 *reg; entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index); reg = (&entry->eax) + feature.reg; if (set) *reg |= BIT(feature.bit); else *reg &= ~BIT(feature.bit); vcpu_set_cpuid(vcpu); } uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index) { struct { struct kvm_msrs header; struct kvm_msr_entry entry; } buffer = {}; buffer.header.nmsrs = 1; buffer.entry.index = msr_index; vcpu_msrs_get(vcpu, &buffer.header); return buffer.entry.data; } int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value) { struct { struct kvm_msrs header; struct kvm_msr_entry entry; } buffer = {}; memset(&buffer, 0, sizeof(buffer)); buffer.header.nmsrs = 1; buffer.entry.index = msr_index; buffer.entry.data = msr_value; return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header); } void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...) { va_list ap; struct kvm_regs regs; TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n" " num: %u", num); va_start(ap, num); vcpu_regs_get(vcpu, ®s); if (num >= 1) regs.rdi = va_arg(ap, uint64_t); if (num >= 2) regs.rsi = va_arg(ap, uint64_t); if (num >= 3) regs.rdx = va_arg(ap, uint64_t); if (num >= 4) regs.rcx = va_arg(ap, uint64_t); if (num >= 5) regs.r8 = va_arg(ap, uint64_t); if (num >= 6) regs.r9 = va_arg(ap, uint64_t); vcpu_regs_set(vcpu, ®s); va_end(ap); } void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent) { struct kvm_regs regs; struct kvm_sregs sregs; fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id); fprintf(stream, "%*sregs:\n", indent + 2, ""); vcpu_regs_get(vcpu, ®s); regs_dump(stream, ®s, indent + 4); fprintf(stream, "%*ssregs:\n", indent + 2, ""); vcpu_sregs_get(vcpu, &sregs); sregs_dump(stream, &sregs, indent + 4); } static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs) { struct kvm_msr_list *list; struct kvm_msr_list nmsrs; int kvm_fd, r; kvm_fd = open_kvm_dev_path_or_exit(); nmsrs.nmsrs = 0; if (!feature_msrs) r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs); else r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs); TEST_ASSERT(r == -1 && errno == E2BIG, "Expected -E2BIG, got rc: %i errno: %i (%s)", r, errno, strerror(errno)); list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0])); TEST_ASSERT(list, "-ENOMEM when allocating MSR index list"); list->nmsrs = nmsrs.nmsrs; if (!feature_msrs) kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list); else kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list); close(kvm_fd); TEST_ASSERT(list->nmsrs == nmsrs.nmsrs, "Number of MSRs in list changed, was %d, now %d", nmsrs.nmsrs, list->nmsrs); return list; } const struct kvm_msr_list *kvm_get_msr_index_list(void) { static const struct kvm_msr_list *list; if (!list) list = __kvm_get_msr_index_list(false); return list; } const struct kvm_msr_list *kvm_get_feature_msr_index_list(void) { static const struct kvm_msr_list *list; if (!list) list = __kvm_get_msr_index_list(true); return list; } bool kvm_msr_is_in_save_restore_list(uint32_t msr_index) { const struct kvm_msr_list *list = kvm_get_msr_index_list(); int i; for (i = 0; i < list->nmsrs; ++i) { if (list->indices[i] == msr_index) return true; } return false; } static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state) { int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2); if (size) { state->xsave = malloc(size); vcpu_xsave2_get(vcpu, state->xsave); } else { state->xsave = malloc(sizeof(struct kvm_xsave)); vcpu_xsave_get(vcpu, state->xsave); } } struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu) { const struct kvm_msr_list *msr_list = kvm_get_msr_index_list(); struct kvm_x86_state *state; int i; static int nested_size = -1; if (nested_size == -1) { nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE); TEST_ASSERT(nested_size <= sizeof(state->nested_), "Nested state size too big, %i > %zi", nested_size, sizeof(state->nested_)); } /* * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees * guest state is consistent only after userspace re-enters the * kernel with KVM_RUN. Complete IO prior to migrating state * to a new VM. */ vcpu_run_complete_io(vcpu); state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0])); TEST_ASSERT(state, "-ENOMEM when allocating kvm state"); vcpu_events_get(vcpu, &state->events); vcpu_mp_state_get(vcpu, &state->mp_state); vcpu_regs_get(vcpu, &state->regs); vcpu_save_xsave_state(vcpu, state); if (kvm_has_cap(KVM_CAP_XCRS)) vcpu_xcrs_get(vcpu, &state->xcrs); vcpu_sregs_get(vcpu, &state->sregs); if (nested_size) { state->nested.size = sizeof(state->nested_); vcpu_nested_state_get(vcpu, &state->nested); TEST_ASSERT(state->nested.size <= nested_size, "Nested state size too big, %i (KVM_CHECK_CAP gave %i)", state->nested.size, nested_size); } else { state->nested.size = 0; } state->msrs.nmsrs = msr_list->nmsrs; for (i = 0; i < msr_list->nmsrs; i++) state->msrs.entries[i].index = msr_list->indices[i]; vcpu_msrs_get(vcpu, &state->msrs); vcpu_debugregs_get(vcpu, &state->debugregs); return state; } void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state) { vcpu_sregs_set(vcpu, &state->sregs); vcpu_msrs_set(vcpu, &state->msrs); if (kvm_has_cap(KVM_CAP_XCRS)) vcpu_xcrs_set(vcpu, &state->xcrs); vcpu_xsave_set(vcpu, state->xsave); vcpu_events_set(vcpu, &state->events); vcpu_mp_state_set(vcpu, &state->mp_state); vcpu_debugregs_set(vcpu, &state->debugregs); vcpu_regs_set(vcpu, &state->regs); if (state->nested.size) vcpu_nested_state_set(vcpu, &state->nested); } void kvm_x86_state_cleanup(struct kvm_x86_state *state) { free(state->xsave); free(state); } void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits) { if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) { *pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32; *va_bits = 32; } else { *pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR); *va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR); } } void kvm_init_vm_address_properties(struct kvm_vm *vm) { if (vm->subtype == VM_SUBTYPE_SEV || vm->subtype == VM_SUBTYPE_SEV_ES) { vm->arch.c_bit = BIT_ULL(this_cpu_property(X86_PROPERTY_SEV_C_BIT)); vm->gpa_tag_mask = vm->arch.c_bit; } } static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr, int dpl, unsigned short selector) { struct idt_entry *base = (struct idt_entry *)addr_gva2hva(vm, vm->idt); struct idt_entry *e = &base[vector]; memset(e, 0, sizeof(*e)); e->offset0 = addr; e->selector = selector; e->ist = 0; e->type = 14; e->dpl = dpl; e->p = 1; e->offset1 = addr >> 16; e->offset2 = addr >> 32; } static bool kvm_fixup_exception(struct ex_regs *regs) { if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10) return false; if (regs->vector == DE_VECTOR) return false; regs->rip = regs->r11; regs->r9 = regs->vector; regs->r10 = regs->error_code; return true; } void route_exception(struct ex_regs *regs) { typedef void(*handler)(struct ex_regs *); handler *handlers = (handler *)exception_handlers; if (handlers && handlers[regs->vector]) { handlers[regs->vector](regs); return; } if (kvm_fixup_exception(regs)) return; ucall_assert(UCALL_UNHANDLED, "Unhandled exception in guest", __FILE__, __LINE__, "Unhandled exception '0x%lx' at guest RIP '0x%lx'", regs->vector, regs->rip); } void vm_init_descriptor_tables(struct kvm_vm *vm) { extern void *idt_handlers; int i; vm->idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); /* Handlers have the same address in both address spaces.*/ for (i = 0; i < NUM_INTERRUPTS; i++) set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, DEFAULT_CODE_SELECTOR); } void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu) { struct kvm_vm *vm = vcpu->vm; struct kvm_sregs sregs; vcpu_sregs_get(vcpu, &sregs); sregs.idt.base = vm->idt; sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1; sregs.gdt.base = vm->gdt; sregs.gdt.limit = getpagesize() - 1; kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs); vcpu_sregs_set(vcpu, &sregs); *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers; } void vm_install_exception_handler(struct kvm_vm *vm, int vector, void (*handler)(struct ex_regs *)) { vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers); handlers[vector] = (vm_vaddr_t)handler; } void assert_on_unhandled_exception(struct kvm_vcpu *vcpu) { struct ucall uc; if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED) REPORT_GUEST_ASSERT(uc); } const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid, uint32_t function, uint32_t index) { int i; for (i = 0; i < cpuid->nent; i++) { if (cpuid->entries[i].function == function && cpuid->entries[i].index == index) return &cpuid->entries[i]; } TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index); return NULL; } #define X86_HYPERCALL(inputs...) \ ({ \ uint64_t r; \ \ asm volatile("test %[use_vmmcall], %[use_vmmcall]\n\t" \ "jnz 1f\n\t" \ "vmcall\n\t" \ "jmp 2f\n\t" \ "1: vmmcall\n\t" \ "2:" \ : "=a"(r) \ : [use_vmmcall] "r" (host_cpu_is_amd), inputs); \ \ r; \ }) uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, uint64_t a3) { return X86_HYPERCALL("a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3)); } uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1) { return X86_HYPERCALL("a"(nr), "D"(a0), "S"(a1)); } void xen_hypercall(uint64_t nr, uint64_t a0, void *a1) { GUEST_ASSERT(!__xen_hypercall(nr, a0, a1)); } const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void) { static struct kvm_cpuid2 *cpuid; int kvm_fd; if (cpuid) return cpuid; cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); kvm_fd = open_kvm_dev_path_or_exit(); kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid); close(kvm_fd); return cpuid; } void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu) { static struct kvm_cpuid2 *cpuid_full; const struct kvm_cpuid2 *cpuid_sys, *cpuid_hv; int i, nent = 0; if (!cpuid_full) { cpuid_sys = kvm_get_supported_cpuid(); cpuid_hv = kvm_get_supported_hv_cpuid(); cpuid_full = allocate_kvm_cpuid2(cpuid_sys->nent + cpuid_hv->nent); if (!cpuid_full) { perror("malloc"); abort(); } /* Need to skip KVM CPUID leaves 0x400000xx */ for (i = 0; i < cpuid_sys->nent; i++) { if (cpuid_sys->entries[i].function >= 0x40000000 && cpuid_sys->entries[i].function < 0x40000100) continue; cpuid_full->entries[nent] = cpuid_sys->entries[i]; nent++; } memcpy(&cpuid_full->entries[nent], cpuid_hv->entries, cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2)); cpuid_full->nent = nent + cpuid_hv->nent; } vcpu_init_cpuid(vcpu, cpuid_full); } const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu) { struct kvm_cpuid2 *cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); vcpu_ioctl(vcpu, KVM_GET_SUPPORTED_HV_CPUID, cpuid); return cpuid; } unsigned long vm_compute_max_gfn(struct kvm_vm *vm) { const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */ unsigned long ht_gfn, max_gfn, max_pfn; uint8_t maxphyaddr; max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1; /* Avoid reserved HyperTransport region on AMD processors. */ if (!host_cpu_is_amd) return max_gfn; /* On parts with <40 physical address bits, the area is fully hidden */ if (vm->pa_bits < 40) return max_gfn; /* Before family 17h, the HyperTransport area is just below 1T. */ ht_gfn = (1 << 28) - num_ht_pages; if (this_cpu_family() < 0x17) goto done; /* * Otherwise it's at the top of the physical address space, possibly * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use * the old conservative value if MAXPHYADDR is not enumerated. */ if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) goto done; maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR); max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1; if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION)) max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION); ht_gfn = max_pfn - num_ht_pages; done: return min(max_gfn, ht_gfn - 1); } /* Returns true if kvm_intel was loaded with unrestricted_guest=1. */ bool vm_is_unrestricted_guest(struct kvm_vm *vm) { /* Ensure that a KVM vendor-specific module is loaded. */ if (vm == NULL) close(open_kvm_dev_path_or_exit()); return get_kvm_intel_param_bool("unrestricted_guest"); } void kvm_selftest_arch_init(void) { host_cpu_is_intel = this_cpu_is_intel(); host_cpu_is_amd = this_cpu_is_amd(); } bool sys_clocksource_is_based_on_tsc(void) { char *clk_name = sys_get_cur_clocksource(); bool ret = !strcmp(clk_name, "tsc\n") || !strcmp(clk_name, "hyperv_clocksource_tsc_page\n"); free(clk_name); return ret; }