// SPDX-License-Identifier: GPL-2.0 #include #include "cpumap.h" #include "debug.h" #include "event.h" #include #include #include #include #include #include "asm/bug.h" #include #include #include static struct perf_cpu max_cpu_num; static struct perf_cpu max_present_cpu_num; static int max_node_num; /** * The numa node X as read from /sys/devices/system/node/nodeX indexed by the * CPU number. */ static int *cpunode_map; bool perf_record_cpu_map_data__test_bit(int i, const struct perf_record_cpu_map_data *data) { int bit_word32 = i / 32; __u32 bit_mask32 = 1U << (i & 31); int bit_word64 = i / 64; __u64 bit_mask64 = ((__u64)1) << (i & 63); return (data->mask32_data.long_size == 4) ? (bit_word32 < data->mask32_data.nr) && (data->mask32_data.mask[bit_word32] & bit_mask32) != 0 : (bit_word64 < data->mask64_data.nr) && (data->mask64_data.mask[bit_word64] & bit_mask64) != 0; } /* Read ith mask value from data into the given 64-bit sized bitmap */ static void perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data *data, int i, unsigned long *bitmap) { #if __SIZEOF_LONG__ == 8 if (data->mask32_data.long_size == 4) bitmap[0] = data->mask32_data.mask[i]; else bitmap[0] = data->mask64_data.mask[i]; #else if (data->mask32_data.long_size == 4) { bitmap[0] = data->mask32_data.mask[i]; bitmap[1] = 0; } else { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ bitmap[0] = (unsigned long)(data->mask64_data.mask[i] >> 32); bitmap[1] = (unsigned long)data->mask64_data.mask[i]; #else bitmap[0] = (unsigned long)data->mask64_data.mask[i]; bitmap[1] = (unsigned long)(data->mask64_data.mask[i] >> 32); #endif } #endif } static struct perf_cpu_map *cpu_map__from_entries(const struct perf_record_cpu_map_data *data) { struct perf_cpu_map *map; map = perf_cpu_map__empty_new(data->cpus_data.nr); if (map) { unsigned i; for (i = 0; i < data->cpus_data.nr; i++) { /* * Special treatment for -1, which is not real cpu number, * and we need to use (int) -1 to initialize map[i], * otherwise it would become 65535. */ if (data->cpus_data.cpu[i] == (u16) -1) RC_CHK_ACCESS(map)->map[i].cpu = -1; else RC_CHK_ACCESS(map)->map[i].cpu = (int) data->cpus_data.cpu[i]; } } return map; } static struct perf_cpu_map *cpu_map__from_mask(const struct perf_record_cpu_map_data *data) { DECLARE_BITMAP(local_copy, 64); int weight = 0, mask_nr = data->mask32_data.nr; struct perf_cpu_map *map; for (int i = 0; i < mask_nr; i++) { perf_record_cpu_map_data__read_one_mask(data, i, local_copy); weight += bitmap_weight(local_copy, 64); } map = perf_cpu_map__empty_new(weight); if (!map) return NULL; for (int i = 0, j = 0; i < mask_nr; i++) { int cpus_per_i = (i * data->mask32_data.long_size * BITS_PER_BYTE); int cpu; perf_record_cpu_map_data__read_one_mask(data, i, local_copy); for_each_set_bit(cpu, local_copy, 64) RC_CHK_ACCESS(map)->map[j++].cpu = cpu + cpus_per_i; } return map; } static struct perf_cpu_map *cpu_map__from_range(const struct perf_record_cpu_map_data *data) { struct perf_cpu_map *map; unsigned int i = 0; map = perf_cpu_map__empty_new(data->range_cpu_data.end_cpu - data->range_cpu_data.start_cpu + 1 + data->range_cpu_data.any_cpu); if (!map) return NULL; if (data->range_cpu_data.any_cpu) RC_CHK_ACCESS(map)->map[i++].cpu = -1; for (int cpu = data->range_cpu_data.start_cpu; cpu <= data->range_cpu_data.end_cpu; i++, cpu++) RC_CHK_ACCESS(map)->map[i].cpu = cpu; return map; } struct perf_cpu_map *cpu_map__new_data(const struct perf_record_cpu_map_data *data) { switch (data->type) { case PERF_CPU_MAP__CPUS: return cpu_map__from_entries(data); case PERF_CPU_MAP__MASK: return cpu_map__from_mask(data); case PERF_CPU_MAP__RANGE_CPUS: return cpu_map__from_range(data); default: pr_err("cpu_map__new_data unknown type %d\n", data->type); return NULL; } } size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp) { #define BUFSIZE 1024 char buf[BUFSIZE]; cpu_map__snprint(map, buf, sizeof(buf)); return fprintf(fp, "%s\n", buf); #undef BUFSIZE } struct perf_cpu_map *perf_cpu_map__empty_new(int nr) { struct perf_cpu_map *cpus = perf_cpu_map__alloc(nr); if (cpus != NULL) { for (int i = 0; i < nr; i++) RC_CHK_ACCESS(cpus)->map[i].cpu = -1; } return cpus; } struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr) { struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr); if (cpus != NULL) { int i; cpus->nr = nr; for (i = 0; i < nr; i++) cpus->map[i] = aggr_cpu_id__empty(); refcount_set(&cpus->refcnt, 1); } return cpus; } static int cpu__get_topology_int(int cpu, const char *name, int *value) { char path[PATH_MAX]; snprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/topology/%s", cpu, name); return sysfs__read_int(path, value); } int cpu__get_socket_id(struct perf_cpu cpu) { int value, ret = cpu__get_topology_int(cpu.cpu, "physical_package_id", &value); return ret ?: value; } struct aggr_cpu_id aggr_cpu_id__socket(struct perf_cpu cpu, void *data __maybe_unused) { struct aggr_cpu_id id = aggr_cpu_id__empty(); id.socket = cpu__get_socket_id(cpu); return id; } static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer) { struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer; struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer; if (a->node != b->node) return a->node - b->node; else if (a->socket != b->socket) return a->socket - b->socket; else if (a->die != b->die) return a->die - b->die; else if (a->cluster != b->cluster) return a->cluster - b->cluster; else if (a->cache_lvl != b->cache_lvl) return a->cache_lvl - b->cache_lvl; else if (a->cache != b->cache) return a->cache - b->cache; else if (a->core != b->core) return a->core - b->core; else return a->thread_idx - b->thread_idx; } struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus, aggr_cpu_id_get_t get_id, void *data, bool needs_sort) { int idx; struct perf_cpu cpu; struct cpu_aggr_map *c = cpu_aggr_map__empty_new(perf_cpu_map__nr(cpus)); if (!c) return NULL; /* Reset size as it may only be partially filled */ c->nr = 0; perf_cpu_map__for_each_cpu(cpu, idx, cpus) { bool duplicate = false; struct aggr_cpu_id cpu_id = get_id(cpu, data); for (int j = 0; j < c->nr; j++) { if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) { duplicate = true; break; } } if (!duplicate) { c->map[c->nr] = cpu_id; c->nr++; } } /* Trim. */ if (c->nr != perf_cpu_map__nr(cpus)) { struct cpu_aggr_map *trimmed_c = realloc(c, sizeof(struct cpu_aggr_map) + sizeof(struct aggr_cpu_id) * c->nr); if (trimmed_c) c = trimmed_c; } /* ensure we process id in increasing order */ if (needs_sort) qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp); return c; } int cpu__get_die_id(struct perf_cpu cpu) { int value, ret = cpu__get_topology_int(cpu.cpu, "die_id", &value); return ret ?: value; } struct aggr_cpu_id aggr_cpu_id__die(struct perf_cpu cpu, void *data) { struct aggr_cpu_id id; int die; die = cpu__get_die_id(cpu); /* There is no die_id on legacy system. */ if (die == -1) die = 0; /* * die_id is relative to socket, so start * with the socket ID and then add die to * make a unique ID. */ id = aggr_cpu_id__socket(cpu, data); if (aggr_cpu_id__is_empty(&id)) return id; id.die = die; return id; } int cpu__get_cluster_id(struct perf_cpu cpu) { int value, ret = cpu__get_topology_int(cpu.cpu, "cluster_id", &value); return ret ?: value; } struct aggr_cpu_id aggr_cpu_id__cluster(struct perf_cpu cpu, void *data) { int cluster = cpu__get_cluster_id(cpu); struct aggr_cpu_id id; /* There is no cluster_id on legacy system. */ if (cluster == -1) cluster = 0; id = aggr_cpu_id__die(cpu, data); if (aggr_cpu_id__is_empty(&id)) return id; id.cluster = cluster; return id; } int cpu__get_core_id(struct perf_cpu cpu) { int value, ret = cpu__get_topology_int(cpu.cpu, "core_id", &value); return ret ?: value; } struct aggr_cpu_id aggr_cpu_id__core(struct perf_cpu cpu, void *data) { struct aggr_cpu_id id; int core = cpu__get_core_id(cpu); /* aggr_cpu_id__die returns a struct with socket die, and cluster set. */ id = aggr_cpu_id__cluster(cpu, data); if (aggr_cpu_id__is_empty(&id)) return id; /* * core_id is relative to socket and die, we need a global id. * So we combine the result from cpu_map__get_die with the core id */ id.core = core; return id; } struct aggr_cpu_id aggr_cpu_id__cpu(struct perf_cpu cpu, void *data) { struct aggr_cpu_id id; /* aggr_cpu_id__core returns a struct with socket, die and core set. */ id = aggr_cpu_id__core(cpu, data); if (aggr_cpu_id__is_empty(&id)) return id; id.cpu = cpu; return id; } struct aggr_cpu_id aggr_cpu_id__node(struct perf_cpu cpu, void *data __maybe_unused) { struct aggr_cpu_id id = aggr_cpu_id__empty(); id.node = cpu__get_node(cpu); return id; } struct aggr_cpu_id aggr_cpu_id__global(struct perf_cpu cpu, void *data __maybe_unused) { struct aggr_cpu_id id = aggr_cpu_id__empty(); /* it always aggregates to the cpu 0 */ cpu.cpu = 0; id.cpu = cpu; return id; } /* setup simple routines to easily access node numbers given a cpu number */ static int get_max_num(char *path, int *max) { size_t num; char *buf; int err = 0; if (filename__read_str(path, &buf, &num)) return -1; buf[num] = '\0'; /* start on the right, to find highest node num */ while (--num) { if ((buf[num] == ',') || (buf[num] == '-')) { num++; break; } } if (sscanf(&buf[num], "%d", max) < 1) { err = -1; goto out; } /* convert from 0-based to 1-based */ (*max)++; out: free(buf); return err; } /* Determine highest possible cpu in the system for sparse allocation */ static void set_max_cpu_num(void) { const char *mnt; char path[PATH_MAX]; int ret = -1; /* set up default */ max_cpu_num.cpu = 4096; max_present_cpu_num.cpu = 4096; mnt = sysfs__mountpoint(); if (!mnt) goto out; /* get the highest possible cpu number for a sparse allocation */ ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt); if (ret >= PATH_MAX) { pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); goto out; } ret = get_max_num(path, &max_cpu_num.cpu); if (ret) goto out; /* get the highest present cpu number for a sparse allocation */ ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt); if (ret >= PATH_MAX) { pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); goto out; } ret = get_max_num(path, &max_present_cpu_num.cpu); out: if (ret) pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num.cpu); } /* Determine highest possible node in the system for sparse allocation */ static void set_max_node_num(void) { const char *mnt; char path[PATH_MAX]; int ret = -1; /* set up default */ max_node_num = 8; mnt = sysfs__mountpoint(); if (!mnt) goto out; /* get the highest possible cpu number for a sparse allocation */ ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt); if (ret >= PATH_MAX) { pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); goto out; } ret = get_max_num(path, &max_node_num); out: if (ret) pr_err("Failed to read max nodes, using default of %d\n", max_node_num); } int cpu__max_node(void) { if (unlikely(!max_node_num)) set_max_node_num(); return max_node_num; } struct perf_cpu cpu__max_cpu(void) { if (unlikely(!max_cpu_num.cpu)) set_max_cpu_num(); return max_cpu_num; } struct perf_cpu cpu__max_present_cpu(void) { if (unlikely(!max_present_cpu_num.cpu)) set_max_cpu_num(); return max_present_cpu_num; } int cpu__get_node(struct perf_cpu cpu) { if (unlikely(cpunode_map == NULL)) { pr_debug("cpu_map not initialized\n"); return -1; } return cpunode_map[cpu.cpu]; } static int init_cpunode_map(void) { int i; set_max_cpu_num(); set_max_node_num(); cpunode_map = calloc(max_cpu_num.cpu, sizeof(int)); if (!cpunode_map) { pr_err("%s: calloc failed\n", __func__); return -1; } for (i = 0; i < max_cpu_num.cpu; i++) cpunode_map[i] = -1; return 0; } int cpu__setup_cpunode_map(void) { struct dirent *dent1, *dent2; DIR *dir1, *dir2; unsigned int cpu, mem; char buf[PATH_MAX]; char path[PATH_MAX]; const char *mnt; int n; /* initialize globals */ if (init_cpunode_map()) return -1; mnt = sysfs__mountpoint(); if (!mnt) return 0; n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt); if (n >= PATH_MAX) { pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); return -1; } dir1 = opendir(path); if (!dir1) return 0; /* walk tree and setup map */ while ((dent1 = readdir(dir1)) != NULL) { if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1) continue; n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name); if (n >= PATH_MAX) { pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); continue; } dir2 = opendir(buf); if (!dir2) continue; while ((dent2 = readdir(dir2)) != NULL) { if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1) continue; cpunode_map[cpu] = mem; } closedir(dir2); } closedir(dir1); return 0; } size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size) { int i, start = -1; bool first = true; size_t ret = 0; #define COMMA first ? "" : "," for (i = 0; i < perf_cpu_map__nr(map) + 1; i++) { struct perf_cpu cpu = { .cpu = INT_MAX }; bool last = i == perf_cpu_map__nr(map); if (!last) cpu = perf_cpu_map__cpu(map, i); if (start == -1) { start = i; if (last) { ret += snprintf(buf + ret, size - ret, "%s%d", COMMA, perf_cpu_map__cpu(map, i).cpu); } } else if (((i - start) != (cpu.cpu - perf_cpu_map__cpu(map, start).cpu)) || last) { int end = i - 1; if (start == end) { ret += snprintf(buf + ret, size - ret, "%s%d", COMMA, perf_cpu_map__cpu(map, start).cpu); } else { ret += snprintf(buf + ret, size - ret, "%s%d-%d", COMMA, perf_cpu_map__cpu(map, start).cpu, perf_cpu_map__cpu(map, end).cpu); } first = false; start = i; } } #undef COMMA pr_debug2("cpumask list: %s\n", buf); return ret; } static char hex_char(unsigned char val) { if (val < 10) return val + '0'; if (val < 16) return val - 10 + 'a'; return '?'; } size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size) { int i, cpu; char *ptr = buf; unsigned char *bitmap; struct perf_cpu last_cpu = perf_cpu_map__cpu(map, perf_cpu_map__nr(map) - 1); if (buf == NULL) return 0; bitmap = zalloc(last_cpu.cpu / 8 + 1); if (bitmap == NULL) { buf[0] = '\0'; return 0; } for (i = 0; i < perf_cpu_map__nr(map); i++) { cpu = perf_cpu_map__cpu(map, i).cpu; bitmap[cpu / 8] |= 1 << (cpu % 8); } for (cpu = last_cpu.cpu / 4 * 4; cpu >= 0; cpu -= 4) { unsigned char bits = bitmap[cpu / 8]; if (cpu % 8) bits >>= 4; else bits &= 0xf; *ptr++ = hex_char(bits); if ((cpu % 32) == 0 && cpu > 0) *ptr++ = ','; } *ptr = '\0'; free(bitmap); buf[size - 1] = '\0'; return ptr - buf; } struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */ { static struct perf_cpu_map *online; if (!online) online = perf_cpu_map__new_online_cpus(); /* from /sys/devices/system/cpu/online */ return online; } bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b) { return a->thread_idx == b->thread_idx && a->node == b->node && a->socket == b->socket && a->die == b->die && a->cluster == b->cluster && a->cache_lvl == b->cache_lvl && a->cache == b->cache && a->core == b->core && a->cpu.cpu == b->cpu.cpu; } bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a) { return a->thread_idx == -1 && a->node == -1 && a->socket == -1 && a->die == -1 && a->cluster == -1 && a->cache_lvl == -1 && a->cache == -1 && a->core == -1 && a->cpu.cpu == -1; } struct aggr_cpu_id aggr_cpu_id__empty(void) { struct aggr_cpu_id ret = { .thread_idx = -1, .node = -1, .socket = -1, .die = -1, .cluster = -1, .cache_lvl = -1, .cache = -1, .core = -1, .cpu = (struct perf_cpu){ .cpu = -1 }, }; return ret; }