// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) by Jaroslav Kysela * Lee Revell * James Courtier-Dutton * Oswald Buddenhagen * Creative Labs, Inc. * * Routines for control of EMU10K1 chips / proc interface routines */ #include #include #include #include #include "p16v.h" static void snd_emu10k1_proc_spdif_status(struct snd_emu10k1 * emu, struct snd_info_buffer *buffer, char *title, int status_reg, int rate_reg) { static const char * const clkaccy[4] = { "1000ppm", "50ppm", "variable", "unknown" }; static const int samplerate[16] = { 44100, 1, 48000, 32000, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; static const char * const channel[16] = { "unspec", "left", "right", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15" }; static const char * const emphasis[8] = { "none", "50/15 usec 2 channel", "2", "3", "4", "5", "6", "7" }; unsigned int status, rate = 0; status = snd_emu10k1_ptr_read(emu, status_reg, 0); snd_iprintf(buffer, "\n%s\n", title); if (status != 0xffffffff) { snd_iprintf(buffer, "Professional Mode : %s\n", (status & SPCS_PROFESSIONAL) ? "yes" : "no"); snd_iprintf(buffer, "Not Audio Data : %s\n", (status & SPCS_NOTAUDIODATA) ? "yes" : "no"); snd_iprintf(buffer, "Copyright : %s\n", (status & SPCS_COPYRIGHT) ? "yes" : "no"); snd_iprintf(buffer, "Emphasis : %s\n", emphasis[(status & SPCS_EMPHASISMASK) >> 3]); snd_iprintf(buffer, "Mode : %i\n", (status & SPCS_MODEMASK) >> 6); snd_iprintf(buffer, "Category Code : 0x%x\n", (status & SPCS_CATEGORYCODEMASK) >> 8); snd_iprintf(buffer, "Generation Status : %s\n", status & SPCS_GENERATIONSTATUS ? "original" : "copy"); snd_iprintf(buffer, "Source Mask : %i\n", (status & SPCS_SOURCENUMMASK) >> 16); snd_iprintf(buffer, "Channel Number : %s\n", channel[(status & SPCS_CHANNELNUMMASK) >> 20]); snd_iprintf(buffer, "Sample Rate : %iHz\n", samplerate[(status & SPCS_SAMPLERATEMASK) >> 24]); snd_iprintf(buffer, "Clock Accuracy : %s\n", clkaccy[(status & SPCS_CLKACCYMASK) >> 28]); if (rate_reg > 0) { rate = snd_emu10k1_ptr_read(emu, rate_reg, 0); snd_iprintf(buffer, "S/PDIF Valid : %s\n", rate & SRCS_SPDIFVALID ? "on" : "off"); snd_iprintf(buffer, "S/PDIF Locked : %s\n", rate & SRCS_SPDIFLOCKED ? "on" : "off"); snd_iprintf(buffer, "Rate Locked : %s\n", rate & SRCS_RATELOCKED ? "on" : "off"); /* From ((Rate * 48000 ) / 262144); */ snd_iprintf(buffer, "Estimated Sample Rate : %d\n", ((rate & 0xFFFFF ) * 375) >> 11); } } else { snd_iprintf(buffer, "No signal detected.\n"); } } static void snd_emu10k1_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_emu10k1 *emu = entry->private_data; const char * const *inputs = emu->audigy ? snd_emu10k1_audigy_ins : snd_emu10k1_sblive_ins; const char * const *outputs = emu->audigy ? snd_emu10k1_audigy_outs : snd_emu10k1_sblive_outs; unsigned short extin_mask = emu->audigy ? ~0 : emu->fx8010.extin_mask; unsigned short extout_mask = emu->audigy ? ~0 : emu->fx8010.extout_mask; unsigned int val, val1, ptrx, psst, dsl, snda; int nefx = emu->audigy ? 32 : 16; int idx; snd_iprintf(buffer, "EMU10K1\n\n"); snd_iprintf(buffer, "Card : %s\n", emu->card_capabilities->emu_model ? "E-MU D.A.S." : emu->card_capabilities->ecard ? "E-MU A.P.S." : emu->audigy ? "SB Audigy" : "SB Live!"); snd_iprintf(buffer, "Internal TRAM (words) : 0x%x\n", emu->fx8010.itram_size); snd_iprintf(buffer, "External TRAM (words) : 0x%x\n", (int)emu->fx8010.etram_pages.bytes / 2); snd_iprintf(buffer, "\nEffect Send Routing & Amounts:\n"); for (idx = 0; idx < NUM_G; idx++) { ptrx = snd_emu10k1_ptr_read(emu, PTRX, idx); psst = snd_emu10k1_ptr_read(emu, PSST, idx); dsl = snd_emu10k1_ptr_read(emu, DSL, idx); if (emu->audigy) { val = snd_emu10k1_ptr_read(emu, A_FXRT1, idx); val1 = snd_emu10k1_ptr_read(emu, A_FXRT2, idx); snda = snd_emu10k1_ptr_read(emu, A_SENDAMOUNTS, idx); snd_iprintf(buffer, "Ch%-2i: A=%2i:%02x, B=%2i:%02x, C=%2i:%02x, D=%2i:%02x, ", idx, val & 0x3f, REG_VAL_GET(PTRX_FXSENDAMOUNT_A, ptrx), (val >> 8) & 0x3f, REG_VAL_GET(PTRX_FXSENDAMOUNT_B, ptrx), (val >> 16) & 0x3f, REG_VAL_GET(PSST_FXSENDAMOUNT_C, psst), (val >> 24) & 0x3f, REG_VAL_GET(DSL_FXSENDAMOUNT_D, dsl)); snd_iprintf(buffer, "E=%2i:%02x, F=%2i:%02x, G=%2i:%02x, H=%2i:%02x\n", val1 & 0x3f, (snda >> 24) & 0xff, (val1 >> 8) & 0x3f, (snda >> 16) & 0xff, (val1 >> 16) & 0x3f, (snda >> 8) & 0xff, (val1 >> 24) & 0x3f, snda & 0xff); } else { val = snd_emu10k1_ptr_read(emu, FXRT, idx); snd_iprintf(buffer, "Ch%-2i: A=%2i:%02x, B=%2i:%02x, C=%2i:%02x, D=%2i:%02x\n", idx, (val >> 16) & 0x0f, REG_VAL_GET(PTRX_FXSENDAMOUNT_A, ptrx), (val >> 20) & 0x0f, REG_VAL_GET(PTRX_FXSENDAMOUNT_B, ptrx), (val >> 24) & 0x0f, REG_VAL_GET(PSST_FXSENDAMOUNT_C, psst), (val >> 28) & 0x0f, REG_VAL_GET(DSL_FXSENDAMOUNT_D, dsl)); } } snd_iprintf(buffer, "\nEffect Send Targets:\n"); // Audigy actually has 64, but we don't use them all. for (idx = 0; idx < 32; idx++) { const char *c = snd_emu10k1_fxbus[idx]; if (c) snd_iprintf(buffer, " Channel %02i [%s]\n", idx, c); } if (!emu->card_capabilities->emu_model) { snd_iprintf(buffer, "\nOutput Channels:\n"); for (idx = 0; idx < 32; idx++) if (outputs[idx] && (extout_mask & (1 << idx))) snd_iprintf(buffer, " Channel %02i [%s]\n", idx, outputs[idx]); snd_iprintf(buffer, "\nInput Channels:\n"); for (idx = 0; idx < 16; idx++) if (inputs[idx] && (extin_mask & (1 << idx))) snd_iprintf(buffer, " Channel %02i [%s]\n", idx, inputs[idx]); snd_iprintf(buffer, "\nMultichannel Capture Sources:\n"); for (idx = 0; idx < nefx; idx++) if (emu->efx_voices_mask[0] & (1 << idx)) snd_iprintf(buffer, " Channel %02i [Output: %s]\n", idx, outputs[idx] ? outputs[idx] : "???"); if (emu->audigy) { for (idx = 0; idx < 32; idx++) if (emu->efx_voices_mask[1] & (1 << idx)) snd_iprintf(buffer, " Channel %02i [Input: %s]\n", idx + 32, inputs[idx] ? inputs[idx] : "???"); } else { for (idx = 0; idx < 16; idx++) { if (emu->efx_voices_mask[0] & ((1 << 16) << idx)) { if (emu->card_capabilities->sblive51) { s8 c = snd_emu10k1_sblive51_fxbus2_map[idx]; if (c == -1) snd_iprintf(buffer, " Channel %02i [Output: %s]\n", idx + 16, outputs[idx + 16]); else snd_iprintf(buffer, " Channel %02i [Input: %s]\n", idx + 16, inputs[c]); } else { snd_iprintf(buffer, " Channel %02i [Input: %s]\n", idx + 16, inputs[idx] ? inputs[idx] : "???"); } } } } } } static void snd_emu10k1_proc_spdif_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_emu10k1 *emu = entry->private_data; u32 value; u32 value2; if (emu->card_capabilities->emu_model) { snd_emu1010_fpga_lock(emu); // This represents the S/PDIF lock status on 0404b, which is // kinda weird and unhelpful, because monitoring it via IRQ is // impractical (one gets an IRQ flood as long as it is desynced). snd_emu1010_fpga_read(emu, EMU_HANA_IRQ_STATUS, &value); snd_iprintf(buffer, "Lock status 1: %#x\n", value & 0x10); // Bit 0x1 in LO being 0 is supposedly for ADAT lock. // The registers are always all zero on 0404b. snd_emu1010_fpga_read(emu, EMU_HANA_LOCK_STS_LO, &value); snd_emu1010_fpga_read(emu, EMU_HANA_LOCK_STS_HI, &value2); snd_iprintf(buffer, "Lock status 2: %#x %#x\n", value, value2); snd_iprintf(buffer, "S/PDIF rate: %dHz\n", snd_emu1010_get_raw_rate(emu, EMU_HANA_WCLOCK_HANA_SPDIF_IN)); if (emu->card_capabilities->emu_model != EMU_MODEL_EMU0404) { snd_iprintf(buffer, "ADAT rate: %dHz\n", snd_emu1010_get_raw_rate(emu, EMU_HANA_WCLOCK_HANA_ADAT_IN)); snd_iprintf(buffer, "Dock rate: %dHz\n", snd_emu1010_get_raw_rate(emu, EMU_HANA_WCLOCK_2ND_HANA)); } if (emu->card_capabilities->emu_model == EMU_MODEL_EMU0404 || emu->card_capabilities->emu_model == EMU_MODEL_EMU1010) snd_iprintf(buffer, "BNC rate: %dHz\n", snd_emu1010_get_raw_rate(emu, EMU_HANA_WCLOCK_SYNC_BNC)); snd_emu1010_fpga_read(emu, EMU_HANA_SPDIF_MODE, &value); if (value & EMU_HANA_SPDIF_MODE_RX_INVALID) snd_iprintf(buffer, "\nS/PDIF input invalid\n"); else snd_iprintf(buffer, "\nS/PDIF mode: %s%s\n", value & EMU_HANA_SPDIF_MODE_RX_PRO ? "professional" : "consumer", value & EMU_HANA_SPDIF_MODE_RX_NOCOPY ? ", no copy" : ""); snd_emu1010_fpga_unlock(emu); } else { snd_emu10k1_proc_spdif_status(emu, buffer, "CD-ROM S/PDIF In", CDCS, CDSRCS); snd_emu10k1_proc_spdif_status(emu, buffer, "Optical or Coax S/PDIF In", GPSCS, GPSRCS); } #if 0 val = snd_emu10k1_ptr_read(emu, ZVSRCS, 0); snd_iprintf(buffer, "\nZoomed Video\n"); snd_iprintf(buffer, "Rate Locked : %s\n", val & SRCS_RATELOCKED ? "on" : "off"); snd_iprintf(buffer, "Estimated Sample Rate : 0x%x\n", val & SRCS_ESTSAMPLERATE); #endif } static void snd_emu10k1_proc_rates_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { static const int samplerate[8] = { 44100, 48000, 96000, 192000, 4, 5, 6, 7 }; struct snd_emu10k1 *emu = entry->private_data; unsigned int val, tmp, n; val = snd_emu10k1_ptr20_read(emu, CAPTURE_RATE_STATUS, 0); for (n = 0; n < 4; n++) { tmp = val >> (16 + (n*4)); if (tmp & 0x8) snd_iprintf(buffer, "Channel %d: Rate=%d\n", n, samplerate[tmp & 0x7]); else snd_iprintf(buffer, "Channel %d: No input\n", n); } } struct emu10k1_reg_entry { unsigned short base, size; const char *name; }; static const struct emu10k1_reg_entry sblive_reg_entries[] = { { 0, 0x10, "FXBUS" }, { 0x10, 0x10, "EXTIN" }, { 0x20, 0x10, "EXTOUT" }, { 0x30, 0x10, "FXBUS2" }, { 0x40, 0x20, NULL }, // Constants { 0x100, 0x100, "GPR" }, { 0x200, 0x80, "ITRAM_DATA" }, { 0x280, 0x20, "ETRAM_DATA" }, { 0x300, 0x80, "ITRAM_ADDR" }, { 0x380, 0x20, "ETRAM_ADDR" }, { 0x400, 0, NULL } }; static const struct emu10k1_reg_entry audigy_reg_entries[] = { { 0, 0x40, "FXBUS" }, { 0x40, 0x10, "EXTIN" }, { 0x50, 0x10, "P16VIN" }, { 0x60, 0x20, "EXTOUT" }, { 0x80, 0x20, "FXBUS2" }, { 0xa0, 0x10, "EMU32OUTH" }, { 0xb0, 0x10, "EMU32OUTL" }, { 0xc0, 0x20, NULL }, // Constants // This can't be quite right - overlap. //{ 0x100, 0xc0, "ITRAM_CTL" }, //{ 0x1c0, 0x40, "ETRAM_CTL" }, { 0x160, 0x20, "A3_EMU32IN" }, { 0x1e0, 0x20, "A3_EMU32OUT" }, { 0x200, 0xc0, "ITRAM_DATA" }, { 0x2c0, 0x40, "ETRAM_DATA" }, { 0x300, 0xc0, "ITRAM_ADDR" }, { 0x3c0, 0x40, "ETRAM_ADDR" }, { 0x400, 0x200, "GPR" }, { 0x600, 0, NULL } }; static const char * const emu10k1_const_entries[] = { "C_00000000", "C_00000001", "C_00000002", "C_00000003", "C_00000004", "C_00000008", "C_00000010", "C_00000020", "C_00000100", "C_00010000", "C_00000800", "C_10000000", "C_20000000", "C_40000000", "C_80000000", "C_7fffffff", "C_ffffffff", "C_fffffffe", "C_c0000000", "C_4f1bbcdc", "C_5a7ef9db", "C_00100000", "GPR_ACCU", "GPR_COND", "GPR_NOISE0", "GPR_NOISE1", "GPR_IRQ", "GPR_DBAC", "GPR_DBACE", "???", }; static int disasm_emu10k1_reg(char *buffer, const struct emu10k1_reg_entry *entries, unsigned reg, const char *pfx) { for (int i = 0; ; i++) { unsigned base = entries[i].base; unsigned size = entries[i].size; if (!size) return sprintf(buffer, "%s0x%03x", pfx, reg); if (reg >= base && reg < base + size) { const char *name = entries[i].name; reg -= base; if (name) return sprintf(buffer, "%s%s(%u)", pfx, name, reg); return sprintf(buffer, "%s%s", pfx, emu10k1_const_entries[reg]); } } } static int disasm_sblive_reg(char *buffer, unsigned reg, const char *pfx) { return disasm_emu10k1_reg(buffer, sblive_reg_entries, reg, pfx); } static int disasm_audigy_reg(char *buffer, unsigned reg, const char *pfx) { return disasm_emu10k1_reg(buffer, audigy_reg_entries, reg, pfx); } static void snd_emu10k1_proc_acode_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { u32 pc; struct snd_emu10k1 *emu = entry->private_data; static const char * const insns[16] = { "MAC0", "MAC1", "MAC2", "MAC3", "MACINT0", "MACINT1", "ACC3", "MACMV", "ANDXOR", "TSTNEG", "LIMITGE", "LIMITLT", "LOG", "EXP", "INTERP", "SKIP", }; static const char spaces[] = " "; const int nspaces = sizeof(spaces) - 1; snd_iprintf(buffer, "FX8010 Instruction List '%s'\n", emu->fx8010.name); snd_iprintf(buffer, " Code dump :\n"); for (pc = 0; pc < (emu->audigy ? 1024 : 512); pc++) { u32 low, high; int len; char buf[100]; char *bufp = buf; low = snd_emu10k1_efx_read(emu, pc * 2); high = snd_emu10k1_efx_read(emu, pc * 2 + 1); if (emu->audigy) { bufp += sprintf(bufp, " %-7s ", insns[(high >> 24) & 0x0f]); bufp += disasm_audigy_reg(bufp, (high >> 12) & 0x7ff, ""); bufp += disasm_audigy_reg(bufp, (high >> 0) & 0x7ff, ", "); bufp += disasm_audigy_reg(bufp, (low >> 12) & 0x7ff, ", "); bufp += disasm_audigy_reg(bufp, (low >> 0) & 0x7ff, ", "); } else { bufp += sprintf(bufp, " %-7s ", insns[(high >> 20) & 0x0f]); bufp += disasm_sblive_reg(bufp, (high >> 10) & 0x3ff, ""); bufp += disasm_sblive_reg(bufp, (high >> 0) & 0x3ff, ", "); bufp += disasm_sblive_reg(bufp, (low >> 10) & 0x3ff, ", "); bufp += disasm_sblive_reg(bufp, (low >> 0) & 0x3ff, ", "); } len = (int)(ptrdiff_t)(bufp - buf); snd_iprintf(buffer, "%s %s /* 0x%04x: 0x%08x%08x */\n", buf, &spaces[nspaces - clamp(65 - len, 0, nspaces)], pc, high, low); } } #define TOTAL_SIZE_GPR (0x100*4) #define A_TOTAL_SIZE_GPR (0x200*4) #define TOTAL_SIZE_TANKMEM_DATA (0xa0*4) #define TOTAL_SIZE_TANKMEM_ADDR (0xa0*4) #define A_TOTAL_SIZE_TANKMEM_DATA (0x100*4) #define A_TOTAL_SIZE_TANKMEM_ADDR (0x100*4) #define TOTAL_SIZE_CODE (0x200*8) #define A_TOTAL_SIZE_CODE (0x400*8) static ssize_t snd_emu10k1_fx8010_read(struct snd_info_entry *entry, void *file_private_data, struct file *file, char __user *buf, size_t count, loff_t pos) { struct snd_emu10k1 *emu = entry->private_data; unsigned int offset; int tram_addr = 0; unsigned int *tmp; long res; unsigned int idx; if (!strcmp(entry->name, "fx8010_tram_addr")) { offset = TANKMEMADDRREGBASE; tram_addr = 1; } else if (!strcmp(entry->name, "fx8010_tram_data")) { offset = TANKMEMDATAREGBASE; } else if (!strcmp(entry->name, "fx8010_code")) { offset = emu->audigy ? A_MICROCODEBASE : MICROCODEBASE; } else { offset = emu->audigy ? A_FXGPREGBASE : FXGPREGBASE; } tmp = kmalloc(count + 8, GFP_KERNEL); if (!tmp) return -ENOMEM; for (idx = 0; idx < ((pos & 3) + count + 3) >> 2; idx++) { unsigned int val; val = snd_emu10k1_ptr_read(emu, offset + idx + (pos >> 2), 0); if (tram_addr && emu->audigy) { val >>= 11; val |= snd_emu10k1_ptr_read(emu, 0x100 + idx + (pos >> 2), 0) << 20; } tmp[idx] = val; } if (copy_to_user(buf, ((char *)tmp) + (pos & 3), count)) res = -EFAULT; else res = count; kfree(tmp); return res; } static void snd_emu10k1_proc_voices_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_emu10k1 *emu = entry->private_data; struct snd_emu10k1_voice *voice; int idx; static const char * const types[] = { "Unused", "EFX", "EFX IRQ", "PCM", "PCM IRQ", "Synth" }; static_assert(ARRAY_SIZE(types) == EMU10K1_NUM_TYPES); snd_iprintf(buffer, "ch\tdirty\tlast\tuse\n"); for (idx = 0; idx < NUM_G; idx++) { voice = &emu->voices[idx]; snd_iprintf(buffer, "%i\t%u\t%u\t%s\n", idx, voice->dirty, voice->last, types[voice->use]); } } #ifdef CONFIG_SND_DEBUG static void snd_emu_proc_emu1010_link_read(struct snd_emu10k1 *emu, struct snd_info_buffer *buffer, u32 dst) { u32 src = snd_emu1010_fpga_link_dst_src_read(emu, dst); snd_iprintf(buffer, "%04x: %04x\n", dst, src); } static void snd_emu_proc_emu1010_reg_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_emu10k1 *emu = entry->private_data; u32 value; int i; snd_emu1010_fpga_lock(emu); snd_iprintf(buffer, "EMU1010 Registers:\n\n"); for(i = 0; i < 0x40; i+=1) { snd_emu1010_fpga_read(emu, i, &value); snd_iprintf(buffer, "%02x: %02x\n", i, value); } snd_iprintf(buffer, "\nEMU1010 Routes:\n\n"); for (i = 0; i < 16; i++) // To Alice2/Tina[2] via EMU32 snd_emu_proc_emu1010_link_read(emu, buffer, i); if (emu->card_capabilities->emu_model != EMU_MODEL_EMU0404) for (i = 0; i < 32; i++) // To Dock via EDI snd_emu_proc_emu1010_link_read(emu, buffer, 0x100 + i); if (emu->card_capabilities->emu_model != EMU_MODEL_EMU1616) for (i = 0; i < 8; i++) // To Hamoa/local snd_emu_proc_emu1010_link_read(emu, buffer, 0x200 + i); for (i = 0; i < 8; i++) // To Hamoa/Mana/local snd_emu_proc_emu1010_link_read(emu, buffer, 0x300 + i); if (emu->card_capabilities->emu_model == EMU_MODEL_EMU1616) { for (i = 0; i < 16; i++) // To Tina2 via EMU32 snd_emu_proc_emu1010_link_read(emu, buffer, 0x400 + i); } else if (emu->card_capabilities->emu_model != EMU_MODEL_EMU0404) { for (i = 0; i < 8; i++) // To Hana ADAT snd_emu_proc_emu1010_link_read(emu, buffer, 0x400 + i); if (emu->card_capabilities->emu_model == EMU_MODEL_EMU1010B) { for (i = 0; i < 16; i++) // To Tina via EMU32 snd_emu_proc_emu1010_link_read(emu, buffer, 0x500 + i); } else { // To Alice2 via I2S snd_emu_proc_emu1010_link_read(emu, buffer, 0x500); snd_emu_proc_emu1010_link_read(emu, buffer, 0x501); snd_emu_proc_emu1010_link_read(emu, buffer, 0x600); snd_emu_proc_emu1010_link_read(emu, buffer, 0x601); snd_emu_proc_emu1010_link_read(emu, buffer, 0x700); snd_emu_proc_emu1010_link_read(emu, buffer, 0x701); } } snd_emu1010_fpga_unlock(emu); } static void snd_emu_proc_io_reg_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_emu10k1 *emu = entry->private_data; unsigned long value; int i; snd_iprintf(buffer, "IO Registers:\n\n"); for(i = 0; i < 0x40; i+=4) { value = inl(emu->port + i); snd_iprintf(buffer, "%02X: %08lX\n", i, value); } } static void snd_emu_proc_io_reg_write(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_emu10k1 *emu = entry->private_data; char line[64]; u32 reg, val; while (!snd_info_get_line(buffer, line, sizeof(line))) { if (sscanf(line, "%x %x", ®, &val) != 2) continue; if (reg < 0x40 && val <= 0xffffffff) { outl(val, emu->port + (reg & 0xfffffffc)); } } } static unsigned int snd_ptr_read(struct snd_emu10k1 * emu, unsigned int iobase, unsigned int reg, unsigned int chn) { unsigned int regptr, val; regptr = (reg << 16) | chn; spin_lock_irq(&emu->emu_lock); outl(regptr, emu->port + iobase + PTR); val = inl(emu->port + iobase + DATA); spin_unlock_irq(&emu->emu_lock); return val; } static void snd_ptr_write(struct snd_emu10k1 *emu, unsigned int iobase, unsigned int reg, unsigned int chn, unsigned int data) { unsigned int regptr; regptr = (reg << 16) | chn; spin_lock_irq(&emu->emu_lock); outl(regptr, emu->port + iobase + PTR); outl(data, emu->port + iobase + DATA); spin_unlock_irq(&emu->emu_lock); } static void snd_emu_proc_ptr_reg_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer, int iobase, int offset, int length, int voices) { struct snd_emu10k1 *emu = entry->private_data; unsigned long value; int i,j; if (offset+length > 0xa0) { snd_iprintf(buffer, "Input values out of range\n"); return; } snd_iprintf(buffer, "Registers 0x%x\n", iobase); for(i = offset; i < offset+length; i++) { snd_iprintf(buffer, "%02X: ",i); for (j = 0; j < voices; j++) { value = snd_ptr_read(emu, iobase, i, j); snd_iprintf(buffer, "%08lX ", value); } snd_iprintf(buffer, "\n"); } } static void snd_emu_proc_ptr_reg_write(struct snd_info_entry *entry, struct snd_info_buffer *buffer, int iobase, int length, int voices) { struct snd_emu10k1 *emu = entry->private_data; char line[64]; unsigned int reg, channel_id , val; while (!snd_info_get_line(buffer, line, sizeof(line))) { if (sscanf(line, "%x %x %x", ®, &channel_id, &val) != 3) continue; if (reg < length && channel_id < voices) snd_ptr_write(emu, iobase, reg, channel_id, val); } } static void snd_emu_proc_ptr_reg_write00(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { snd_emu_proc_ptr_reg_write(entry, buffer, 0, 0x80, 64); } static void snd_emu_proc_ptr_reg_write20(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_emu10k1 *emu = entry->private_data; snd_emu_proc_ptr_reg_write(entry, buffer, 0x20, emu->card_capabilities->ca0108_chip ? 0xa0 : 0x80, 4); } static void snd_emu_proc_ptr_reg_read00a(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { snd_emu_proc_ptr_reg_read(entry, buffer, 0, 0, 0x40, 64); } static void snd_emu_proc_ptr_reg_read00b(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { snd_emu_proc_ptr_reg_read(entry, buffer, 0, 0x40, 0x40, 64); } static void snd_emu_proc_ptr_reg_read20a(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { snd_emu_proc_ptr_reg_read(entry, buffer, 0x20, 0, 0x40, 4); } static void snd_emu_proc_ptr_reg_read20b(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { snd_emu_proc_ptr_reg_read(entry, buffer, 0x20, 0x40, 0x40, 4); } static void snd_emu_proc_ptr_reg_read20c(struct snd_info_entry *entry, struct snd_info_buffer * buffer) { snd_emu_proc_ptr_reg_read(entry, buffer, 0x20, 0x80, 0x20, 4); } #endif static const struct snd_info_entry_ops snd_emu10k1_proc_ops_fx8010 = { .read = snd_emu10k1_fx8010_read, }; int snd_emu10k1_proc_init(struct snd_emu10k1 *emu) { struct snd_info_entry *entry; #ifdef CONFIG_SND_DEBUG if (emu->card_capabilities->emu_model) { snd_card_ro_proc_new(emu->card, "emu1010_regs", emu, snd_emu_proc_emu1010_reg_read); } snd_card_rw_proc_new(emu->card, "io_regs", emu, snd_emu_proc_io_reg_read, snd_emu_proc_io_reg_write); snd_card_rw_proc_new(emu->card, "ptr_regs00a", emu, snd_emu_proc_ptr_reg_read00a, snd_emu_proc_ptr_reg_write00); snd_card_rw_proc_new(emu->card, "ptr_regs00b", emu, snd_emu_proc_ptr_reg_read00b, snd_emu_proc_ptr_reg_write00); if (!emu->card_capabilities->emu_model && (emu->card_capabilities->ca0151_chip || emu->card_capabilities->ca0108_chip)) { snd_card_rw_proc_new(emu->card, "ptr_regs20a", emu, snd_emu_proc_ptr_reg_read20a, snd_emu_proc_ptr_reg_write20); snd_card_rw_proc_new(emu->card, "ptr_regs20b", emu, snd_emu_proc_ptr_reg_read20b, snd_emu_proc_ptr_reg_write20); if (emu->card_capabilities->ca0108_chip) snd_card_rw_proc_new(emu->card, "ptr_regs20c", emu, snd_emu_proc_ptr_reg_read20c, snd_emu_proc_ptr_reg_write20); } #endif snd_card_ro_proc_new(emu->card, "emu10k1", emu, snd_emu10k1_proc_read); if (emu->card_capabilities->emu10k2_chip) snd_card_ro_proc_new(emu->card, "spdif-in", emu, snd_emu10k1_proc_spdif_read); if (emu->card_capabilities->ca0151_chip) snd_card_ro_proc_new(emu->card, "capture-rates", emu, snd_emu10k1_proc_rates_read); snd_card_ro_proc_new(emu->card, "voices", emu, snd_emu10k1_proc_voices_read); if (! snd_card_proc_new(emu->card, "fx8010_gpr", &entry)) { entry->content = SNDRV_INFO_CONTENT_DATA; entry->private_data = emu; entry->mode = S_IFREG | 0444 /*| S_IWUSR*/; entry->size = emu->audigy ? A_TOTAL_SIZE_GPR : TOTAL_SIZE_GPR; entry->c.ops = &snd_emu10k1_proc_ops_fx8010; } if (! snd_card_proc_new(emu->card, "fx8010_tram_data", &entry)) { entry->content = SNDRV_INFO_CONTENT_DATA; entry->private_data = emu; entry->mode = S_IFREG | 0444 /*| S_IWUSR*/; entry->size = emu->audigy ? A_TOTAL_SIZE_TANKMEM_DATA : TOTAL_SIZE_TANKMEM_DATA ; entry->c.ops = &snd_emu10k1_proc_ops_fx8010; } if (! snd_card_proc_new(emu->card, "fx8010_tram_addr", &entry)) { entry->content = SNDRV_INFO_CONTENT_DATA; entry->private_data = emu; entry->mode = S_IFREG | 0444 /*| S_IWUSR*/; entry->size = emu->audigy ? A_TOTAL_SIZE_TANKMEM_ADDR : TOTAL_SIZE_TANKMEM_ADDR ; entry->c.ops = &snd_emu10k1_proc_ops_fx8010; } if (! snd_card_proc_new(emu->card, "fx8010_code", &entry)) { entry->content = SNDRV_INFO_CONTENT_DATA; entry->private_data = emu; entry->mode = S_IFREG | 0444 /*| S_IWUSR*/; entry->size = emu->audigy ? A_TOTAL_SIZE_CODE : TOTAL_SIZE_CODE; entry->c.ops = &snd_emu10k1_proc_ops_fx8010; } snd_card_ro_proc_new(emu->card, "fx8010_acode", emu, snd_emu10k1_proc_acode_read); return 0; }