// SPDX-License-Identifier: GPL-2.0 /* * KMSAN initialization routines. * * Copyright (C) 2017-2021 Google LLC * Author: Alexander Potapenko * */ #include "kmsan.h" #include #include #include #include "../internal.h" #define NUM_FUTURE_RANGES 128 struct start_end_pair { u64 start, end; }; static struct start_end_pair start_end_pairs[NUM_FUTURE_RANGES] __initdata; static int future_index __initdata; /* * Record a range of memory for which the metadata pages will be created once * the page allocator becomes available. */ static void __init kmsan_record_future_shadow_range(void *start, void *end) { u64 nstart = (u64)start, nend = (u64)end, cstart, cend; bool merged = false; KMSAN_WARN_ON(future_index == NUM_FUTURE_RANGES); KMSAN_WARN_ON((nstart >= nend) || !nstart || !nend); nstart = ALIGN_DOWN(nstart, PAGE_SIZE); nend = ALIGN(nend, PAGE_SIZE); /* * Scan the existing ranges to see if any of them overlaps with * [start, end). In that case, merge the two ranges instead of * creating a new one. * The number of ranges is less than 20, so there is no need to organize * them into a more intelligent data structure. */ for (int i = 0; i < future_index; i++) { cstart = start_end_pairs[i].start; cend = start_end_pairs[i].end; if ((cstart < nstart && cend < nstart) || (cstart > nend && cend > nend)) /* ranges are disjoint - do not merge */ continue; start_end_pairs[i].start = min(nstart, cstart); start_end_pairs[i].end = max(nend, cend); merged = true; break; } if (merged) return; start_end_pairs[future_index].start = nstart; start_end_pairs[future_index].end = nend; future_index++; } /* * Initialize the shadow for existing mappings during kernel initialization. * These include kernel text/data sections, NODE_DATA and future ranges * registered while creating other data (e.g. percpu). * * Allocations via memblock can be only done before slab is initialized. */ void __init kmsan_init_shadow(void) { const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE); phys_addr_t p_start, p_end; u64 loop; int nid; for_each_reserved_mem_range(loop, &p_start, &p_end) kmsan_record_future_shadow_range(phys_to_virt(p_start), phys_to_virt(p_end)); /* Allocate shadow for .data */ kmsan_record_future_shadow_range(_sdata, _edata); for_each_online_node(nid) kmsan_record_future_shadow_range( NODE_DATA(nid), (char *)NODE_DATA(nid) + nd_size); for (int i = 0; i < future_index; i++) kmsan_init_alloc_meta_for_range( (void *)start_end_pairs[i].start, (void *)start_end_pairs[i].end); } struct metadata_page_pair { struct page *shadow, *origin; }; static struct metadata_page_pair held_back[NR_PAGE_ORDERS] __initdata; /* * Eager metadata allocation. When the memblock allocator is freeing pages to * pagealloc, we use 2/3 of them as metadata for the remaining 1/3. * We store the pointers to the returned blocks of pages in held_back[] grouped * by their order: when kmsan_memblock_free_pages() is called for the first * time with a certain order, it is reserved as a shadow block, for the second * time - as an origin block. On the third time the incoming block receives its * shadow and origin ranges from the previously saved shadow and origin blocks, * after which held_back[order] can be used again. * * At the very end there may be leftover blocks in held_back[]. They are * collected later by kmsan_memblock_discard(). */ bool kmsan_memblock_free_pages(struct page *page, unsigned int order) { struct page *shadow, *origin; if (!held_back[order].shadow) { held_back[order].shadow = page; return false; } if (!held_back[order].origin) { held_back[order].origin = page; return false; } shadow = held_back[order].shadow; origin = held_back[order].origin; kmsan_setup_meta(page, shadow, origin, order); held_back[order].shadow = NULL; held_back[order].origin = NULL; return true; } #define MAX_BLOCKS 8 struct smallstack { struct page *items[MAX_BLOCKS]; int index; int order; }; static struct smallstack collect = { .index = 0, .order = MAX_PAGE_ORDER, }; static void smallstack_push(struct smallstack *stack, struct page *pages) { KMSAN_WARN_ON(stack->index == MAX_BLOCKS); stack->items[stack->index] = pages; stack->index++; } #undef MAX_BLOCKS static struct page *smallstack_pop(struct smallstack *stack) { struct page *ret; KMSAN_WARN_ON(stack->index == 0); stack->index--; ret = stack->items[stack->index]; stack->items[stack->index] = NULL; return ret; } static void do_collection(void) { struct page *page, *shadow, *origin; while (collect.index >= 3) { page = smallstack_pop(&collect); shadow = smallstack_pop(&collect); origin = smallstack_pop(&collect); kmsan_setup_meta(page, shadow, origin, collect.order); __free_pages_core(page, collect.order); } } static void collect_split(void) { struct smallstack tmp = { .order = collect.order - 1, .index = 0, }; struct page *page; if (!collect.order) return; while (collect.index) { page = smallstack_pop(&collect); smallstack_push(&tmp, &page[0]); smallstack_push(&tmp, &page[1 << tmp.order]); } __memcpy(&collect, &tmp, sizeof(tmp)); } /* * Memblock is about to go away. Split the page blocks left over in held_back[] * and return 1/3 of that memory to the system. */ static void kmsan_memblock_discard(void) { /* * For each order=N: * - push held_back[N].shadow and .origin to @collect; * - while there are >= 3 elements in @collect, do garbage collection: * - pop 3 ranges from @collect; * - use two of them as shadow and origin for the third one; * - repeat; * - split each remaining element from @collect into 2 ranges of * order=N-1, * - repeat. */ collect.order = MAX_PAGE_ORDER; for (int i = MAX_PAGE_ORDER; i >= 0; i--) { if (held_back[i].shadow) smallstack_push(&collect, held_back[i].shadow); if (held_back[i].origin) smallstack_push(&collect, held_back[i].origin); held_back[i].shadow = NULL; held_back[i].origin = NULL; do_collection(); collect_split(); } } void __init kmsan_init_runtime(void) { /* Assuming current is init_task */ kmsan_internal_task_create(current); kmsan_memblock_discard(); pr_info("Starting KernelMemorySanitizer\n"); pr_info("ATTENTION: KMSAN is a debugging tool! Do not use it on production machines!\n"); kmsan_enabled = true; }