/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PAGEMAP_H #define _LINUX_PAGEMAP_H /* * Copyright 1995 Linus Torvalds */ #include #include #include #include #include #include #include #include #include /* for in_interrupt() */ #include struct folio_batch; unsigned long invalidate_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t end); static inline void invalidate_remote_inode(struct inode *inode) { if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) invalidate_mapping_pages(inode->i_mapping, 0, -1); } int invalidate_inode_pages2(struct address_space *mapping); int invalidate_inode_pages2_range(struct address_space *mapping, pgoff_t start, pgoff_t end); int kiocb_invalidate_pages(struct kiocb *iocb, size_t count); void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count); int write_inode_now(struct inode *, int sync); int filemap_fdatawrite(struct address_space *); int filemap_flush(struct address_space *); int filemap_fdatawait_keep_errors(struct address_space *mapping); int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend); int filemap_fdatawait_range_keep_errors(struct address_space *mapping, loff_t start_byte, loff_t end_byte); static inline int filemap_fdatawait(struct address_space *mapping) { return filemap_fdatawait_range(mapping, 0, LLONG_MAX); } bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend); int filemap_write_and_wait_range(struct address_space *mapping, loff_t lstart, loff_t lend); int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, loff_t end, int sync_mode); int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, loff_t end); int filemap_check_errors(struct address_space *mapping); void __filemap_set_wb_err(struct address_space *mapping, int err); int filemap_fdatawrite_wbc(struct address_space *mapping, struct writeback_control *wbc); int kiocb_write_and_wait(struct kiocb *iocb, size_t count); static inline int filemap_write_and_wait(struct address_space *mapping) { return filemap_write_and_wait_range(mapping, 0, LLONG_MAX); } /** * filemap_set_wb_err - set a writeback error on an address_space * @mapping: mapping in which to set writeback error * @err: error to be set in mapping * * When writeback fails in some way, we must record that error so that * userspace can be informed when fsync and the like are called. We endeavor * to report errors on any file that was open at the time of the error. Some * internal callers also need to know when writeback errors have occurred. * * When a writeback error occurs, most filesystems will want to call * filemap_set_wb_err to record the error in the mapping so that it will be * automatically reported whenever fsync is called on the file. */ static inline void filemap_set_wb_err(struct address_space *mapping, int err) { /* Fastpath for common case of no error */ if (unlikely(err)) __filemap_set_wb_err(mapping, err); } /** * filemap_check_wb_err - has an error occurred since the mark was sampled? * @mapping: mapping to check for writeback errors * @since: previously-sampled errseq_t * * Grab the errseq_t value from the mapping, and see if it has changed "since" * the given value was sampled. * * If it has then report the latest error set, otherwise return 0. */ static inline int filemap_check_wb_err(struct address_space *mapping, errseq_t since) { return errseq_check(&mapping->wb_err, since); } /** * filemap_sample_wb_err - sample the current errseq_t to test for later errors * @mapping: mapping to be sampled * * Writeback errors are always reported relative to a particular sample point * in the past. This function provides those sample points. */ static inline errseq_t filemap_sample_wb_err(struct address_space *mapping) { return errseq_sample(&mapping->wb_err); } /** * file_sample_sb_err - sample the current errseq_t to test for later errors * @file: file pointer to be sampled * * Grab the most current superblock-level errseq_t value for the given * struct file. */ static inline errseq_t file_sample_sb_err(struct file *file) { return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err); } /* * Flush file data before changing attributes. Caller must hold any locks * required to prevent further writes to this file until we're done setting * flags. */ static inline int inode_drain_writes(struct inode *inode) { inode_dio_wait(inode); return filemap_write_and_wait(inode->i_mapping); } static inline bool mapping_empty(struct address_space *mapping) { return xa_empty(&mapping->i_pages); } /* * mapping_shrinkable - test if page cache state allows inode reclaim * @mapping: the page cache mapping * * This checks the mapping's cache state for the pupose of inode * reclaim and LRU management. * * The caller is expected to hold the i_lock, but is not required to * hold the i_pages lock, which usually protects cache state. That's * because the i_lock and the list_lru lock that protect the inode and * its LRU state don't nest inside the irq-safe i_pages lock. * * Cache deletions are performed under the i_lock, which ensures that * when an inode goes empty, it will reliably get queued on the LRU. * * Cache additions do not acquire the i_lock and may race with this * check, in which case we'll report the inode as shrinkable when it * has cache pages. This is okay: the shrinker also checks the * refcount and the referenced bit, which will be elevated or set in * the process of adding new cache pages to an inode. */ static inline bool mapping_shrinkable(struct address_space *mapping) { void *head; /* * On highmem systems, there could be lowmem pressure from the * inodes before there is highmem pressure from the page * cache. Make inodes shrinkable regardless of cache state. */ if (IS_ENABLED(CONFIG_HIGHMEM)) return true; /* Cache completely empty? Shrink away. */ head = rcu_access_pointer(mapping->i_pages.xa_head); if (!head) return true; /* * The xarray stores single offset-0 entries directly in the * head pointer, which allows non-resident page cache entries * to escape the shadow shrinker's list of xarray nodes. The * inode shrinker needs to pick them up under memory pressure. */ if (!xa_is_node(head) && xa_is_value(head)) return true; return false; } /* * Bits in mapping->flags. */ enum mapping_flags { AS_EIO = 0, /* IO error on async write */ AS_ENOSPC = 1, /* ENOSPC on async write */ AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ AS_EXITING = 4, /* final truncate in progress */ /* writeback related tags are not used */ AS_NO_WRITEBACK_TAGS = 5, AS_LARGE_FOLIO_SUPPORT = 6, AS_RELEASE_ALWAYS, /* Call ->release_folio(), even if no private data */ AS_STABLE_WRITES, /* must wait for writeback before modifying folio contents */ AS_UNMOVABLE, /* The mapping cannot be moved, ever */ }; /** * mapping_set_error - record a writeback error in the address_space * @mapping: the mapping in which an error should be set * @error: the error to set in the mapping * * When writeback fails in some way, we must record that error so that * userspace can be informed when fsync and the like are called. We endeavor * to report errors on any file that was open at the time of the error. Some * internal callers also need to know when writeback errors have occurred. * * When a writeback error occurs, most filesystems will want to call * mapping_set_error to record the error in the mapping so that it can be * reported when the application calls fsync(2). */ static inline void mapping_set_error(struct address_space *mapping, int error) { if (likely(!error)) return; /* Record in wb_err for checkers using errseq_t based tracking */ __filemap_set_wb_err(mapping, error); /* Record it in superblock */ if (mapping->host) errseq_set(&mapping->host->i_sb->s_wb_err, error); /* Record it in flags for now, for legacy callers */ if (error == -ENOSPC) set_bit(AS_ENOSPC, &mapping->flags); else set_bit(AS_EIO, &mapping->flags); } static inline void mapping_set_unevictable(struct address_space *mapping) { set_bit(AS_UNEVICTABLE, &mapping->flags); } static inline void mapping_clear_unevictable(struct address_space *mapping) { clear_bit(AS_UNEVICTABLE, &mapping->flags); } static inline bool mapping_unevictable(struct address_space *mapping) { return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); } static inline void mapping_set_exiting(struct address_space *mapping) { set_bit(AS_EXITING, &mapping->flags); } static inline int mapping_exiting(struct address_space *mapping) { return test_bit(AS_EXITING, &mapping->flags); } static inline void mapping_set_no_writeback_tags(struct address_space *mapping) { set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); } static inline int mapping_use_writeback_tags(struct address_space *mapping) { return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); } static inline bool mapping_release_always(const struct address_space *mapping) { return test_bit(AS_RELEASE_ALWAYS, &mapping->flags); } static inline void mapping_set_release_always(struct address_space *mapping) { set_bit(AS_RELEASE_ALWAYS, &mapping->flags); } static inline void mapping_clear_release_always(struct address_space *mapping) { clear_bit(AS_RELEASE_ALWAYS, &mapping->flags); } static inline bool mapping_stable_writes(const struct address_space *mapping) { return test_bit(AS_STABLE_WRITES, &mapping->flags); } static inline void mapping_set_stable_writes(struct address_space *mapping) { set_bit(AS_STABLE_WRITES, &mapping->flags); } static inline void mapping_clear_stable_writes(struct address_space *mapping) { clear_bit(AS_STABLE_WRITES, &mapping->flags); } static inline void mapping_set_unmovable(struct address_space *mapping) { /* * It's expected unmovable mappings are also unevictable. Compaction * migrate scanner (isolate_migratepages_block()) relies on this to * reduce page locking. */ set_bit(AS_UNEVICTABLE, &mapping->flags); set_bit(AS_UNMOVABLE, &mapping->flags); } static inline bool mapping_unmovable(struct address_space *mapping) { return test_bit(AS_UNMOVABLE, &mapping->flags); } static inline gfp_t mapping_gfp_mask(struct address_space * mapping) { return mapping->gfp_mask; } /* Restricts the given gfp_mask to what the mapping allows. */ static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, gfp_t gfp_mask) { return mapping_gfp_mask(mapping) & gfp_mask; } /* * This is non-atomic. Only to be used before the mapping is activated. * Probably needs a barrier... */ static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) { m->gfp_mask = mask; } /** * mapping_set_large_folios() - Indicate the file supports large folios. * @mapping: The file. * * The filesystem should call this function in its inode constructor to * indicate that the VFS can use large folios to cache the contents of * the file. * * Context: This should not be called while the inode is active as it * is non-atomic. */ static inline void mapping_set_large_folios(struct address_space *mapping) { __set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags); } /* * Large folio support currently depends on THP. These dependencies are * being worked on but are not yet fixed. */ static inline bool mapping_large_folio_support(struct address_space *mapping) { return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags); } static inline int filemap_nr_thps(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS return atomic_read(&mapping->nr_thps); #else return 0; #endif } static inline void filemap_nr_thps_inc(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS if (!mapping_large_folio_support(mapping)) atomic_inc(&mapping->nr_thps); #else WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); #endif } static inline void filemap_nr_thps_dec(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS if (!mapping_large_folio_support(mapping)) atomic_dec(&mapping->nr_thps); #else WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); #endif } struct address_space *page_mapping(struct page *); struct address_space *folio_mapping(struct folio *); struct address_space *swapcache_mapping(struct folio *); /** * folio_file_mapping - Find the mapping this folio belongs to. * @folio: The folio. * * For folios which are in the page cache, return the mapping that this * page belongs to. Folios in the swap cache return the mapping of the * swap file or swap device where the data is stored. This is different * from the mapping returned by folio_mapping(). The only reason to * use it is if, like NFS, you return 0 from ->activate_swapfile. * * Do not call this for folios which aren't in the page cache or swap cache. */ static inline struct address_space *folio_file_mapping(struct folio *folio) { if (unlikely(folio_test_swapcache(folio))) return swapcache_mapping(folio); return folio->mapping; } /** * folio_flush_mapping - Find the file mapping this folio belongs to. * @folio: The folio. * * For folios which are in the page cache, return the mapping that this * page belongs to. Anonymous folios return NULL, even if they're in * the swap cache. Other kinds of folio also return NULL. * * This is ONLY used by architecture cache flushing code. If you aren't * writing cache flushing code, you want either folio_mapping() or * folio_file_mapping(). */ static inline struct address_space *folio_flush_mapping(struct folio *folio) { if (unlikely(folio_test_swapcache(folio))) return NULL; return folio_mapping(folio); } static inline struct address_space *page_file_mapping(struct page *page) { return folio_file_mapping(page_folio(page)); } /** * folio_inode - Get the host inode for this folio. * @folio: The folio. * * For folios which are in the page cache, return the inode that this folio * belongs to. * * Do not call this for folios which aren't in the page cache. */ static inline struct inode *folio_inode(struct folio *folio) { return folio->mapping->host; } /** * folio_attach_private - Attach private data to a folio. * @folio: Folio to attach data to. * @data: Data to attach to folio. * * Attaching private data to a folio increments the page's reference count. * The data must be detached before the folio will be freed. */ static inline void folio_attach_private(struct folio *folio, void *data) { folio_get(folio); folio->private = data; folio_set_private(folio); } /** * folio_change_private - Change private data on a folio. * @folio: Folio to change the data on. * @data: Data to set on the folio. * * Change the private data attached to a folio and return the old * data. The page must previously have had data attached and the data * must be detached before the folio will be freed. * * Return: Data that was previously attached to the folio. */ static inline void *folio_change_private(struct folio *folio, void *data) { void *old = folio_get_private(folio); folio->private = data; return old; } /** * folio_detach_private - Detach private data from a folio. * @folio: Folio to detach data from. * * Removes the data that was previously attached to the folio and decrements * the refcount on the page. * * Return: Data that was attached to the folio. */ static inline void *folio_detach_private(struct folio *folio) { void *data = folio_get_private(folio); if (!folio_test_private(folio)) return NULL; folio_clear_private(folio); folio->private = NULL; folio_put(folio); return data; } static inline void attach_page_private(struct page *page, void *data) { folio_attach_private(page_folio(page), data); } static inline void *detach_page_private(struct page *page) { return folio_detach_private(page_folio(page)); } /* * There are some parts of the kernel which assume that PMD entries * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then, * limit the maximum allocation order to PMD size. I'm not aware of any * assumptions about maximum order if THP are disabled, but 8 seems like * a good order (that's 1MB if you're using 4kB pages) */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER #else #define MAX_PAGECACHE_ORDER 8 #endif #ifdef CONFIG_NUMA struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order); #else static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) { return folio_alloc(gfp, order); } #endif static inline struct page *__page_cache_alloc(gfp_t gfp) { return &filemap_alloc_folio(gfp, 0)->page; } static inline struct page *page_cache_alloc(struct address_space *x) { return __page_cache_alloc(mapping_gfp_mask(x)); } static inline gfp_t readahead_gfp_mask(struct address_space *x) { return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; } typedef int filler_t(struct file *, struct folio *); pgoff_t page_cache_next_miss(struct address_space *mapping, pgoff_t index, unsigned long max_scan); pgoff_t page_cache_prev_miss(struct address_space *mapping, pgoff_t index, unsigned long max_scan); /** * typedef fgf_t - Flags for getting folios from the page cache. * * Most users of the page cache will not need to use these flags; * there are convenience functions such as filemap_get_folio() and * filemap_lock_folio(). For users which need more control over exactly * what is done with the folios, these flags to __filemap_get_folio() * are available. * * * %FGP_ACCESSED - The folio will be marked accessed. * * %FGP_LOCK - The folio is returned locked. * * %FGP_CREAT - If no folio is present then a new folio is allocated, * added to the page cache and the VM's LRU list. The folio is * returned locked. * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the * folio is already in cache. If the folio was allocated, unlock it * before returning so the caller can do the same dance. * * %FGP_WRITE - The folio will be written to by the caller. * * %FGP_NOFS - __GFP_FS will get cleared in gfp. * * %FGP_NOWAIT - Don't block on the folio lock. * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin() * implementation. */ typedef unsigned int __bitwise fgf_t; #define FGP_ACCESSED ((__force fgf_t)0x00000001) #define FGP_LOCK ((__force fgf_t)0x00000002) #define FGP_CREAT ((__force fgf_t)0x00000004) #define FGP_WRITE ((__force fgf_t)0x00000008) #define FGP_NOFS ((__force fgf_t)0x00000010) #define FGP_NOWAIT ((__force fgf_t)0x00000020) #define FGP_FOR_MMAP ((__force fgf_t)0x00000040) #define FGP_STABLE ((__force fgf_t)0x00000080) #define FGF_GET_ORDER(fgf) (((__force unsigned)fgf) >> 26) /* top 6 bits */ #define FGP_WRITEBEGIN (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE) /** * fgf_set_order - Encode a length in the fgf_t flags. * @size: The suggested size of the folio to create. * * The caller of __filemap_get_folio() can use this to suggest a preferred * size for the folio that is created. If there is already a folio at * the index, it will be returned, no matter what its size. If a folio * is freshly created, it may be of a different size than requested * due to alignment constraints, memory pressure, or the presence of * other folios at nearby indices. */ static inline fgf_t fgf_set_order(size_t size) { unsigned int shift = ilog2(size); if (shift <= PAGE_SHIFT) return 0; return (__force fgf_t)((shift - PAGE_SHIFT) << 26); } void *filemap_get_entry(struct address_space *mapping, pgoff_t index); struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, fgf_t fgp_flags, gfp_t gfp); struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, fgf_t fgp_flags, gfp_t gfp); /** * filemap_get_folio - Find and get a folio. * @mapping: The address_space to search. * @index: The page index. * * Looks up the page cache entry at @mapping & @index. If a folio is * present, it is returned with an increased refcount. * * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for * this index. Will not return a shadow, swap or DAX entry. */ static inline struct folio *filemap_get_folio(struct address_space *mapping, pgoff_t index) { return __filemap_get_folio(mapping, index, 0, 0); } /** * filemap_lock_folio - Find and lock a folio. * @mapping: The address_space to search. * @index: The page index. * * Looks up the page cache entry at @mapping & @index. If a folio is * present, it is returned locked with an increased refcount. * * Context: May sleep. * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for * this index. Will not return a shadow, swap or DAX entry. */ static inline struct folio *filemap_lock_folio(struct address_space *mapping, pgoff_t index) { return __filemap_get_folio(mapping, index, FGP_LOCK, 0); } /** * filemap_grab_folio - grab a folio from the page cache * @mapping: The address space to search * @index: The page index * * Looks up the page cache entry at @mapping & @index. If no folio is found, * a new folio is created. The folio is locked, marked as accessed, and * returned. * * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found * and failed to create a folio. */ static inline struct folio *filemap_grab_folio(struct address_space *mapping, pgoff_t index) { return __filemap_get_folio(mapping, index, FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mapping_gfp_mask(mapping)); } /** * find_get_page - find and get a page reference * @mapping: the address_space to search * @offset: the page index * * Looks up the page cache slot at @mapping & @offset. If there is a * page cache page, it is returned with an increased refcount. * * Otherwise, %NULL is returned. */ static inline struct page *find_get_page(struct address_space *mapping, pgoff_t offset) { return pagecache_get_page(mapping, offset, 0, 0); } static inline struct page *find_get_page_flags(struct address_space *mapping, pgoff_t offset, fgf_t fgp_flags) { return pagecache_get_page(mapping, offset, fgp_flags, 0); } /** * find_lock_page - locate, pin and lock a pagecache page * @mapping: the address_space to search * @index: the page index * * Looks up the page cache entry at @mapping & @index. If there is a * page cache page, it is returned locked and with an increased * refcount. * * Context: May sleep. * Return: A struct page or %NULL if there is no page in the cache for this * index. */ static inline struct page *find_lock_page(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK, 0); } /** * find_or_create_page - locate or add a pagecache page * @mapping: the page's address_space * @index: the page's index into the mapping * @gfp_mask: page allocation mode * * Looks up the page cache slot at @mapping & @offset. If there is a * page cache page, it is returned locked and with an increased * refcount. * * If the page is not present, a new page is allocated using @gfp_mask * and added to the page cache and the VM's LRU list. The page is * returned locked and with an increased refcount. * * On memory exhaustion, %NULL is returned. * * find_or_create_page() may sleep, even if @gfp_flags specifies an * atomic allocation! */ static inline struct page *find_or_create_page(struct address_space *mapping, pgoff_t index, gfp_t gfp_mask) { return pagecache_get_page(mapping, index, FGP_LOCK|FGP_ACCESSED|FGP_CREAT, gfp_mask); } /** * grab_cache_page_nowait - returns locked page at given index in given cache * @mapping: target address_space * @index: the page index * * Same as grab_cache_page(), but do not wait if the page is unavailable. * This is intended for speculative data generators, where the data can * be regenerated if the page couldn't be grabbed. This routine should * be safe to call while holding the lock for another page. * * Clear __GFP_FS when allocating the page to avoid recursion into the fs * and deadlock against the caller's locked page. */ static inline struct page *grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, mapping_gfp_mask(mapping)); } #define swapcache_index(folio) __page_file_index(&(folio)->page) /** * folio_index - File index of a folio. * @folio: The folio. * * For a folio which is either in the page cache or the swap cache, * return its index within the address_space it belongs to. If you know * the page is definitely in the page cache, you can look at the folio's * index directly. * * Return: The index (offset in units of pages) of a folio in its file. */ static inline pgoff_t folio_index(struct folio *folio) { if (unlikely(folio_test_swapcache(folio))) return swapcache_index(folio); return folio->index; } /** * folio_next_index - Get the index of the next folio. * @folio: The current folio. * * Return: The index of the folio which follows this folio in the file. */ static inline pgoff_t folio_next_index(struct folio *folio) { return folio->index + folio_nr_pages(folio); } /** * folio_file_page - The page for a particular index. * @folio: The folio which contains this index. * @index: The index we want to look up. * * Sometimes after looking up a folio in the page cache, we need to * obtain the specific page for an index (eg a page fault). * * Return: The page containing the file data for this index. */ static inline struct page *folio_file_page(struct folio *folio, pgoff_t index) { return folio_page(folio, index & (folio_nr_pages(folio) - 1)); } /** * folio_contains - Does this folio contain this index? * @folio: The folio. * @index: The page index within the file. * * Context: The caller should have the page locked in order to prevent * (eg) shmem from moving the page between the page cache and swap cache * and changing its index in the middle of the operation. * Return: true or false. */ static inline bool folio_contains(struct folio *folio, pgoff_t index) { return index - folio_index(folio) < folio_nr_pages(folio); } /* * Given the page we found in the page cache, return the page corresponding * to this index in the file */ static inline struct page *find_subpage(struct page *head, pgoff_t index) { /* HugeTLBfs wants the head page regardless */ if (PageHuge(head)) return head; return head + (index & (thp_nr_pages(head) - 1)); } unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, pgoff_t end, struct folio_batch *fbatch); unsigned filemap_get_folios_contig(struct address_space *mapping, pgoff_t *start, pgoff_t end, struct folio_batch *fbatch); unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch); struct page *grab_cache_page_write_begin(struct address_space *mapping, pgoff_t index); /* * Returns locked page at given index in given cache, creating it if needed. */ static inline struct page *grab_cache_page(struct address_space *mapping, pgoff_t index) { return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); } struct folio *read_cache_folio(struct address_space *, pgoff_t index, filler_t *filler, struct file *file); struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index, gfp_t flags); struct page *read_cache_page(struct address_space *, pgoff_t index, filler_t *filler, struct file *file); extern struct page * read_cache_page_gfp(struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); static inline struct page *read_mapping_page(struct address_space *mapping, pgoff_t index, struct file *file) { return read_cache_page(mapping, index, NULL, file); } static inline struct folio *read_mapping_folio(struct address_space *mapping, pgoff_t index, struct file *file) { return read_cache_folio(mapping, index, NULL, file); } /* * Get the offset in PAGE_SIZE (even for hugetlb pages). */ static inline pgoff_t page_to_pgoff(struct page *page) { struct page *head; if (likely(!PageTransTail(page))) return page->index; head = compound_head(page); /* * We don't initialize ->index for tail pages: calculate based on * head page */ return head->index + page - head; } /* * Return byte-offset into filesystem object for page. */ static inline loff_t page_offset(struct page *page) { return ((loff_t)page->index) << PAGE_SHIFT; } static inline loff_t page_file_offset(struct page *page) { return ((loff_t)page_index(page)) << PAGE_SHIFT; } /** * folio_pos - Returns the byte position of this folio in its file. * @folio: The folio. */ static inline loff_t folio_pos(struct folio *folio) { return page_offset(&folio->page); } /** * folio_file_pos - Returns the byte position of this folio in its file. * @folio: The folio. * * This differs from folio_pos() for folios which belong to a swap file. * NFS is the only filesystem today which needs to use folio_file_pos(). */ static inline loff_t folio_file_pos(struct folio *folio) { return page_file_offset(&folio->page); } /* * Get the offset in PAGE_SIZE (even for hugetlb folios). */ static inline pgoff_t folio_pgoff(struct folio *folio) { return folio->index; } static inline pgoff_t linear_page_index(struct vm_area_struct *vma, unsigned long address) { pgoff_t pgoff; pgoff = (address - vma->vm_start) >> PAGE_SHIFT; pgoff += vma->vm_pgoff; return pgoff; } struct wait_page_key { struct folio *folio; int bit_nr; int page_match; }; struct wait_page_queue { struct folio *folio; int bit_nr; wait_queue_entry_t wait; }; static inline bool wake_page_match(struct wait_page_queue *wait_page, struct wait_page_key *key) { if (wait_page->folio != key->folio) return false; key->page_match = 1; if (wait_page->bit_nr != key->bit_nr) return false; return true; } void __folio_lock(struct folio *folio); int __folio_lock_killable(struct folio *folio); vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf); void unlock_page(struct page *page); void folio_unlock(struct folio *folio); /** * folio_trylock() - Attempt to lock a folio. * @folio: The folio to attempt to lock. * * Sometimes it is undesirable to wait for a folio to be unlocked (eg * when the locks are being taken in the wrong order, or if making * progress through a batch of folios is more important than processing * them in order). Usually folio_lock() is the correct function to call. * * Context: Any context. * Return: Whether the lock was successfully acquired. */ static inline bool folio_trylock(struct folio *folio) { return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0))); } /* * Return true if the page was successfully locked */ static inline int trylock_page(struct page *page) { return folio_trylock(page_folio(page)); } /** * folio_lock() - Lock this folio. * @folio: The folio to lock. * * The folio lock protects against many things, probably more than it * should. It is primarily held while a folio is being brought uptodate, * either from its backing file or from swap. It is also held while a * folio is being truncated from its address_space, so holding the lock * is sufficient to keep folio->mapping stable. * * The folio lock is also held while write() is modifying the page to * provide POSIX atomicity guarantees (as long as the write does not * cross a page boundary). Other modifications to the data in the folio * do not hold the folio lock and can race with writes, eg DMA and stores * to mapped pages. * * Context: May sleep. If you need to acquire the locks of two or * more folios, they must be in order of ascending index, if they are * in the same address_space. If they are in different address_spaces, * acquire the lock of the folio which belongs to the address_space which * has the lowest address in memory first. */ static inline void folio_lock(struct folio *folio) { might_sleep(); if (!folio_trylock(folio)) __folio_lock(folio); } /** * lock_page() - Lock the folio containing this page. * @page: The page to lock. * * See folio_lock() for a description of what the lock protects. * This is a legacy function and new code should probably use folio_lock() * instead. * * Context: May sleep. Pages in the same folio share a lock, so do not * attempt to lock two pages which share a folio. */ static inline void lock_page(struct page *page) { struct folio *folio; might_sleep(); folio = page_folio(page); if (!folio_trylock(folio)) __folio_lock(folio); } /** * folio_lock_killable() - Lock this folio, interruptible by a fatal signal. * @folio: The folio to lock. * * Attempts to lock the folio, like folio_lock(), except that the sleep * to acquire the lock is interruptible by a fatal signal. * * Context: May sleep; see folio_lock(). * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received. */ static inline int folio_lock_killable(struct folio *folio) { might_sleep(); if (!folio_trylock(folio)) return __folio_lock_killable(folio); return 0; } /* * folio_lock_or_retry - Lock the folio, unless this would block and the * caller indicated that it can handle a retry. * * Return value and mmap_lock implications depend on flags; see * __folio_lock_or_retry(). */ static inline vm_fault_t folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) { might_sleep(); if (!folio_trylock(folio)) return __folio_lock_or_retry(folio, vmf); return 0; } /* * This is exported only for folio_wait_locked/folio_wait_writeback, etc., * and should not be used directly. */ void folio_wait_bit(struct folio *folio, int bit_nr); int folio_wait_bit_killable(struct folio *folio, int bit_nr); /* * Wait for a folio to be unlocked. * * This must be called with the caller "holding" the folio, * ie with increased folio reference count so that the folio won't * go away during the wait. */ static inline void folio_wait_locked(struct folio *folio) { if (folio_test_locked(folio)) folio_wait_bit(folio, PG_locked); } static inline int folio_wait_locked_killable(struct folio *folio) { if (!folio_test_locked(folio)) return 0; return folio_wait_bit_killable(folio, PG_locked); } static inline void wait_on_page_locked(struct page *page) { folio_wait_locked(page_folio(page)); } void folio_end_read(struct folio *folio, bool success); void wait_on_page_writeback(struct page *page); void folio_wait_writeback(struct folio *folio); int folio_wait_writeback_killable(struct folio *folio); void end_page_writeback(struct page *page); void folio_end_writeback(struct folio *folio); void wait_for_stable_page(struct page *page); void folio_wait_stable(struct folio *folio); void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn); static inline void __set_page_dirty(struct page *page, struct address_space *mapping, int warn) { __folio_mark_dirty(page_folio(page), mapping, warn); } void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb); void __folio_cancel_dirty(struct folio *folio); static inline void folio_cancel_dirty(struct folio *folio) { /* Avoid atomic ops, locking, etc. when not actually needed. */ if (folio_test_dirty(folio)) __folio_cancel_dirty(folio); } bool folio_clear_dirty_for_io(struct folio *folio); bool clear_page_dirty_for_io(struct page *page); void folio_invalidate(struct folio *folio, size_t offset, size_t length); int __set_page_dirty_nobuffers(struct page *page); bool noop_dirty_folio(struct address_space *mapping, struct folio *folio); #ifdef CONFIG_MIGRATION int filemap_migrate_folio(struct address_space *mapping, struct folio *dst, struct folio *src, enum migrate_mode mode); #else #define filemap_migrate_folio NULL #endif void folio_end_private_2(struct folio *folio); void folio_wait_private_2(struct folio *folio); int folio_wait_private_2_killable(struct folio *folio); /* * Add an arbitrary waiter to a page's wait queue */ void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter); /* * Fault in userspace address range. */ size_t fault_in_writeable(char __user *uaddr, size_t size); size_t fault_in_subpage_writeable(char __user *uaddr, size_t size); size_t fault_in_safe_writeable(const char __user *uaddr, size_t size); size_t fault_in_readable(const char __user *uaddr, size_t size); int add_to_page_cache_lru(struct page *page, struct address_space *mapping, pgoff_t index, gfp_t gfp); int filemap_add_folio(struct address_space *mapping, struct folio *folio, pgoff_t index, gfp_t gfp); void filemap_remove_folio(struct folio *folio); void __filemap_remove_folio(struct folio *folio, void *shadow); void replace_page_cache_folio(struct folio *old, struct folio *new); void delete_from_page_cache_batch(struct address_space *mapping, struct folio_batch *fbatch); bool filemap_release_folio(struct folio *folio, gfp_t gfp); loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end, int whence); /* Must be non-static for BPF error injection */ int __filemap_add_folio(struct address_space *mapping, struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp); bool filemap_range_has_writeback(struct address_space *mapping, loff_t start_byte, loff_t end_byte); /** * filemap_range_needs_writeback - check if range potentially needs writeback * @mapping: address space within which to check * @start_byte: offset in bytes where the range starts * @end_byte: offset in bytes where the range ends (inclusive) * * Find at least one page in the range supplied, usually used to check if * direct writing in this range will trigger a writeback. Used by O_DIRECT * read/write with IOCB_NOWAIT, to see if the caller needs to do * filemap_write_and_wait_range() before proceeding. * * Return: %true if the caller should do filemap_write_and_wait_range() before * doing O_DIRECT to a page in this range, %false otherwise. */ static inline bool filemap_range_needs_writeback(struct address_space *mapping, loff_t start_byte, loff_t end_byte) { if (!mapping->nrpages) return false; if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) return false; return filemap_range_has_writeback(mapping, start_byte, end_byte); } /** * struct readahead_control - Describes a readahead request. * * A readahead request is for consecutive pages. Filesystems which * implement the ->readahead method should call readahead_page() or * readahead_page_batch() in a loop and attempt to start I/O against * each page in the request. * * Most of the fields in this struct are private and should be accessed * by the functions below. * * @file: The file, used primarily by network filesystems for authentication. * May be NULL if invoked internally by the filesystem. * @mapping: Readahead this filesystem object. * @ra: File readahead state. May be NULL. */ struct readahead_control { struct file *file; struct address_space *mapping; struct file_ra_state *ra; /* private: use the readahead_* accessors instead */ pgoff_t _index; unsigned int _nr_pages; unsigned int _batch_count; bool _workingset; unsigned long _pflags; }; #define DEFINE_READAHEAD(ractl, f, r, m, i) \ struct readahead_control ractl = { \ .file = f, \ .mapping = m, \ .ra = r, \ ._index = i, \ } #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) void page_cache_ra_unbounded(struct readahead_control *, unsigned long nr_to_read, unsigned long lookahead_count); void page_cache_sync_ra(struct readahead_control *, unsigned long req_count); void page_cache_async_ra(struct readahead_control *, struct folio *, unsigned long req_count); void readahead_expand(struct readahead_control *ractl, loff_t new_start, size_t new_len); /** * page_cache_sync_readahead - generic file readahead * @mapping: address_space which holds the pagecache and I/O vectors * @ra: file_ra_state which holds the readahead state * @file: Used by the filesystem for authentication. * @index: Index of first page to be read. * @req_count: Total number of pages being read by the caller. * * page_cache_sync_readahead() should be called when a cache miss happened: * it will submit the read. The readahead logic may decide to piggyback more * pages onto the read request if access patterns suggest it will improve * performance. */ static inline void page_cache_sync_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *file, pgoff_t index, unsigned long req_count) { DEFINE_READAHEAD(ractl, file, ra, mapping, index); page_cache_sync_ra(&ractl, req_count); } /** * page_cache_async_readahead - file readahead for marked pages * @mapping: address_space which holds the pagecache and I/O vectors * @ra: file_ra_state which holds the readahead state * @file: Used by the filesystem for authentication. * @folio: The folio at @index which triggered the readahead call. * @index: Index of first page to be read. * @req_count: Total number of pages being read by the caller. * * page_cache_async_readahead() should be called when a page is used which * is marked as PageReadahead; this is a marker to suggest that the application * has used up enough of the readahead window that we should start pulling in * more pages. */ static inline void page_cache_async_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *file, struct folio *folio, pgoff_t index, unsigned long req_count) { DEFINE_READAHEAD(ractl, file, ra, mapping, index); page_cache_async_ra(&ractl, folio, req_count); } static inline struct folio *__readahead_folio(struct readahead_control *ractl) { struct folio *folio; BUG_ON(ractl->_batch_count > ractl->_nr_pages); ractl->_nr_pages -= ractl->_batch_count; ractl->_index += ractl->_batch_count; if (!ractl->_nr_pages) { ractl->_batch_count = 0; return NULL; } folio = xa_load(&ractl->mapping->i_pages, ractl->_index); VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); ractl->_batch_count = folio_nr_pages(folio); return folio; } /** * readahead_page - Get the next page to read. * @ractl: The current readahead request. * * Context: The page is locked and has an elevated refcount. The caller * should decreases the refcount once the page has been submitted for I/O * and unlock the page once all I/O to that page has completed. * Return: A pointer to the next page, or %NULL if we are done. */ static inline struct page *readahead_page(struct readahead_control *ractl) { struct folio *folio = __readahead_folio(ractl); return &folio->page; } /** * readahead_folio - Get the next folio to read. * @ractl: The current readahead request. * * Context: The folio is locked. The caller should unlock the folio once * all I/O to that folio has completed. * Return: A pointer to the next folio, or %NULL if we are done. */ static inline struct folio *readahead_folio(struct readahead_control *ractl) { struct folio *folio = __readahead_folio(ractl); if (folio) folio_put(folio); return folio; } static inline unsigned int __readahead_batch(struct readahead_control *rac, struct page **array, unsigned int array_sz) { unsigned int i = 0; XA_STATE(xas, &rac->mapping->i_pages, 0); struct page *page; BUG_ON(rac->_batch_count > rac->_nr_pages); rac->_nr_pages -= rac->_batch_count; rac->_index += rac->_batch_count; rac->_batch_count = 0; xas_set(&xas, rac->_index); rcu_read_lock(); xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { if (xas_retry(&xas, page)) continue; VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(PageTail(page), page); array[i++] = page; rac->_batch_count += thp_nr_pages(page); if (i == array_sz) break; } rcu_read_unlock(); return i; } /** * readahead_page_batch - Get a batch of pages to read. * @rac: The current readahead request. * @array: An array of pointers to struct page. * * Context: The pages are locked and have an elevated refcount. The caller * should decreases the refcount once the page has been submitted for I/O * and unlock the page once all I/O to that page has completed. * Return: The number of pages placed in the array. 0 indicates the request * is complete. */ #define readahead_page_batch(rac, array) \ __readahead_batch(rac, array, ARRAY_SIZE(array)) /** * readahead_pos - The byte offset into the file of this readahead request. * @rac: The readahead request. */ static inline loff_t readahead_pos(struct readahead_control *rac) { return (loff_t)rac->_index * PAGE_SIZE; } /** * readahead_length - The number of bytes in this readahead request. * @rac: The readahead request. */ static inline size_t readahead_length(struct readahead_control *rac) { return rac->_nr_pages * PAGE_SIZE; } /** * readahead_index - The index of the first page in this readahead request. * @rac: The readahead request. */ static inline pgoff_t readahead_index(struct readahead_control *rac) { return rac->_index; } /** * readahead_count - The number of pages in this readahead request. * @rac: The readahead request. */ static inline unsigned int readahead_count(struct readahead_control *rac) { return rac->_nr_pages; } /** * readahead_batch_length - The number of bytes in the current batch. * @rac: The readahead request. */ static inline size_t readahead_batch_length(struct readahead_control *rac) { return rac->_batch_count * PAGE_SIZE; } static inline unsigned long dir_pages(struct inode *inode) { return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; } /** * folio_mkwrite_check_truncate - check if folio was truncated * @folio: the folio to check * @inode: the inode to check the folio against * * Return: the number of bytes in the folio up to EOF, * or -EFAULT if the folio was truncated. */ static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio, struct inode *inode) { loff_t size = i_size_read(inode); pgoff_t index = size >> PAGE_SHIFT; size_t offset = offset_in_folio(folio, size); if (!folio->mapping) return -EFAULT; /* folio is wholly inside EOF */ if (folio_next_index(folio) - 1 < index) return folio_size(folio); /* folio is wholly past EOF */ if (folio->index > index || !offset) return -EFAULT; /* folio is partially inside EOF */ return offset; } /** * page_mkwrite_check_truncate - check if page was truncated * @page: the page to check * @inode: the inode to check the page against * * Returns the number of bytes in the page up to EOF, * or -EFAULT if the page was truncated. */ static inline int page_mkwrite_check_truncate(struct page *page, struct inode *inode) { loff_t size = i_size_read(inode); pgoff_t index = size >> PAGE_SHIFT; int offset = offset_in_page(size); if (page->mapping != inode->i_mapping) return -EFAULT; /* page is wholly inside EOF */ if (page->index < index) return PAGE_SIZE; /* page is wholly past EOF */ if (page->index > index || !offset) return -EFAULT; /* page is partially inside EOF */ return offset; } /** * i_blocks_per_folio - How many blocks fit in this folio. * @inode: The inode which contains the blocks. * @folio: The folio. * * If the block size is larger than the size of this folio, return zero. * * Context: The caller should hold a refcount on the folio to prevent it * from being split. * Return: The number of filesystem blocks covered by this folio. */ static inline unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio) { return folio_size(folio) >> inode->i_blkbits; } static inline unsigned int i_blocks_per_page(struct inode *inode, struct page *page) { return i_blocks_per_folio(inode, page_folio(page)); } #endif /* _LINUX_PAGEMAP_H */