/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_GFP_H #define __LINUX_GFP_H #include #include #include struct vm_area_struct; struct mempolicy; /* Convert GFP flags to their corresponding migrate type */ #define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE) #define GFP_MOVABLE_SHIFT 3 static inline int gfp_migratetype(const gfp_t gfp_flags) { VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK); BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE); BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE); BUILD_BUG_ON((___GFP_RECLAIMABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_RECLAIMABLE); BUILD_BUG_ON(((___GFP_MOVABLE | ___GFP_RECLAIMABLE) >> GFP_MOVABLE_SHIFT) != MIGRATE_HIGHATOMIC); if (unlikely(page_group_by_mobility_disabled)) return MIGRATE_UNMOVABLE; /* Group based on mobility */ return (__force unsigned long)(gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT; } #undef GFP_MOVABLE_MASK #undef GFP_MOVABLE_SHIFT static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags) { return !!(gfp_flags & __GFP_DIRECT_RECLAIM); } #ifdef CONFIG_HIGHMEM #define OPT_ZONE_HIGHMEM ZONE_HIGHMEM #else #define OPT_ZONE_HIGHMEM ZONE_NORMAL #endif #ifdef CONFIG_ZONE_DMA #define OPT_ZONE_DMA ZONE_DMA #else #define OPT_ZONE_DMA ZONE_NORMAL #endif #ifdef CONFIG_ZONE_DMA32 #define OPT_ZONE_DMA32 ZONE_DMA32 #else #define OPT_ZONE_DMA32 ZONE_NORMAL #endif /* * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT * bits long and there are 16 of them to cover all possible combinations of * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM. * * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA. * But GFP_MOVABLE is not only a zone specifier but also an allocation * policy. Therefore __GFP_MOVABLE plus another zone selector is valid. * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1". * * bit result * ================= * 0x0 => NORMAL * 0x1 => DMA or NORMAL * 0x2 => HIGHMEM or NORMAL * 0x3 => BAD (DMA+HIGHMEM) * 0x4 => DMA32 or NORMAL * 0x5 => BAD (DMA+DMA32) * 0x6 => BAD (HIGHMEM+DMA32) * 0x7 => BAD (HIGHMEM+DMA32+DMA) * 0x8 => NORMAL (MOVABLE+0) * 0x9 => DMA or NORMAL (MOVABLE+DMA) * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too) * 0xb => BAD (MOVABLE+HIGHMEM+DMA) * 0xc => DMA32 or NORMAL (MOVABLE+DMA32) * 0xd => BAD (MOVABLE+DMA32+DMA) * 0xe => BAD (MOVABLE+DMA32+HIGHMEM) * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA) * * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms. */ #if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4 /* ZONE_DEVICE is not a valid GFP zone specifier */ #define GFP_ZONES_SHIFT 2 #else #define GFP_ZONES_SHIFT ZONES_SHIFT #endif #if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG #error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer #endif #define GFP_ZONE_TABLE ( \ (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \ | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \ | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \ | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \ | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \ | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \ | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\ | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\ ) /* * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per * entry starting with bit 0. Bit is set if the combination is not * allowed. */ #define GFP_ZONE_BAD ( \ 1 << (___GFP_DMA | ___GFP_HIGHMEM) \ | 1 << (___GFP_DMA | ___GFP_DMA32) \ | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \ | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \ | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \ | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \ | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \ | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \ ) static inline enum zone_type gfp_zone(gfp_t flags) { enum zone_type z; int bit = (__force int) (flags & GFP_ZONEMASK); z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) & ((1 << GFP_ZONES_SHIFT) - 1); VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1); return z; } /* * There is only one page-allocator function, and two main namespaces to * it. The alloc_page*() variants return 'struct page *' and as such * can allocate highmem pages, the *get*page*() variants return * virtual kernel addresses to the allocated page(s). */ static inline int gfp_zonelist(gfp_t flags) { #ifdef CONFIG_NUMA if (unlikely(flags & __GFP_THISNODE)) return ZONELIST_NOFALLBACK; #endif return ZONELIST_FALLBACK; } /* * We get the zone list from the current node and the gfp_mask. * This zone list contains a maximum of MAX_NUMNODES*MAX_NR_ZONES zones. * There are two zonelists per node, one for all zones with memory and * one containing just zones from the node the zonelist belongs to. * * For the case of non-NUMA systems the NODE_DATA() gets optimized to * &contig_page_data at compile-time. */ static inline struct zonelist *node_zonelist(int nid, gfp_t flags) { return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags); } #ifndef HAVE_ARCH_FREE_PAGE static inline void arch_free_page(struct page *page, int order) { } #endif #ifndef HAVE_ARCH_ALLOC_PAGE static inline void arch_alloc_page(struct page *page, int order) { } #endif struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, nodemask_t *nodemask); struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, nodemask_t *nodemask); unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, nodemask_t *nodemask, int nr_pages, struct list_head *page_list, struct page **page_array); unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, unsigned long nr_pages, struct page **page_array); /* Bulk allocate order-0 pages */ static inline unsigned long alloc_pages_bulk_list(gfp_t gfp, unsigned long nr_pages, struct list_head *list) { return __alloc_pages_bulk(gfp, numa_mem_id(), NULL, nr_pages, list, NULL); } static inline unsigned long alloc_pages_bulk_array(gfp_t gfp, unsigned long nr_pages, struct page **page_array) { return __alloc_pages_bulk(gfp, numa_mem_id(), NULL, nr_pages, NULL, page_array); } static inline unsigned long alloc_pages_bulk_array_node(gfp_t gfp, int nid, unsigned long nr_pages, struct page **page_array) { if (nid == NUMA_NO_NODE) nid = numa_mem_id(); return __alloc_pages_bulk(gfp, nid, NULL, nr_pages, NULL, page_array); } static inline void warn_if_node_offline(int this_node, gfp_t gfp_mask) { gfp_t warn_gfp = gfp_mask & (__GFP_THISNODE|__GFP_NOWARN); if (warn_gfp != (__GFP_THISNODE|__GFP_NOWARN)) return; if (node_online(this_node)) return; pr_warn("%pGg allocation from offline node %d\n", &gfp_mask, this_node); dump_stack(); } /* * Allocate pages, preferring the node given as nid. The node must be valid and * online. For more general interface, see alloc_pages_node(). */ static inline struct page * __alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order) { VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES); warn_if_node_offline(nid, gfp_mask); return __alloc_pages(gfp_mask, order, nid, NULL); } static inline struct folio *__folio_alloc_node(gfp_t gfp, unsigned int order, int nid) { VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES); warn_if_node_offline(nid, gfp); return __folio_alloc(gfp, order, nid, NULL); } /* * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE, * prefer the current CPU's closest node. Otherwise node must be valid and * online. */ static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order) { if (nid == NUMA_NO_NODE) nid = numa_mem_id(); return __alloc_pages_node(nid, gfp_mask, order); } #ifdef CONFIG_NUMA struct page *alloc_pages(gfp_t gfp, unsigned int order); struct page *alloc_pages_mpol(gfp_t gfp, unsigned int order, struct mempolicy *mpol, pgoff_t ilx, int nid); struct folio *folio_alloc(gfp_t gfp, unsigned int order); struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, unsigned long addr, bool hugepage); #else static inline struct page *alloc_pages(gfp_t gfp_mask, unsigned int order) { return alloc_pages_node(numa_node_id(), gfp_mask, order); } static inline struct page *alloc_pages_mpol(gfp_t gfp, unsigned int order, struct mempolicy *mpol, pgoff_t ilx, int nid) { return alloc_pages(gfp, order); } static inline struct folio *folio_alloc(gfp_t gfp, unsigned int order) { return __folio_alloc_node(gfp, order, numa_node_id()); } #define vma_alloc_folio(gfp, order, vma, addr, hugepage) \ folio_alloc(gfp, order) #endif #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0) static inline struct page *alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr) { struct folio *folio = vma_alloc_folio(gfp, 0, vma, addr, false); return &folio->page; } extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order); extern unsigned long get_zeroed_page(gfp_t gfp_mask); void *alloc_pages_exact(size_t size, gfp_t gfp_mask) __alloc_size(1); void free_pages_exact(void *virt, size_t size); __meminit void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) __alloc_size(2); #define __get_free_page(gfp_mask) \ __get_free_pages((gfp_mask), 0) #define __get_dma_pages(gfp_mask, order) \ __get_free_pages((gfp_mask) | GFP_DMA, (order)) extern void __free_pages(struct page *page, unsigned int order); extern void free_pages(unsigned long addr, unsigned int order); struct page_frag_cache; void page_frag_cache_drain(struct page_frag_cache *nc); extern void __page_frag_cache_drain(struct page *page, unsigned int count); void *__page_frag_alloc_align(struct page_frag_cache *nc, unsigned int fragsz, gfp_t gfp_mask, unsigned int align_mask); static inline void *page_frag_alloc_align(struct page_frag_cache *nc, unsigned int fragsz, gfp_t gfp_mask, unsigned int align) { WARN_ON_ONCE(!is_power_of_2(align)); return __page_frag_alloc_align(nc, fragsz, gfp_mask, -align); } static inline void *page_frag_alloc(struct page_frag_cache *nc, unsigned int fragsz, gfp_t gfp_mask) { return __page_frag_alloc_align(nc, fragsz, gfp_mask, ~0u); } extern void page_frag_free(void *addr); #define __free_page(page) __free_pages((page), 0) #define free_page(addr) free_pages((addr), 0) void page_alloc_init_cpuhp(void); int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp); void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp); void drain_all_pages(struct zone *zone); void drain_local_pages(struct zone *zone); void page_alloc_init_late(void); void setup_pcp_cacheinfo(unsigned int cpu); /* * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what * GFP flags are used before interrupts are enabled. Once interrupts are * enabled, it is set to __GFP_BITS_MASK while the system is running. During * hibernation, it is used by PM to avoid I/O during memory allocation while * devices are suspended. */ extern gfp_t gfp_allowed_mask; /* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */ bool gfp_pfmemalloc_allowed(gfp_t gfp_mask); static inline bool gfp_has_io_fs(gfp_t gfp) { return (gfp & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS); } /* * Check if the gfp flags allow compaction - GFP_NOIO is a really * tricky context because the migration might require IO. */ static inline bool gfp_compaction_allowed(gfp_t gfp_mask) { return IS_ENABLED(CONFIG_COMPACTION) && (gfp_mask & __GFP_IO); } extern gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma); #ifdef CONFIG_CONTIG_ALLOC /* The below functions must be run on a range from a single zone. */ extern int alloc_contig_range(unsigned long start, unsigned long end, unsigned migratetype, gfp_t gfp_mask); extern struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, int nid, nodemask_t *nodemask); #endif void free_contig_range(unsigned long pfn, unsigned long nr_pages); #endif /* __LINUX_GFP_H */