// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_alloc.h" #include "xfs_btree.h" #include "xfs_btree_staging.h" #include "xfs_bmap_btree.h" #include "xfs_bmap.h" #include "xfs_error.h" #include "xfs_quota.h" #include "xfs_trace.h" #include "xfs_rmap.h" #include "xfs_ag.h" static struct kmem_cache *xfs_bmbt_cur_cache; void xfs_bmbt_init_block( struct xfs_inode *ip, struct xfs_btree_block *buf, struct xfs_buf *bp, __u16 level, __u16 numrecs) { if (bp) xfs_btree_init_buf(ip->i_mount, bp, &xfs_bmbt_ops, level, numrecs, ip->i_ino); else xfs_btree_init_block(ip->i_mount, buf, &xfs_bmbt_ops, level, numrecs, ip->i_ino); } /* * Convert on-disk form of btree root to in-memory form. */ void xfs_bmdr_to_bmbt( struct xfs_inode *ip, xfs_bmdr_block_t *dblock, int dblocklen, struct xfs_btree_block *rblock, int rblocklen) { struct xfs_mount *mp = ip->i_mount; int dmxr; xfs_bmbt_key_t *fkp; __be64 *fpp; xfs_bmbt_key_t *tkp; __be64 *tpp; xfs_bmbt_init_block(ip, rblock, NULL, 0, 0); rblock->bb_level = dblock->bb_level; ASSERT(be16_to_cpu(rblock->bb_level) > 0); rblock->bb_numrecs = dblock->bb_numrecs; dmxr = xfs_bmdr_maxrecs(dblocklen, 0); fkp = XFS_BMDR_KEY_ADDR(dblock, 1); tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); dmxr = be16_to_cpu(dblock->bb_numrecs); memcpy(tkp, fkp, sizeof(*fkp) * dmxr); memcpy(tpp, fpp, sizeof(*fpp) * dmxr); } void xfs_bmbt_disk_get_all( const struct xfs_bmbt_rec *rec, struct xfs_bmbt_irec *irec) { uint64_t l0 = get_unaligned_be64(&rec->l0); uint64_t l1 = get_unaligned_be64(&rec->l1); irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21); irec->br_blockcount = l1 & xfs_mask64lo(21); if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN)) irec->br_state = XFS_EXT_UNWRITTEN; else irec->br_state = XFS_EXT_NORM; } /* * Extract the blockcount field from an on disk bmap extent record. */ xfs_filblks_t xfs_bmbt_disk_get_blockcount( const struct xfs_bmbt_rec *r) { return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21)); } /* * Extract the startoff field from a disk format bmap extent record. */ xfs_fileoff_t xfs_bmbt_disk_get_startoff( const struct xfs_bmbt_rec *r) { return ((xfs_fileoff_t)be64_to_cpu(r->l0) & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; } /* * Set all the fields in a bmap extent record from the uncompressed form. */ void xfs_bmbt_disk_set_all( struct xfs_bmbt_rec *r, struct xfs_bmbt_irec *s) { int extent_flag = (s->br_state != XFS_EXT_NORM); ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN); ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN))); ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN))); ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN))); put_unaligned_be64( ((xfs_bmbt_rec_base_t)extent_flag << 63) | ((xfs_bmbt_rec_base_t)s->br_startoff << 9) | ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0); put_unaligned_be64( ((xfs_bmbt_rec_base_t)s->br_startblock << 21) | ((xfs_bmbt_rec_base_t)s->br_blockcount & (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1); } /* * Convert in-memory form of btree root to on-disk form. */ void xfs_bmbt_to_bmdr( struct xfs_mount *mp, struct xfs_btree_block *rblock, int rblocklen, xfs_bmdr_block_t *dblock, int dblocklen) { int dmxr; xfs_bmbt_key_t *fkp; __be64 *fpp; xfs_bmbt_key_t *tkp; __be64 *tpp; if (xfs_has_crc(mp)) { ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC)); ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)); ASSERT(rblock->bb_u.l.bb_blkno == cpu_to_be64(XFS_BUF_DADDR_NULL)); } else ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC)); ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)); ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)); ASSERT(rblock->bb_level != 0); dblock->bb_level = rblock->bb_level; dblock->bb_numrecs = rblock->bb_numrecs; dmxr = xfs_bmdr_maxrecs(dblocklen, 0); fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); tkp = XFS_BMDR_KEY_ADDR(dblock, 1); fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); dmxr = be16_to_cpu(dblock->bb_numrecs); memcpy(tkp, fkp, sizeof(*fkp) * dmxr); memcpy(tpp, fpp, sizeof(*fpp) * dmxr); } STATIC struct xfs_btree_cur * xfs_bmbt_dup_cursor( struct xfs_btree_cur *cur) { struct xfs_btree_cur *new; new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ino.ip, cur->bc_ino.whichfork); new->bc_flags |= (cur->bc_flags & (XFS_BTREE_BMBT_INVALID_OWNER | XFS_BTREE_BMBT_WASDEL)); return new; } STATIC void xfs_bmbt_update_cursor( struct xfs_btree_cur *src, struct xfs_btree_cur *dst) { ASSERT((dst->bc_tp->t_highest_agno != NULLAGNUMBER) || (dst->bc_ino.ip->i_diflags & XFS_DIFLAG_REALTIME)); dst->bc_bmap.allocated += src->bc_bmap.allocated; dst->bc_tp->t_highest_agno = src->bc_tp->t_highest_agno; src->bc_bmap.allocated = 0; } STATIC int xfs_bmbt_alloc_block( struct xfs_btree_cur *cur, const union xfs_btree_ptr *start, union xfs_btree_ptr *new, int *stat) { struct xfs_alloc_arg args; int error; memset(&args, 0, sizeof(args)); args.tp = cur->bc_tp; args.mp = cur->bc_mp; xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_ino.ip->i_ino, cur->bc_ino.whichfork); args.minlen = args.maxlen = args.prod = 1; args.wasdel = cur->bc_flags & XFS_BTREE_BMBT_WASDEL; if (!args.wasdel && args.tp->t_blk_res == 0) return -ENOSPC; /* * If we are coming here from something like unwritten extent * conversion, there has been no data extent allocation already done, so * we have to ensure that we attempt to locate the entire set of bmbt * allocations in the same AG, as xfs_bmapi_write() would have reserved. */ if (cur->bc_tp->t_highest_agno == NULLAGNUMBER) args.minleft = xfs_bmapi_minleft(cur->bc_tp, cur->bc_ino.ip, cur->bc_ino.whichfork); error = xfs_alloc_vextent_start_ag(&args, be64_to_cpu(start->l)); if (error) return error; if (args.fsbno == NULLFSBLOCK && args.minleft) { /* * Could not find an AG with enough free space to satisfy * a full btree split. Try again and if * successful activate the lowspace algorithm. */ args.minleft = 0; error = xfs_alloc_vextent_start_ag(&args, 0); if (error) return error; cur->bc_tp->t_flags |= XFS_TRANS_LOWMODE; } if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) { *stat = 0; return 0; } ASSERT(args.len == 1); cur->bc_bmap.allocated++; cur->bc_ino.ip->i_nblocks++; xfs_trans_log_inode(args.tp, cur->bc_ino.ip, XFS_ILOG_CORE); xfs_trans_mod_dquot_byino(args.tp, cur->bc_ino.ip, XFS_TRANS_DQ_BCOUNT, 1L); new->l = cpu_to_be64(args.fsbno); *stat = 1; return 0; } STATIC int xfs_bmbt_free_block( struct xfs_btree_cur *cur, struct xfs_buf *bp) { struct xfs_mount *mp = cur->bc_mp; struct xfs_inode *ip = cur->bc_ino.ip; struct xfs_trans *tp = cur->bc_tp; xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp)); struct xfs_owner_info oinfo; int error; xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_ino.whichfork); error = xfs_free_extent_later(cur->bc_tp, fsbno, 1, &oinfo, XFS_AG_RESV_NONE, false); if (error) return error; ip->i_nblocks--; xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L); return 0; } STATIC int xfs_bmbt_get_minrecs( struct xfs_btree_cur *cur, int level) { if (level == cur->bc_nlevels - 1) { struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur); return xfs_bmbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes, level == 0) / 2; } return cur->bc_mp->m_bmap_dmnr[level != 0]; } int xfs_bmbt_get_maxrecs( struct xfs_btree_cur *cur, int level) { if (level == cur->bc_nlevels - 1) { struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur); return xfs_bmbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes, level == 0); } return cur->bc_mp->m_bmap_dmxr[level != 0]; } /* * Get the maximum records we could store in the on-disk format. * * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but * for the root node this checks the available space in the dinode fork * so that we can resize the in-memory buffer to match it. After a * resize to the maximum size this function returns the same value * as xfs_bmbt_get_maxrecs for the root node, too. */ STATIC int xfs_bmbt_get_dmaxrecs( struct xfs_btree_cur *cur, int level) { if (level != cur->bc_nlevels - 1) return cur->bc_mp->m_bmap_dmxr[level != 0]; return xfs_bmdr_maxrecs(cur->bc_ino.forksize, level == 0); } STATIC void xfs_bmbt_init_key_from_rec( union xfs_btree_key *key, const union xfs_btree_rec *rec) { key->bmbt.br_startoff = cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt)); } STATIC void xfs_bmbt_init_high_key_from_rec( union xfs_btree_key *key, const union xfs_btree_rec *rec) { key->bmbt.br_startoff = cpu_to_be64( xfs_bmbt_disk_get_startoff(&rec->bmbt) + xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1); } STATIC void xfs_bmbt_init_rec_from_cur( struct xfs_btree_cur *cur, union xfs_btree_rec *rec) { xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b); } STATIC int64_t xfs_bmbt_key_diff( struct xfs_btree_cur *cur, const union xfs_btree_key *key) { return (int64_t)be64_to_cpu(key->bmbt.br_startoff) - cur->bc_rec.b.br_startoff; } STATIC int64_t xfs_bmbt_diff_two_keys( struct xfs_btree_cur *cur, const union xfs_btree_key *k1, const union xfs_btree_key *k2, const union xfs_btree_key *mask) { uint64_t a = be64_to_cpu(k1->bmbt.br_startoff); uint64_t b = be64_to_cpu(k2->bmbt.br_startoff); ASSERT(!mask || mask->bmbt.br_startoff); /* * Note: This routine previously casted a and b to int64 and subtracted * them to generate a result. This lead to problems if b was the * "maximum" key value (all ones) being signed incorrectly, hence this * somewhat less efficient version. */ if (a > b) return 1; if (b > a) return -1; return 0; } static xfs_failaddr_t xfs_bmbt_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_mount; struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); xfs_failaddr_t fa; unsigned int level; if (!xfs_verify_magic(bp, block->bb_magic)) return __this_address; if (xfs_has_crc(mp)) { /* * XXX: need a better way of verifying the owner here. Right now * just make sure there has been one set. */ fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN); if (fa) return fa; } /* * numrecs and level verification. * * We don't know what fork we belong to, so just verify that the level * is less than the maximum of the two. Later checks will be more * precise. */ level = be16_to_cpu(block->bb_level); if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1])) return __this_address; return xfs_btree_fsblock_verify(bp, mp->m_bmap_dmxr[level != 0]); } static void xfs_bmbt_read_verify( struct xfs_buf *bp) { xfs_failaddr_t fa; if (!xfs_btree_fsblock_verify_crc(bp)) xfs_verifier_error(bp, -EFSBADCRC, __this_address); else { fa = xfs_bmbt_verify(bp); if (fa) xfs_verifier_error(bp, -EFSCORRUPTED, fa); } if (bp->b_error) trace_xfs_btree_corrupt(bp, _RET_IP_); } static void xfs_bmbt_write_verify( struct xfs_buf *bp) { xfs_failaddr_t fa; fa = xfs_bmbt_verify(bp); if (fa) { trace_xfs_btree_corrupt(bp, _RET_IP_); xfs_verifier_error(bp, -EFSCORRUPTED, fa); return; } xfs_btree_fsblock_calc_crc(bp); } const struct xfs_buf_ops xfs_bmbt_buf_ops = { .name = "xfs_bmbt", .magic = { cpu_to_be32(XFS_BMAP_MAGIC), cpu_to_be32(XFS_BMAP_CRC_MAGIC) }, .verify_read = xfs_bmbt_read_verify, .verify_write = xfs_bmbt_write_verify, .verify_struct = xfs_bmbt_verify, }; STATIC int xfs_bmbt_keys_inorder( struct xfs_btree_cur *cur, const union xfs_btree_key *k1, const union xfs_btree_key *k2) { return be64_to_cpu(k1->bmbt.br_startoff) < be64_to_cpu(k2->bmbt.br_startoff); } STATIC int xfs_bmbt_recs_inorder( struct xfs_btree_cur *cur, const union xfs_btree_rec *r1, const union xfs_btree_rec *r2) { return xfs_bmbt_disk_get_startoff(&r1->bmbt) + xfs_bmbt_disk_get_blockcount(&r1->bmbt) <= xfs_bmbt_disk_get_startoff(&r2->bmbt); } STATIC enum xbtree_key_contig xfs_bmbt_keys_contiguous( struct xfs_btree_cur *cur, const union xfs_btree_key *key1, const union xfs_btree_key *key2, const union xfs_btree_key *mask) { ASSERT(!mask || mask->bmbt.br_startoff); return xbtree_key_contig(be64_to_cpu(key1->bmbt.br_startoff), be64_to_cpu(key2->bmbt.br_startoff)); } const struct xfs_btree_ops xfs_bmbt_ops = { .name = "bmap", .type = XFS_BTREE_TYPE_INODE, .rec_len = sizeof(xfs_bmbt_rec_t), .key_len = sizeof(xfs_bmbt_key_t), .ptr_len = XFS_BTREE_LONG_PTR_LEN, .lru_refs = XFS_BMAP_BTREE_REF, .statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2), .dup_cursor = xfs_bmbt_dup_cursor, .update_cursor = xfs_bmbt_update_cursor, .alloc_block = xfs_bmbt_alloc_block, .free_block = xfs_bmbt_free_block, .get_maxrecs = xfs_bmbt_get_maxrecs, .get_minrecs = xfs_bmbt_get_minrecs, .get_dmaxrecs = xfs_bmbt_get_dmaxrecs, .init_key_from_rec = xfs_bmbt_init_key_from_rec, .init_high_key_from_rec = xfs_bmbt_init_high_key_from_rec, .init_rec_from_cur = xfs_bmbt_init_rec_from_cur, .key_diff = xfs_bmbt_key_diff, .diff_two_keys = xfs_bmbt_diff_two_keys, .buf_ops = &xfs_bmbt_buf_ops, .keys_inorder = xfs_bmbt_keys_inorder, .recs_inorder = xfs_bmbt_recs_inorder, .keys_contiguous = xfs_bmbt_keys_contiguous, }; /* * Create a new bmap btree cursor. * * For staging cursors -1 in passed in whichfork. */ struct xfs_btree_cur * xfs_bmbt_init_cursor( struct xfs_mount *mp, struct xfs_trans *tp, struct xfs_inode *ip, int whichfork) { struct xfs_btree_cur *cur; unsigned int maxlevels; ASSERT(whichfork != XFS_COW_FORK); /* * The Data fork always has larger maxlevel, so use that for staging * cursors. */ switch (whichfork) { case XFS_STAGING_FORK: maxlevels = mp->m_bm_maxlevels[XFS_DATA_FORK]; break; default: maxlevels = mp->m_bm_maxlevels[whichfork]; break; } cur = xfs_btree_alloc_cursor(mp, tp, &xfs_bmbt_ops, maxlevels, xfs_bmbt_cur_cache); cur->bc_ino.ip = ip; cur->bc_ino.whichfork = whichfork; cur->bc_bmap.allocated = 0; if (whichfork != XFS_STAGING_FORK) { struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1; cur->bc_ino.forksize = xfs_inode_fork_size(ip, whichfork); } return cur; } /* Calculate number of records in a block mapping btree block. */ static inline unsigned int xfs_bmbt_block_maxrecs( unsigned int blocklen, bool leaf) { if (leaf) return blocklen / sizeof(xfs_bmbt_rec_t); return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t)); } /* * Swap in the new inode fork root. Once we pass this point the newly rebuilt * mappings are in place and we have to kill off any old btree blocks. */ void xfs_bmbt_commit_staged_btree( struct xfs_btree_cur *cur, struct xfs_trans *tp, int whichfork) { struct xbtree_ifakeroot *ifake = cur->bc_ino.ifake; struct xfs_ifork *ifp; static const short brootflag[2] = {XFS_ILOG_DBROOT, XFS_ILOG_ABROOT}; static const short extflag[2] = {XFS_ILOG_DEXT, XFS_ILOG_AEXT}; int flags = XFS_ILOG_CORE; ASSERT(cur->bc_flags & XFS_BTREE_STAGING); ASSERT(whichfork != XFS_COW_FORK); /* * Free any resources hanging off the real fork, then shallow-copy the * staging fork's contents into the real fork to transfer everything * we just built. */ ifp = xfs_ifork_ptr(cur->bc_ino.ip, whichfork); xfs_idestroy_fork(ifp); memcpy(ifp, ifake->if_fork, sizeof(struct xfs_ifork)); switch (ifp->if_format) { case XFS_DINODE_FMT_EXTENTS: flags |= extflag[whichfork]; break; case XFS_DINODE_FMT_BTREE: flags |= brootflag[whichfork]; break; default: ASSERT(0); break; } xfs_trans_log_inode(tp, cur->bc_ino.ip, flags); xfs_btree_commit_ifakeroot(cur, tp, whichfork); } /* * Calculate number of records in a bmap btree block. */ int xfs_bmbt_maxrecs( struct xfs_mount *mp, int blocklen, int leaf) { blocklen -= XFS_BMBT_BLOCK_LEN(mp); return xfs_bmbt_block_maxrecs(blocklen, leaf); } /* * Calculate the maximum possible height of the btree that the on-disk format * supports. This is used for sizing structures large enough to support every * possible configuration of a filesystem that might get mounted. */ unsigned int xfs_bmbt_maxlevels_ondisk(void) { unsigned int minrecs[2]; unsigned int blocklen; blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN, XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN); minrecs[0] = xfs_bmbt_block_maxrecs(blocklen, true) / 2; minrecs[1] = xfs_bmbt_block_maxrecs(blocklen, false) / 2; /* One extra level for the inode root. */ return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_EXTCNT_DATA_FORK_LARGE) + 1; } /* * Calculate number of records in a bmap btree inode root. */ int xfs_bmdr_maxrecs( int blocklen, int leaf) { blocklen -= sizeof(xfs_bmdr_block_t); if (leaf) return blocklen / sizeof(xfs_bmdr_rec_t); return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t)); } /* * Change the owner of a btree format fork fo the inode passed in. Change it to * the owner of that is passed in so that we can change owners before or after * we switch forks between inodes. The operation that the caller is doing will * determine whether is needs to change owner before or after the switch. * * For demand paged transactional modification, the fork switch should be done * after reading in all the blocks, modifying them and pinning them in the * transaction. For modification when the buffers are already pinned in memory, * the fork switch can be done before changing the owner as we won't need to * validate the owner until the btree buffers are unpinned and writes can occur * again. * * For recovery based ownership change, there is no transactional context and * so a buffer list must be supplied so that we can record the buffers that we * modified for the caller to issue IO on. */ int xfs_bmbt_change_owner( struct xfs_trans *tp, struct xfs_inode *ip, int whichfork, xfs_ino_t new_owner, struct list_head *buffer_list) { struct xfs_btree_cur *cur; int error; ASSERT(tp || buffer_list); ASSERT(!(tp && buffer_list)); ASSERT(xfs_ifork_ptr(ip, whichfork)->if_format == XFS_DINODE_FMT_BTREE); cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork); cur->bc_flags |= XFS_BTREE_BMBT_INVALID_OWNER; error = xfs_btree_change_owner(cur, new_owner, buffer_list); xfs_btree_del_cursor(cur, error); return error; } /* Calculate the bmap btree size for some records. */ unsigned long long xfs_bmbt_calc_size( struct xfs_mount *mp, unsigned long long len) { return xfs_btree_calc_size(mp->m_bmap_dmnr, len); } int __init xfs_bmbt_init_cur_cache(void) { xfs_bmbt_cur_cache = kmem_cache_create("xfs_bmbt_cur", xfs_btree_cur_sizeof(xfs_bmbt_maxlevels_ondisk()), 0, 0, NULL); if (!xfs_bmbt_cur_cache) return -ENOMEM; return 0; } void xfs_bmbt_destroy_cur_cache(void) { kmem_cache_destroy(xfs_bmbt_cur_cache); xfs_bmbt_cur_cache = NULL; }