// SPDX-License-Identifier: GPL-2.0 /* * fs/f2fs/segment.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include "f2fs.h" #include "segment.h" #include "node.h" #include "gc.h" #include "iostat.h" #include #define __reverse_ffz(x) __reverse_ffs(~(x)) static struct kmem_cache *discard_entry_slab; static struct kmem_cache *discard_cmd_slab; static struct kmem_cache *sit_entry_set_slab; static struct kmem_cache *revoke_entry_slab; static unsigned long __reverse_ulong(unsigned char *str) { unsigned long tmp = 0; int shift = 24, idx = 0; #if BITS_PER_LONG == 64 shift = 56; #endif while (shift >= 0) { tmp |= (unsigned long)str[idx++] << shift; shift -= BITS_PER_BYTE; } return tmp; } /* * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since * MSB and LSB are reversed in a byte by f2fs_set_bit. */ static inline unsigned long __reverse_ffs(unsigned long word) { int num = 0; #if BITS_PER_LONG == 64 if ((word & 0xffffffff00000000UL) == 0) num += 32; else word >>= 32; #endif if ((word & 0xffff0000) == 0) num += 16; else word >>= 16; if ((word & 0xff00) == 0) num += 8; else word >>= 8; if ((word & 0xf0) == 0) num += 4; else word >>= 4; if ((word & 0xc) == 0) num += 2; else word >>= 2; if ((word & 0x2) == 0) num += 1; return num; } /* * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because * f2fs_set_bit makes MSB and LSB reversed in a byte. * @size must be integral times of unsigned long. * Example: * MSB <--> LSB * f2fs_set_bit(0, bitmap) => 1000 0000 * f2fs_set_bit(7, bitmap) => 0000 0001 */ static unsigned long __find_rev_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { const unsigned long *p = addr + BIT_WORD(offset); unsigned long result = size; unsigned long tmp; if (offset >= size) return size; size -= (offset & ~(BITS_PER_LONG - 1)); offset %= BITS_PER_LONG; while (1) { if (*p == 0) goto pass; tmp = __reverse_ulong((unsigned char *)p); tmp &= ~0UL >> offset; if (size < BITS_PER_LONG) tmp &= (~0UL << (BITS_PER_LONG - size)); if (tmp) goto found; pass: if (size <= BITS_PER_LONG) break; size -= BITS_PER_LONG; offset = 0; p++; } return result; found: return result - size + __reverse_ffs(tmp); } static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { const unsigned long *p = addr + BIT_WORD(offset); unsigned long result = size; unsigned long tmp; if (offset >= size) return size; size -= (offset & ~(BITS_PER_LONG - 1)); offset %= BITS_PER_LONG; while (1) { if (*p == ~0UL) goto pass; tmp = __reverse_ulong((unsigned char *)p); if (offset) tmp |= ~0UL << (BITS_PER_LONG - offset); if (size < BITS_PER_LONG) tmp |= ~0UL >> size; if (tmp != ~0UL) goto found; pass: if (size <= BITS_PER_LONG) break; size -= BITS_PER_LONG; offset = 0; p++; } return result; found: return result - size + __reverse_ffz(tmp); } bool f2fs_need_SSR(struct f2fs_sb_info *sbi) { int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); if (f2fs_lfs_mode(sbi)) return false; if (sbi->gc_mode == GC_URGENT_HIGH) return true; if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) return true; return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); } void f2fs_abort_atomic_write(struct inode *inode, bool clean) { struct f2fs_inode_info *fi = F2FS_I(inode); if (!f2fs_is_atomic_file(inode)) return; if (clean) truncate_inode_pages_final(inode->i_mapping); release_atomic_write_cnt(inode); clear_inode_flag(inode, FI_ATOMIC_COMMITTED); clear_inode_flag(inode, FI_ATOMIC_REPLACE); clear_inode_flag(inode, FI_ATOMIC_FILE); stat_dec_atomic_inode(inode); F2FS_I(inode)->atomic_write_task = NULL; if (clean) { f2fs_i_size_write(inode, fi->original_i_size); fi->original_i_size = 0; } /* avoid stale dirty inode during eviction */ sync_inode_metadata(inode, 0); } static int __replace_atomic_write_block(struct inode *inode, pgoff_t index, block_t new_addr, block_t *old_addr, bool recover) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; struct node_info ni; int err; retry: set_new_dnode(&dn, inode, NULL, NULL, 0); err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); if (err) { if (err == -ENOMEM) { f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); goto retry; } return err; } err = f2fs_get_node_info(sbi, dn.nid, &ni, false); if (err) { f2fs_put_dnode(&dn); return err; } if (recover) { /* dn.data_blkaddr is always valid */ if (!__is_valid_data_blkaddr(new_addr)) { if (new_addr == NULL_ADDR) dec_valid_block_count(sbi, inode, 1); f2fs_invalidate_blocks(sbi, dn.data_blkaddr); f2fs_update_data_blkaddr(&dn, new_addr); } else { f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr, ni.version, true, true); } } else { blkcnt_t count = 1; err = inc_valid_block_count(sbi, inode, &count, true); if (err) { f2fs_put_dnode(&dn); return err; } *old_addr = dn.data_blkaddr; f2fs_truncate_data_blocks_range(&dn, 1); dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count); f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr, ni.version, true, false); } f2fs_put_dnode(&dn); trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode, index, old_addr ? *old_addr : 0, new_addr, recover); return 0; } static void __complete_revoke_list(struct inode *inode, struct list_head *head, bool revoke) { struct revoke_entry *cur, *tmp; pgoff_t start_index = 0; bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE); list_for_each_entry_safe(cur, tmp, head, list) { if (revoke) { __replace_atomic_write_block(inode, cur->index, cur->old_addr, NULL, true); } else if (truncate) { f2fs_truncate_hole(inode, start_index, cur->index); start_index = cur->index + 1; } list_del(&cur->list); kmem_cache_free(revoke_entry_slab, cur); } if (!revoke && truncate) f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false); } static int __f2fs_commit_atomic_write(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); struct inode *cow_inode = fi->cow_inode; struct revoke_entry *new; struct list_head revoke_list; block_t blkaddr; struct dnode_of_data dn; pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); pgoff_t off = 0, blen, index; int ret = 0, i; INIT_LIST_HEAD(&revoke_list); while (len) { blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len); set_new_dnode(&dn, cow_inode, NULL, NULL, 0); ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); if (ret && ret != -ENOENT) { goto out; } else if (ret == -ENOENT) { ret = 0; if (dn.max_level == 0) goto out; goto next; } blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode), len); index = off; for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) { blkaddr = f2fs_data_blkaddr(&dn); if (!__is_valid_data_blkaddr(blkaddr)) { continue; } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { f2fs_put_dnode(&dn); ret = -EFSCORRUPTED; goto out; } new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS, true, NULL); ret = __replace_atomic_write_block(inode, index, blkaddr, &new->old_addr, false); if (ret) { f2fs_put_dnode(&dn); kmem_cache_free(revoke_entry_slab, new); goto out; } f2fs_update_data_blkaddr(&dn, NULL_ADDR); new->index = index; list_add_tail(&new->list, &revoke_list); } f2fs_put_dnode(&dn); next: off += blen; len -= blen; } out: if (ret) { sbi->revoked_atomic_block += fi->atomic_write_cnt; } else { sbi->committed_atomic_block += fi->atomic_write_cnt; set_inode_flag(inode, FI_ATOMIC_COMMITTED); } __complete_revoke_list(inode, &revoke_list, ret ? true : false); return ret; } int f2fs_commit_atomic_write(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); int err; err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); if (err) return err; f2fs_down_write(&fi->i_gc_rwsem[WRITE]); f2fs_lock_op(sbi); err = __f2fs_commit_atomic_write(inode); f2fs_unlock_op(sbi); f2fs_up_write(&fi->i_gc_rwsem[WRITE]); return err; } /* * This function balances dirty node and dentry pages. * In addition, it controls garbage collection. */ void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) { if (f2fs_cp_error(sbi)) return; if (time_to_inject(sbi, FAULT_CHECKPOINT)) f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT); /* balance_fs_bg is able to be pending */ if (need && excess_cached_nats(sbi)) f2fs_balance_fs_bg(sbi, false); if (!f2fs_is_checkpoint_ready(sbi)) return; /* * We should do GC or end up with checkpoint, if there are so many dirty * dir/node pages without enough free segments. */ if (has_enough_free_secs(sbi, 0, 0)) return; if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && sbi->gc_thread->f2fs_gc_task) { DEFINE_WAIT(wait); prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, TASK_UNINTERRUPTIBLE); wake_up(&sbi->gc_thread->gc_wait_queue_head); io_schedule(); finish_wait(&sbi->gc_thread->fggc_wq, &wait); } else { struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, .init_gc_type = BG_GC, .no_bg_gc = true, .should_migrate_blocks = false, .err_gc_skipped = false, .nr_free_secs = 1 }; f2fs_down_write(&sbi->gc_lock); stat_inc_gc_call_count(sbi, FOREGROUND); f2fs_gc(sbi, &gc_control); } } static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi) { int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2; unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS); unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA); unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES); unsigned int meta = get_pages(sbi, F2FS_DIRTY_META); unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA); unsigned int threshold = SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD)); unsigned int global_threshold = threshold * 3 / 2; if (dents >= threshold || qdata >= threshold || nodes >= threshold || meta >= threshold || imeta >= threshold) return true; return dents + qdata + nodes + meta + imeta > global_threshold; } void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) { if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) return; /* try to shrink extent cache when there is no enough memory */ if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE)) f2fs_shrink_read_extent_tree(sbi, READ_EXTENT_CACHE_SHRINK_NUMBER); /* try to shrink age extent cache when there is no enough memory */ if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE)) f2fs_shrink_age_extent_tree(sbi, AGE_EXTENT_CACHE_SHRINK_NUMBER); /* check the # of cached NAT entries */ if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); if (!f2fs_available_free_memory(sbi, FREE_NIDS)) f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); else f2fs_build_free_nids(sbi, false, false); if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) || excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi)) goto do_sync; /* there is background inflight IO or foreground operation recently */ if (is_inflight_io(sbi, REQ_TIME) || (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem))) return; /* exceed periodical checkpoint timeout threshold */ if (f2fs_time_over(sbi, CP_TIME)) goto do_sync; /* checkpoint is the only way to shrink partial cached entries */ if (f2fs_available_free_memory(sbi, NAT_ENTRIES) && f2fs_available_free_memory(sbi, INO_ENTRIES)) return; do_sync: if (test_opt(sbi, DATA_FLUSH) && from_bg) { struct blk_plug plug; mutex_lock(&sbi->flush_lock); blk_start_plug(&plug); f2fs_sync_dirty_inodes(sbi, FILE_INODE, false); blk_finish_plug(&plug); mutex_unlock(&sbi->flush_lock); } stat_inc_cp_call_count(sbi, BACKGROUND); f2fs_sync_fs(sbi->sb, 1); } static int __submit_flush_wait(struct f2fs_sb_info *sbi, struct block_device *bdev) { int ret = blkdev_issue_flush(bdev); trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), test_opt(sbi, FLUSH_MERGE), ret); if (!ret) f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0); return ret; } static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) { int ret = 0; int i; if (!f2fs_is_multi_device(sbi)) return __submit_flush_wait(sbi, sbi->sb->s_bdev); for (i = 0; i < sbi->s_ndevs; i++) { if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) continue; ret = __submit_flush_wait(sbi, FDEV(i).bdev); if (ret) break; } return ret; } static int issue_flush_thread(void *data) { struct f2fs_sb_info *sbi = data; struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; wait_queue_head_t *q = &fcc->flush_wait_queue; repeat: if (kthread_should_stop()) return 0; if (!llist_empty(&fcc->issue_list)) { struct flush_cmd *cmd, *next; int ret; fcc->dispatch_list = llist_del_all(&fcc->issue_list); fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); ret = submit_flush_wait(sbi, cmd->ino); atomic_inc(&fcc->issued_flush); llist_for_each_entry_safe(cmd, next, fcc->dispatch_list, llnode) { cmd->ret = ret; complete(&cmd->wait); } fcc->dispatch_list = NULL; } wait_event_interruptible(*q, kthread_should_stop() || !llist_empty(&fcc->issue_list)); goto repeat; } int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) { struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; struct flush_cmd cmd; int ret; if (test_opt(sbi, NOBARRIER)) return 0; if (!test_opt(sbi, FLUSH_MERGE)) { atomic_inc(&fcc->queued_flush); ret = submit_flush_wait(sbi, ino); atomic_dec(&fcc->queued_flush); atomic_inc(&fcc->issued_flush); return ret; } if (atomic_inc_return(&fcc->queued_flush) == 1 || f2fs_is_multi_device(sbi)) { ret = submit_flush_wait(sbi, ino); atomic_dec(&fcc->queued_flush); atomic_inc(&fcc->issued_flush); return ret; } cmd.ino = ino; init_completion(&cmd.wait); llist_add(&cmd.llnode, &fcc->issue_list); /* * update issue_list before we wake up issue_flush thread, this * smp_mb() pairs with another barrier in ___wait_event(), see * more details in comments of waitqueue_active(). */ smp_mb(); if (waitqueue_active(&fcc->flush_wait_queue)) wake_up(&fcc->flush_wait_queue); if (fcc->f2fs_issue_flush) { wait_for_completion(&cmd.wait); atomic_dec(&fcc->queued_flush); } else { struct llist_node *list; list = llist_del_all(&fcc->issue_list); if (!list) { wait_for_completion(&cmd.wait); atomic_dec(&fcc->queued_flush); } else { struct flush_cmd *tmp, *next; ret = submit_flush_wait(sbi, ino); llist_for_each_entry_safe(tmp, next, list, llnode) { if (tmp == &cmd) { cmd.ret = ret; atomic_dec(&fcc->queued_flush); continue; } tmp->ret = ret; complete(&tmp->wait); } } } return cmd.ret; } int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) { dev_t dev = sbi->sb->s_bdev->bd_dev; struct flush_cmd_control *fcc; if (SM_I(sbi)->fcc_info) { fcc = SM_I(sbi)->fcc_info; if (fcc->f2fs_issue_flush) return 0; goto init_thread; } fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); if (!fcc) return -ENOMEM; atomic_set(&fcc->issued_flush, 0); atomic_set(&fcc->queued_flush, 0); init_waitqueue_head(&fcc->flush_wait_queue); init_llist_head(&fcc->issue_list); SM_I(sbi)->fcc_info = fcc; if (!test_opt(sbi, FLUSH_MERGE)) return 0; init_thread: fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); if (IS_ERR(fcc->f2fs_issue_flush)) { int err = PTR_ERR(fcc->f2fs_issue_flush); fcc->f2fs_issue_flush = NULL; return err; } return 0; } void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) { struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; if (fcc && fcc->f2fs_issue_flush) { struct task_struct *flush_thread = fcc->f2fs_issue_flush; fcc->f2fs_issue_flush = NULL; kthread_stop(flush_thread); } if (free) { kfree(fcc); SM_I(sbi)->fcc_info = NULL; } } int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) { int ret = 0, i; if (!f2fs_is_multi_device(sbi)) return 0; if (test_opt(sbi, NOBARRIER)) return 0; for (i = 1; i < sbi->s_ndevs; i++) { int count = DEFAULT_RETRY_IO_COUNT; if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) continue; do { ret = __submit_flush_wait(sbi, FDEV(i).bdev); if (ret) f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); } while (ret && --count); if (ret) { f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FLUSH_FAIL); break; } spin_lock(&sbi->dev_lock); f2fs_clear_bit(i, (char *)&sbi->dirty_device); spin_unlock(&sbi->dev_lock); } return ret; } static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, enum dirty_type dirty_type) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); /* need not be added */ if (IS_CURSEG(sbi, segno)) return; if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) dirty_i->nr_dirty[dirty_type]++; if (dirty_type == DIRTY) { struct seg_entry *sentry = get_seg_entry(sbi, segno); enum dirty_type t = sentry->type; if (unlikely(t >= DIRTY)) { f2fs_bug_on(sbi, 1); return; } if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) dirty_i->nr_dirty[t]++; if (__is_large_section(sbi)) { unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); block_t valid_blocks = get_valid_blocks(sbi, segno, true); f2fs_bug_on(sbi, unlikely(!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))); if (!IS_CURSEC(sbi, secno)) set_bit(secno, dirty_i->dirty_secmap); } } } static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, enum dirty_type dirty_type) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); block_t valid_blocks; if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) dirty_i->nr_dirty[dirty_type]--; if (dirty_type == DIRTY) { struct seg_entry *sentry = get_seg_entry(sbi, segno); enum dirty_type t = sentry->type; if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) dirty_i->nr_dirty[t]--; valid_blocks = get_valid_blocks(sbi, segno, true); if (valid_blocks == 0) { clear_bit(GET_SEC_FROM_SEG(sbi, segno), dirty_i->victim_secmap); #ifdef CONFIG_F2FS_CHECK_FS clear_bit(segno, SIT_I(sbi)->invalid_segmap); #endif } if (__is_large_section(sbi)) { unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi)) { clear_bit(secno, dirty_i->dirty_secmap); return; } if (!IS_CURSEC(sbi, secno)) set_bit(secno, dirty_i->dirty_secmap); } } } /* * Should not occur error such as -ENOMEM. * Adding dirty entry into seglist is not critical operation. * If a given segment is one of current working segments, it won't be added. */ static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned short valid_blocks, ckpt_valid_blocks; unsigned int usable_blocks; if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) return; usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); mutex_lock(&dirty_i->seglist_lock); valid_blocks = get_valid_blocks(sbi, segno, false); ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || ckpt_valid_blocks == usable_blocks)) { __locate_dirty_segment(sbi, segno, PRE); __remove_dirty_segment(sbi, segno, DIRTY); } else if (valid_blocks < usable_blocks) { __locate_dirty_segment(sbi, segno, DIRTY); } else { /* Recovery routine with SSR needs this */ __remove_dirty_segment(sbi, segno, DIRTY); } mutex_unlock(&dirty_i->seglist_lock); } /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned int segno; mutex_lock(&dirty_i->seglist_lock); for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { if (get_valid_blocks(sbi, segno, false)) continue; if (IS_CURSEG(sbi, segno)) continue; __locate_dirty_segment(sbi, segno, PRE); __remove_dirty_segment(sbi, segno, DIRTY); } mutex_unlock(&dirty_i->seglist_lock); } block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) { int ovp_hole_segs = (overprovision_segments(sbi) - reserved_segments(sbi)); block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs); struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); block_t holes[2] = {0, 0}; /* DATA and NODE */ block_t unusable; struct seg_entry *se; unsigned int segno; mutex_lock(&dirty_i->seglist_lock); for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { se = get_seg_entry(sbi, segno); if (IS_NODESEG(se->type)) holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - se->valid_blocks; else holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - se->valid_blocks; } mutex_unlock(&dirty_i->seglist_lock); unusable = max(holes[DATA], holes[NODE]); if (unusable > ovp_holes) return unusable - ovp_holes; return 0; } int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) { int ovp_hole_segs = (overprovision_segments(sbi) - reserved_segments(sbi)); if (F2FS_OPTION(sbi).unusable_cap_perc == 100) return 0; if (unusable > F2FS_OPTION(sbi).unusable_cap) return -EAGAIN; if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && dirty_segments(sbi) > ovp_hole_segs) return -EAGAIN; if (has_not_enough_free_secs(sbi, 0, 0)) return -EAGAIN; return 0; } /* This is only used by SBI_CP_DISABLED */ static unsigned int get_free_segment(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned int segno = 0; mutex_lock(&dirty_i->seglist_lock); for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { if (get_valid_blocks(sbi, segno, false)) continue; if (get_ckpt_valid_blocks(sbi, segno, false)) continue; mutex_unlock(&dirty_i->seglist_lock); return segno; } mutex_unlock(&dirty_i->seglist_lock); return NULL_SEGNO; } static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t lstart, block_t start, block_t len) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct list_head *pend_list; struct discard_cmd *dc; f2fs_bug_on(sbi, !len); pend_list = &dcc->pend_list[plist_idx(len)]; dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL); INIT_LIST_HEAD(&dc->list); dc->bdev = bdev; dc->di.lstart = lstart; dc->di.start = start; dc->di.len = len; dc->ref = 0; dc->state = D_PREP; dc->queued = 0; dc->error = 0; init_completion(&dc->wait); list_add_tail(&dc->list, pend_list); spin_lock_init(&dc->lock); dc->bio_ref = 0; atomic_inc(&dcc->discard_cmd_cnt); dcc->undiscard_blks += len; return dc; } static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi) { #ifdef CONFIG_F2FS_CHECK_FS struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct rb_node *cur = rb_first_cached(&dcc->root), *next; struct discard_cmd *cur_dc, *next_dc; while (cur) { next = rb_next(cur); if (!next) return true; cur_dc = rb_entry(cur, struct discard_cmd, rb_node); next_dc = rb_entry(next, struct discard_cmd, rb_node); if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) { f2fs_info(sbi, "broken discard_rbtree, " "cur(%u, %u) next(%u, %u)", cur_dc->di.lstart, cur_dc->di.len, next_dc->di.lstart, next_dc->di.len); return false; } cur = next; } #endif return true; } static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi, block_t blkaddr) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct rb_node *node = dcc->root.rb_root.rb_node; struct discard_cmd *dc; while (node) { dc = rb_entry(node, struct discard_cmd, rb_node); if (blkaddr < dc->di.lstart) node = node->rb_left; else if (blkaddr >= dc->di.lstart + dc->di.len) node = node->rb_right; else return dc; } return NULL; } static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root, block_t blkaddr, struct discard_cmd **prev_entry, struct discard_cmd **next_entry, struct rb_node ***insert_p, struct rb_node **insert_parent) { struct rb_node **pnode = &root->rb_root.rb_node; struct rb_node *parent = NULL, *tmp_node; struct discard_cmd *dc; *insert_p = NULL; *insert_parent = NULL; *prev_entry = NULL; *next_entry = NULL; if (RB_EMPTY_ROOT(&root->rb_root)) return NULL; while (*pnode) { parent = *pnode; dc = rb_entry(*pnode, struct discard_cmd, rb_node); if (blkaddr < dc->di.lstart) pnode = &(*pnode)->rb_left; else if (blkaddr >= dc->di.lstart + dc->di.len) pnode = &(*pnode)->rb_right; else goto lookup_neighbors; } *insert_p = pnode; *insert_parent = parent; dc = rb_entry(parent, struct discard_cmd, rb_node); tmp_node = parent; if (parent && blkaddr > dc->di.lstart) tmp_node = rb_next(parent); *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); tmp_node = parent; if (parent && blkaddr < dc->di.lstart) tmp_node = rb_prev(parent); *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); return NULL; lookup_neighbors: /* lookup prev node for merging backward later */ tmp_node = rb_prev(&dc->rb_node); *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); /* lookup next node for merging frontward later */ tmp_node = rb_next(&dc->rb_node); *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); return dc; } static void __detach_discard_cmd(struct discard_cmd_control *dcc, struct discard_cmd *dc) { if (dc->state == D_DONE) atomic_sub(dc->queued, &dcc->queued_discard); list_del(&dc->list); rb_erase_cached(&dc->rb_node, &dcc->root); dcc->undiscard_blks -= dc->di.len; kmem_cache_free(discard_cmd_slab, dc); atomic_dec(&dcc->discard_cmd_cnt); } static void __remove_discard_cmd(struct f2fs_sb_info *sbi, struct discard_cmd *dc) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; unsigned long flags; trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len); spin_lock_irqsave(&dc->lock, flags); if (dc->bio_ref) { spin_unlock_irqrestore(&dc->lock, flags); return; } spin_unlock_irqrestore(&dc->lock, flags); f2fs_bug_on(sbi, dc->ref); if (dc->error == -EOPNOTSUPP) dc->error = 0; if (dc->error) printk_ratelimited( "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", KERN_INFO, sbi->sb->s_id, dc->di.lstart, dc->di.start, dc->di.len, dc->error); __detach_discard_cmd(dcc, dc); } static void f2fs_submit_discard_endio(struct bio *bio) { struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; unsigned long flags; spin_lock_irqsave(&dc->lock, flags); if (!dc->error) dc->error = blk_status_to_errno(bio->bi_status); dc->bio_ref--; if (!dc->bio_ref && dc->state == D_SUBMIT) { dc->state = D_DONE; complete_all(&dc->wait); } spin_unlock_irqrestore(&dc->lock, flags); bio_put(bio); } static void __check_sit_bitmap(struct f2fs_sb_info *sbi, block_t start, block_t end) { #ifdef CONFIG_F2FS_CHECK_FS struct seg_entry *sentry; unsigned int segno; block_t blk = start; unsigned long offset, size, *map; while (blk < end) { segno = GET_SEGNO(sbi, blk); sentry = get_seg_entry(sbi, segno); offset = GET_BLKOFF_FROM_SEG0(sbi, blk); if (end < START_BLOCK(sbi, segno + 1)) size = GET_BLKOFF_FROM_SEG0(sbi, end); else size = BLKS_PER_SEG(sbi); map = (unsigned long *)(sentry->cur_valid_map); offset = __find_rev_next_bit(map, size, offset); f2fs_bug_on(sbi, offset != size); blk = START_BLOCK(sbi, segno + 1); } #endif } static void __init_discard_policy(struct f2fs_sb_info *sbi, struct discard_policy *dpolicy, int discard_type, unsigned int granularity) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; /* common policy */ dpolicy->type = discard_type; dpolicy->sync = true; dpolicy->ordered = false; dpolicy->granularity = granularity; dpolicy->max_requests = dcc->max_discard_request; dpolicy->io_aware_gran = dcc->discard_io_aware_gran; dpolicy->timeout = false; if (discard_type == DPOLICY_BG) { dpolicy->min_interval = dcc->min_discard_issue_time; dpolicy->mid_interval = dcc->mid_discard_issue_time; dpolicy->max_interval = dcc->max_discard_issue_time; if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE) dpolicy->io_aware = true; else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE) dpolicy->io_aware = false; dpolicy->sync = false; dpolicy->ordered = true; if (utilization(sbi) > dcc->discard_urgent_util) { dpolicy->granularity = MIN_DISCARD_GRANULARITY; if (atomic_read(&dcc->discard_cmd_cnt)) dpolicy->max_interval = dcc->min_discard_issue_time; } } else if (discard_type == DPOLICY_FORCE) { dpolicy->min_interval = dcc->min_discard_issue_time; dpolicy->mid_interval = dcc->mid_discard_issue_time; dpolicy->max_interval = dcc->max_discard_issue_time; dpolicy->io_aware = false; } else if (discard_type == DPOLICY_FSTRIM) { dpolicy->io_aware = false; } else if (discard_type == DPOLICY_UMOUNT) { dpolicy->io_aware = false; /* we need to issue all to keep CP_TRIMMED_FLAG */ dpolicy->granularity = MIN_DISCARD_GRANULARITY; dpolicy->timeout = true; } } static void __update_discard_tree_range(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t lstart, block_t start, block_t len); #ifdef CONFIG_BLK_DEV_ZONED static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi, struct discard_cmd *dc, blk_opf_t flag, struct list_head *wait_list, unsigned int *issued) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct block_device *bdev = dc->bdev; struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS); unsigned long flags; trace_f2fs_issue_reset_zone(bdev, dc->di.start); spin_lock_irqsave(&dc->lock, flags); dc->state = D_SUBMIT; dc->bio_ref++; spin_unlock_irqrestore(&dc->lock, flags); if (issued) (*issued)++; atomic_inc(&dcc->queued_discard); dc->queued++; list_move_tail(&dc->list, wait_list); /* sanity check on discard range */ __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len); bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start); bio->bi_private = dc; bio->bi_end_io = f2fs_submit_discard_endio; submit_bio(bio); atomic_inc(&dcc->issued_discard); f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE); } #endif /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ static int __submit_discard_cmd(struct f2fs_sb_info *sbi, struct discard_policy *dpolicy, struct discard_cmd *dc, int *issued) { struct block_device *bdev = dc->bdev; unsigned int max_discard_blocks = SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? &(dcc->fstrim_list) : &(dcc->wait_list); blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0; block_t lstart, start, len, total_len; int err = 0; if (dc->state != D_PREP) return 0; if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) return 0; #ifdef CONFIG_BLK_DEV_ZONED if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) { int devi = f2fs_bdev_index(sbi, bdev); if (devi < 0) return -EINVAL; if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { __submit_zone_reset_cmd(sbi, dc, flag, wait_list, issued); return 0; } } #endif trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len); lstart = dc->di.lstart; start = dc->di.start; len = dc->di.len; total_len = len; dc->di.len = 0; while (total_len && *issued < dpolicy->max_requests && !err) { struct bio *bio = NULL; unsigned long flags; bool last = true; if (len > max_discard_blocks) { len = max_discard_blocks; last = false; } (*issued)++; if (*issued == dpolicy->max_requests) last = true; dc->di.len += len; if (time_to_inject(sbi, FAULT_DISCARD)) { err = -EIO; } else { err = __blkdev_issue_discard(bdev, SECTOR_FROM_BLOCK(start), SECTOR_FROM_BLOCK(len), GFP_NOFS, &bio); } if (err) { spin_lock_irqsave(&dc->lock, flags); if (dc->state == D_PARTIAL) dc->state = D_SUBMIT; spin_unlock_irqrestore(&dc->lock, flags); break; } f2fs_bug_on(sbi, !bio); /* * should keep before submission to avoid D_DONE * right away */ spin_lock_irqsave(&dc->lock, flags); if (last) dc->state = D_SUBMIT; else dc->state = D_PARTIAL; dc->bio_ref++; spin_unlock_irqrestore(&dc->lock, flags); atomic_inc(&dcc->queued_discard); dc->queued++; list_move_tail(&dc->list, wait_list); /* sanity check on discard range */ __check_sit_bitmap(sbi, lstart, lstart + len); bio->bi_private = dc; bio->bi_end_io = f2fs_submit_discard_endio; bio->bi_opf |= flag; submit_bio(bio); atomic_inc(&dcc->issued_discard); f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE); lstart += len; start += len; total_len -= len; len = total_len; } if (!err && len) { dcc->undiscard_blks -= len; __update_discard_tree_range(sbi, bdev, lstart, start, len); } return err; } static void __insert_discard_cmd(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t lstart, block_t start, block_t len) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct rb_node **p = &dcc->root.rb_root.rb_node; struct rb_node *parent = NULL; struct discard_cmd *dc; bool leftmost = true; /* look up rb tree to find parent node */ while (*p) { parent = *p; dc = rb_entry(parent, struct discard_cmd, rb_node); if (lstart < dc->di.lstart) { p = &(*p)->rb_left; } else if (lstart >= dc->di.lstart + dc->di.len) { p = &(*p)->rb_right; leftmost = false; } else { /* Let's skip to add, if exists */ return; } } dc = __create_discard_cmd(sbi, bdev, lstart, start, len); rb_link_node(&dc->rb_node, parent, p); rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); } static void __relocate_discard_cmd(struct discard_cmd_control *dcc, struct discard_cmd *dc) { list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]); } static void __punch_discard_cmd(struct f2fs_sb_info *sbi, struct discard_cmd *dc, block_t blkaddr) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct discard_info di = dc->di; bool modified = false; if (dc->state == D_DONE || dc->di.len == 1) { __remove_discard_cmd(sbi, dc); return; } dcc->undiscard_blks -= di.len; if (blkaddr > di.lstart) { dc->di.len = blkaddr - dc->di.lstart; dcc->undiscard_blks += dc->di.len; __relocate_discard_cmd(dcc, dc); modified = true; } if (blkaddr < di.lstart + di.len - 1) { if (modified) { __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1, di.start + blkaddr + 1 - di.lstart, di.lstart + di.len - 1 - blkaddr); } else { dc->di.lstart++; dc->di.len--; dc->di.start++; dcc->undiscard_blks += dc->di.len; __relocate_discard_cmd(dcc, dc); } } } static void __update_discard_tree_range(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t lstart, block_t start, block_t len) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct discard_cmd *prev_dc = NULL, *next_dc = NULL; struct discard_cmd *dc; struct discard_info di = {0}; struct rb_node **insert_p = NULL, *insert_parent = NULL; unsigned int max_discard_blocks = SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); block_t end = lstart + len; dc = __lookup_discard_cmd_ret(&dcc->root, lstart, &prev_dc, &next_dc, &insert_p, &insert_parent); if (dc) prev_dc = dc; if (!prev_dc) { di.lstart = lstart; di.len = next_dc ? next_dc->di.lstart - lstart : len; di.len = min(di.len, len); di.start = start; } while (1) { struct rb_node *node; bool merged = false; struct discard_cmd *tdc = NULL; if (prev_dc) { di.lstart = prev_dc->di.lstart + prev_dc->di.len; if (di.lstart < lstart) di.lstart = lstart; if (di.lstart >= end) break; if (!next_dc || next_dc->di.lstart > end) di.len = end - di.lstart; else di.len = next_dc->di.lstart - di.lstart; di.start = start + di.lstart - lstart; } if (!di.len) goto next; if (prev_dc && prev_dc->state == D_PREP && prev_dc->bdev == bdev && __is_discard_back_mergeable(&di, &prev_dc->di, max_discard_blocks)) { prev_dc->di.len += di.len; dcc->undiscard_blks += di.len; __relocate_discard_cmd(dcc, prev_dc); di = prev_dc->di; tdc = prev_dc; merged = true; } if (next_dc && next_dc->state == D_PREP && next_dc->bdev == bdev && __is_discard_front_mergeable(&di, &next_dc->di, max_discard_blocks)) { next_dc->di.lstart = di.lstart; next_dc->di.len += di.len; next_dc->di.start = di.start; dcc->undiscard_blks += di.len; __relocate_discard_cmd(dcc, next_dc); if (tdc) __remove_discard_cmd(sbi, tdc); merged = true; } if (!merged) __insert_discard_cmd(sbi, bdev, di.lstart, di.start, di.len); next: prev_dc = next_dc; if (!prev_dc) break; node = rb_next(&prev_dc->rb_node); next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); } } #ifdef CONFIG_BLK_DEV_ZONED static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t blkstart, block_t lblkstart, block_t blklen) { trace_f2fs_queue_reset_zone(bdev, blkstart); mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen); mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); } #endif static void __queue_discard_cmd(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t blkstart, block_t blklen) { block_t lblkstart = blkstart; if (!f2fs_bdev_support_discard(bdev)) return; trace_f2fs_queue_discard(bdev, blkstart, blklen); if (f2fs_is_multi_device(sbi)) { int devi = f2fs_target_device_index(sbi, blkstart); blkstart -= FDEV(devi).start_blk; } mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); } static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, struct discard_policy *dpolicy, int *issued) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct discard_cmd *prev_dc = NULL, *next_dc = NULL; struct rb_node **insert_p = NULL, *insert_parent = NULL; struct discard_cmd *dc; struct blk_plug plug; bool io_interrupted = false; mutex_lock(&dcc->cmd_lock); dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos, &prev_dc, &next_dc, &insert_p, &insert_parent); if (!dc) dc = next_dc; blk_start_plug(&plug); while (dc) { struct rb_node *node; int err = 0; if (dc->state != D_PREP) goto next; if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { io_interrupted = true; break; } dcc->next_pos = dc->di.lstart + dc->di.len; err = __submit_discard_cmd(sbi, dpolicy, dc, issued); if (*issued >= dpolicy->max_requests) break; next: node = rb_next(&dc->rb_node); if (err) __remove_discard_cmd(sbi, dc); dc = rb_entry_safe(node, struct discard_cmd, rb_node); } blk_finish_plug(&plug); if (!dc) dcc->next_pos = 0; mutex_unlock(&dcc->cmd_lock); if (!(*issued) && io_interrupted) *issued = -1; } static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, struct discard_policy *dpolicy); static int __issue_discard_cmd(struct f2fs_sb_info *sbi, struct discard_policy *dpolicy) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct list_head *pend_list; struct discard_cmd *dc, *tmp; struct blk_plug plug; int i, issued; bool io_interrupted = false; if (dpolicy->timeout) f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); retry: issued = 0; for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { if (dpolicy->timeout && f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) break; if (i + 1 < dpolicy->granularity) break; if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) { __issue_discard_cmd_orderly(sbi, dpolicy, &issued); return issued; } pend_list = &dcc->pend_list[i]; mutex_lock(&dcc->cmd_lock); if (list_empty(pend_list)) goto next; if (unlikely(dcc->rbtree_check)) f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); blk_start_plug(&plug); list_for_each_entry_safe(dc, tmp, pend_list, list) { f2fs_bug_on(sbi, dc->state != D_PREP); if (dpolicy->timeout && f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) break; if (dpolicy->io_aware && i < dpolicy->io_aware_gran && !is_idle(sbi, DISCARD_TIME)) { io_interrupted = true; break; } __submit_discard_cmd(sbi, dpolicy, dc, &issued); if (issued >= dpolicy->max_requests) break; } blk_finish_plug(&plug); next: mutex_unlock(&dcc->cmd_lock); if (issued >= dpolicy->max_requests || io_interrupted) break; } if (dpolicy->type == DPOLICY_UMOUNT && issued) { __wait_all_discard_cmd(sbi, dpolicy); goto retry; } if (!issued && io_interrupted) issued = -1; return issued; } static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct list_head *pend_list; struct discard_cmd *dc, *tmp; int i; bool dropped = false; mutex_lock(&dcc->cmd_lock); for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { pend_list = &dcc->pend_list[i]; list_for_each_entry_safe(dc, tmp, pend_list, list) { f2fs_bug_on(sbi, dc->state != D_PREP); __remove_discard_cmd(sbi, dc); dropped = true; } } mutex_unlock(&dcc->cmd_lock); return dropped; } void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) { __drop_discard_cmd(sbi); } static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, struct discard_cmd *dc) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; unsigned int len = 0; wait_for_completion_io(&dc->wait); mutex_lock(&dcc->cmd_lock); f2fs_bug_on(sbi, dc->state != D_DONE); dc->ref--; if (!dc->ref) { if (!dc->error) len = dc->di.len; __remove_discard_cmd(sbi, dc); } mutex_unlock(&dcc->cmd_lock); return len; } static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, struct discard_policy *dpolicy, block_t start, block_t end) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? &(dcc->fstrim_list) : &(dcc->wait_list); struct discard_cmd *dc = NULL, *iter, *tmp; unsigned int trimmed = 0; next: dc = NULL; mutex_lock(&dcc->cmd_lock); list_for_each_entry_safe(iter, tmp, wait_list, list) { if (iter->di.lstart + iter->di.len <= start || end <= iter->di.lstart) continue; if (iter->di.len < dpolicy->granularity) continue; if (iter->state == D_DONE && !iter->ref) { wait_for_completion_io(&iter->wait); if (!iter->error) trimmed += iter->di.len; __remove_discard_cmd(sbi, iter); } else { iter->ref++; dc = iter; break; } } mutex_unlock(&dcc->cmd_lock); if (dc) { trimmed += __wait_one_discard_bio(sbi, dc); goto next; } return trimmed; } static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, struct discard_policy *dpolicy) { struct discard_policy dp; unsigned int discard_blks; if (dpolicy) return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); /* wait all */ __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY); discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY); discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); return discard_blks; } /* This should be covered by global mutex, &sit_i->sentry_lock */ static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct discard_cmd *dc; bool need_wait = false; mutex_lock(&dcc->cmd_lock); dc = __lookup_discard_cmd(sbi, blkaddr); #ifdef CONFIG_BLK_DEV_ZONED if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) { int devi = f2fs_bdev_index(sbi, dc->bdev); if (devi < 0) { mutex_unlock(&dcc->cmd_lock); return; } if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { /* force submit zone reset */ if (dc->state == D_PREP) __submit_zone_reset_cmd(sbi, dc, REQ_SYNC, &dcc->wait_list, NULL); dc->ref++; mutex_unlock(&dcc->cmd_lock); /* wait zone reset */ __wait_one_discard_bio(sbi, dc); return; } } #endif if (dc) { if (dc->state == D_PREP) { __punch_discard_cmd(sbi, dc, blkaddr); } else { dc->ref++; need_wait = true; } } mutex_unlock(&dcc->cmd_lock); if (need_wait) __wait_one_discard_bio(sbi, dc); } void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; if (dcc && dcc->f2fs_issue_discard) { struct task_struct *discard_thread = dcc->f2fs_issue_discard; dcc->f2fs_issue_discard = NULL; kthread_stop(discard_thread); } } /** * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT * @sbi: the f2fs_sb_info data for discard cmd to issue * * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped * * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false. */ bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct discard_policy dpolicy; bool dropped; if (!atomic_read(&dcc->discard_cmd_cnt)) return true; __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, dcc->discard_granularity); __issue_discard_cmd(sbi, &dpolicy); dropped = __drop_discard_cmd(sbi); /* just to make sure there is no pending discard commands */ __wait_all_discard_cmd(sbi, NULL); f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); return !dropped; } static int issue_discard_thread(void *data) { struct f2fs_sb_info *sbi = data; struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; wait_queue_head_t *q = &dcc->discard_wait_queue; struct discard_policy dpolicy; unsigned int wait_ms = dcc->min_discard_issue_time; int issued; set_freezable(); do { wait_event_freezable_timeout(*q, kthread_should_stop() || dcc->discard_wake, msecs_to_jiffies(wait_ms)); if (sbi->gc_mode == GC_URGENT_HIGH || !f2fs_available_free_memory(sbi, DISCARD_CACHE)) __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, MIN_DISCARD_GRANULARITY); else __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, dcc->discard_granularity); if (dcc->discard_wake) dcc->discard_wake = false; /* clean up pending candidates before going to sleep */ if (atomic_read(&dcc->queued_discard)) __wait_all_discard_cmd(sbi, NULL); if (f2fs_readonly(sbi->sb)) continue; if (kthread_should_stop()) return 0; if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || !atomic_read(&dcc->discard_cmd_cnt)) { wait_ms = dpolicy.max_interval; continue; } sb_start_intwrite(sbi->sb); issued = __issue_discard_cmd(sbi, &dpolicy); if (issued > 0) { __wait_all_discard_cmd(sbi, &dpolicy); wait_ms = dpolicy.min_interval; } else if (issued == -1) { wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); if (!wait_ms) wait_ms = dpolicy.mid_interval; } else { wait_ms = dpolicy.max_interval; } if (!atomic_read(&dcc->discard_cmd_cnt)) wait_ms = dpolicy.max_interval; sb_end_intwrite(sbi->sb); } while (!kthread_should_stop()); return 0; } #ifdef CONFIG_BLK_DEV_ZONED static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t blkstart, block_t blklen) { sector_t sector, nr_sects; block_t lblkstart = blkstart; int devi = 0; u64 remainder = 0; if (f2fs_is_multi_device(sbi)) { devi = f2fs_target_device_index(sbi, blkstart); if (blkstart < FDEV(devi).start_blk || blkstart > FDEV(devi).end_blk) { f2fs_err(sbi, "Invalid block %x", blkstart); return -EIO; } blkstart -= FDEV(devi).start_blk; } /* For sequential zones, reset the zone write pointer */ if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { sector = SECTOR_FROM_BLOCK(blkstart); nr_sects = SECTOR_FROM_BLOCK(blklen); div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder); if (remainder || nr_sects != bdev_zone_sectors(bdev)) { f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", devi, sbi->s_ndevs ? FDEV(devi).path : "", blkstart, blklen); return -EIO; } if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) { unsigned int nofs_flags; int ret; trace_f2fs_issue_reset_zone(bdev, blkstart); nofs_flags = memalloc_nofs_save(); ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, sector, nr_sects); memalloc_nofs_restore(nofs_flags); return ret; } __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen); return 0; } /* For conventional zones, use regular discard if supported */ __queue_discard_cmd(sbi, bdev, lblkstart, blklen); return 0; } #endif static int __issue_discard_async(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t blkstart, block_t blklen) { #ifdef CONFIG_BLK_DEV_ZONED if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); #endif __queue_discard_cmd(sbi, bdev, blkstart, blklen); return 0; } static int f2fs_issue_discard(struct f2fs_sb_info *sbi, block_t blkstart, block_t blklen) { sector_t start = blkstart, len = 0; struct block_device *bdev; struct seg_entry *se; unsigned int offset; block_t i; int err = 0; bdev = f2fs_target_device(sbi, blkstart, NULL); for (i = blkstart; i < blkstart + blklen; i++, len++) { if (i != start) { struct block_device *bdev2 = f2fs_target_device(sbi, i, NULL); if (bdev2 != bdev) { err = __issue_discard_async(sbi, bdev, start, len); if (err) return err; bdev = bdev2; start = i; len = 0; } } se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); offset = GET_BLKOFF_FROM_SEG0(sbi, i); if (f2fs_block_unit_discard(sbi) && !f2fs_test_and_set_bit(offset, se->discard_map)) sbi->discard_blks--; } if (len) err = __issue_discard_async(sbi, bdev, start, len); return err; } static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, bool check_only) { int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); unsigned long *cur_map = (unsigned long *)se->cur_valid_map; unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; unsigned long *discard_map = (unsigned long *)se->discard_map; unsigned long *dmap = SIT_I(sbi)->tmp_map; unsigned int start = 0, end = -1; bool force = (cpc->reason & CP_DISCARD); struct discard_entry *de = NULL; struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; int i; if (se->valid_blocks == BLKS_PER_SEG(sbi) || !f2fs_hw_support_discard(sbi) || !f2fs_block_unit_discard(sbi)) return false; if (!force) { if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || SM_I(sbi)->dcc_info->nr_discards >= SM_I(sbi)->dcc_info->max_discards) return false; } /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ for (i = 0; i < entries; i++) dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; while (force || SM_I(sbi)->dcc_info->nr_discards <= SM_I(sbi)->dcc_info->max_discards) { start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1); if (start >= BLKS_PER_SEG(sbi)) break; end = __find_rev_next_zero_bit(dmap, BLKS_PER_SEG(sbi), start + 1); if (force && start && end != BLKS_PER_SEG(sbi) && (end - start) < cpc->trim_minlen) continue; if (check_only) return true; if (!de) { de = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_F2FS_ZERO, true, NULL); de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); list_add_tail(&de->list, head); } for (i = start; i < end; i++) __set_bit_le(i, (void *)de->discard_map); SM_I(sbi)->dcc_info->nr_discards += end - start; } return false; } static void release_discard_addr(struct discard_entry *entry) { list_del(&entry->list); kmem_cache_free(discard_entry_slab, entry); } void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) { struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); struct discard_entry *entry, *this; /* drop caches */ list_for_each_entry_safe(entry, this, head, list) release_discard_addr(entry); } /* * Should call f2fs_clear_prefree_segments after checkpoint is done. */ static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned int segno; mutex_lock(&dirty_i->seglist_lock); for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) __set_test_and_free(sbi, segno, false); mutex_unlock(&dirty_i->seglist_lock); } void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct list_head *head = &dcc->entry_list; struct discard_entry *entry, *this; struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; unsigned int start = 0, end = -1; unsigned int secno, start_segno; bool force = (cpc->reason & CP_DISCARD); bool section_alignment = F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION; if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) section_alignment = true; mutex_lock(&dirty_i->seglist_lock); while (1) { int i; if (section_alignment && end != -1) end--; start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); if (start >= MAIN_SEGS(sbi)) break; end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), start + 1); if (section_alignment) { start = rounddown(start, SEGS_PER_SEC(sbi)); end = roundup(end, SEGS_PER_SEC(sbi)); } for (i = start; i < end; i++) { if (test_and_clear_bit(i, prefree_map)) dirty_i->nr_dirty[PRE]--; } if (!f2fs_realtime_discard_enable(sbi)) continue; if (force && start >= cpc->trim_start && (end - 1) <= cpc->trim_end) continue; /* Should cover 2MB zoned device for zone-based reset */ if (!f2fs_sb_has_blkzoned(sbi) && (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) { f2fs_issue_discard(sbi, START_BLOCK(sbi, start), SEGS_TO_BLKS(sbi, end - start)); continue; } next: secno = GET_SEC_FROM_SEG(sbi, start); start_segno = GET_SEG_FROM_SEC(sbi, secno); if (!IS_CURSEC(sbi, secno) && !get_valid_blocks(sbi, start, true)) f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), BLKS_PER_SEC(sbi)); start = start_segno + SEGS_PER_SEC(sbi); if (start < end) goto next; else end = start - 1; } mutex_unlock(&dirty_i->seglist_lock); if (!f2fs_block_unit_discard(sbi)) goto wakeup; /* send small discards */ list_for_each_entry_safe(entry, this, head, list) { unsigned int cur_pos = 0, next_pos, len, total_len = 0; bool is_valid = test_bit_le(0, entry->discard_map); find_next: if (is_valid) { next_pos = find_next_zero_bit_le(entry->discard_map, BLKS_PER_SEG(sbi), cur_pos); len = next_pos - cur_pos; if (f2fs_sb_has_blkzoned(sbi) || (force && len < cpc->trim_minlen)) goto skip; f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, len); total_len += len; } else { next_pos = find_next_bit_le(entry->discard_map, BLKS_PER_SEG(sbi), cur_pos); } skip: cur_pos = next_pos; is_valid = !is_valid; if (cur_pos < BLKS_PER_SEG(sbi)) goto find_next; release_discard_addr(entry); dcc->nr_discards -= total_len; } wakeup: wake_up_discard_thread(sbi, false); } int f2fs_start_discard_thread(struct f2fs_sb_info *sbi) { dev_t dev = sbi->sb->s_bdev->bd_dev; struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; int err = 0; if (f2fs_sb_has_readonly(sbi)) { f2fs_info(sbi, "Skip to start discard thread for readonly image"); return 0; } if (!f2fs_realtime_discard_enable(sbi)) return 0; dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); if (IS_ERR(dcc->f2fs_issue_discard)) { err = PTR_ERR(dcc->f2fs_issue_discard); dcc->f2fs_issue_discard = NULL; } return err; } static int create_discard_cmd_control(struct f2fs_sb_info *sbi) { struct discard_cmd_control *dcc; int err = 0, i; if (SM_I(sbi)->dcc_info) { dcc = SM_I(sbi)->dcc_info; goto init_thread; } dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); if (!dcc) return -ENOMEM; dcc->discard_io_aware_gran = MAX_PLIST_NUM; dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY; dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE; if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) dcc->discard_granularity = BLKS_PER_SEG(sbi); else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) dcc->discard_granularity = BLKS_PER_SEC(sbi); INIT_LIST_HEAD(&dcc->entry_list); for (i = 0; i < MAX_PLIST_NUM; i++) INIT_LIST_HEAD(&dcc->pend_list[i]); INIT_LIST_HEAD(&dcc->wait_list); INIT_LIST_HEAD(&dcc->fstrim_list); mutex_init(&dcc->cmd_lock); atomic_set(&dcc->issued_discard, 0); atomic_set(&dcc->queued_discard, 0); atomic_set(&dcc->discard_cmd_cnt, 0); dcc->nr_discards = 0; dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi)); dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST; dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME; dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME; dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME; dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL; dcc->undiscard_blks = 0; dcc->next_pos = 0; dcc->root = RB_ROOT_CACHED; dcc->rbtree_check = false; init_waitqueue_head(&dcc->discard_wait_queue); SM_I(sbi)->dcc_info = dcc; init_thread: err = f2fs_start_discard_thread(sbi); if (err) { kfree(dcc); SM_I(sbi)->dcc_info = NULL; } return err; } static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; if (!dcc) return; f2fs_stop_discard_thread(sbi); /* * Recovery can cache discard commands, so in error path of * fill_super(), it needs to give a chance to handle them. */ f2fs_issue_discard_timeout(sbi); kfree(dcc); SM_I(sbi)->dcc_info = NULL; } static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) { struct sit_info *sit_i = SIT_I(sbi); if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { sit_i->dirty_sentries++; return false; } return true; } static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, unsigned int segno, int modified) { struct seg_entry *se = get_seg_entry(sbi, segno); se->type = type; if (modified) __mark_sit_entry_dirty(sbi, segno); } static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr) { unsigned int segno = GET_SEGNO(sbi, blkaddr); if (segno == NULL_SEGNO) return 0; return get_seg_entry(sbi, segno)->mtime; } static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, unsigned long long old_mtime) { struct seg_entry *se; unsigned int segno = GET_SEGNO(sbi, blkaddr); unsigned long long ctime = get_mtime(sbi, false); unsigned long long mtime = old_mtime ? old_mtime : ctime; if (segno == NULL_SEGNO) return; se = get_seg_entry(sbi, segno); if (!se->mtime) se->mtime = mtime; else se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, se->valid_blocks + 1); if (ctime > SIT_I(sbi)->max_mtime) SIT_I(sbi)->max_mtime = ctime; } static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) { struct seg_entry *se; unsigned int segno, offset; long int new_vblocks; bool exist; #ifdef CONFIG_F2FS_CHECK_FS bool mir_exist; #endif segno = GET_SEGNO(sbi, blkaddr); if (segno == NULL_SEGNO) return; se = get_seg_entry(sbi, segno); new_vblocks = se->valid_blocks + del; offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); f2fs_bug_on(sbi, (new_vblocks < 0 || (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); se->valid_blocks = new_vblocks; /* Update valid block bitmap */ if (del > 0) { exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); #ifdef CONFIG_F2FS_CHECK_FS mir_exist = f2fs_test_and_set_bit(offset, se->cur_valid_map_mir); if (unlikely(exist != mir_exist)) { f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", blkaddr, exist); f2fs_bug_on(sbi, 1); } #endif if (unlikely(exist)) { f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", blkaddr); f2fs_bug_on(sbi, 1); se->valid_blocks--; del = 0; } if (f2fs_block_unit_discard(sbi) && !f2fs_test_and_set_bit(offset, se->discard_map)) sbi->discard_blks--; /* * SSR should never reuse block which is checkpointed * or newly invalidated. */ if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) se->ckpt_valid_blocks++; } } else { exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); #ifdef CONFIG_F2FS_CHECK_FS mir_exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map_mir); if (unlikely(exist != mir_exist)) { f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", blkaddr, exist); f2fs_bug_on(sbi, 1); } #endif if (unlikely(!exist)) { f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", blkaddr); f2fs_bug_on(sbi, 1); se->valid_blocks++; del = 0; } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { /* * If checkpoints are off, we must not reuse data that * was used in the previous checkpoint. If it was used * before, we must track that to know how much space we * really have. */ if (f2fs_test_bit(offset, se->ckpt_valid_map)) { spin_lock(&sbi->stat_lock); sbi->unusable_block_count++; spin_unlock(&sbi->stat_lock); } } if (f2fs_block_unit_discard(sbi) && f2fs_test_and_clear_bit(offset, se->discard_map)) sbi->discard_blks++; } if (!f2fs_test_bit(offset, se->ckpt_valid_map)) se->ckpt_valid_blocks += del; __mark_sit_entry_dirty(sbi, segno); /* update total number of valid blocks to be written in ckpt area */ SIT_I(sbi)->written_valid_blocks += del; if (__is_large_section(sbi)) get_sec_entry(sbi, segno)->valid_blocks += del; } void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) { unsigned int segno = GET_SEGNO(sbi, addr); struct sit_info *sit_i = SIT_I(sbi); f2fs_bug_on(sbi, addr == NULL_ADDR); if (addr == NEW_ADDR || addr == COMPRESS_ADDR) return; f2fs_invalidate_internal_cache(sbi, addr); /* add it into sit main buffer */ down_write(&sit_i->sentry_lock); update_segment_mtime(sbi, addr, 0); update_sit_entry(sbi, addr, -1); /* add it into dirty seglist */ locate_dirty_segment(sbi, segno); up_write(&sit_i->sentry_lock); } bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) { struct sit_info *sit_i = SIT_I(sbi); unsigned int segno, offset; struct seg_entry *se; bool is_cp = false; if (!__is_valid_data_blkaddr(blkaddr)) return true; down_read(&sit_i->sentry_lock); segno = GET_SEGNO(sbi, blkaddr); se = get_seg_entry(sbi, segno); offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); if (f2fs_test_bit(offset, se->ckpt_valid_map)) is_cp = true; up_read(&sit_i->sentry_lock); return is_cp; } static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); if (sbi->ckpt->alloc_type[type] == SSR) return BLKS_PER_SEG(sbi); return curseg->next_blkoff; } /* * Calculate the number of current summary pages for writing */ int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) { int valid_sum_count = 0; int i, sum_in_page; for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { if (sbi->ckpt->alloc_type[i] != SSR && for_ra) valid_sum_count += le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]); else valid_sum_count += f2fs_curseg_valid_blocks(sbi, i); } sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE; if (valid_sum_count <= sum_in_page) return 1; else if ((valid_sum_count - sum_in_page) <= (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) return 2; return 3; } /* * Caller should put this summary page */ struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) { if (unlikely(f2fs_cp_error(sbi))) return ERR_PTR(-EIO); return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); } void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) { struct page *page = f2fs_grab_meta_page(sbi, blk_addr); memcpy(page_address(page), src, PAGE_SIZE); set_page_dirty(page); f2fs_put_page(page, 1); } static void write_sum_page(struct f2fs_sb_info *sbi, struct f2fs_summary_block *sum_blk, block_t blk_addr) { f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); } static void write_current_sum_page(struct f2fs_sb_info *sbi, int type, block_t blk_addr) { struct curseg_info *curseg = CURSEG_I(sbi, type); struct page *page = f2fs_grab_meta_page(sbi, blk_addr); struct f2fs_summary_block *src = curseg->sum_blk; struct f2fs_summary_block *dst; dst = (struct f2fs_summary_block *)page_address(page); memset(dst, 0, PAGE_SIZE); mutex_lock(&curseg->curseg_mutex); down_read(&curseg->journal_rwsem); memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); up_read(&curseg->journal_rwsem); memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); mutex_unlock(&curseg->curseg_mutex); set_page_dirty(page); f2fs_put_page(page, 1); } static int is_next_segment_free(struct f2fs_sb_info *sbi, struct curseg_info *curseg, int type) { unsigned int segno = curseg->segno + 1; struct free_segmap_info *free_i = FREE_I(sbi); if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi)) return !test_bit(segno, free_i->free_segmap); return 0; } /* * Find a new segment from the free segments bitmap to right order * This function should be returned with success, otherwise BUG */ static int get_new_segment(struct f2fs_sb_info *sbi, unsigned int *newseg, bool new_sec, bool pinning) { struct free_segmap_info *free_i = FREE_I(sbi); unsigned int segno, secno, zoneno; unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); bool init = true; int i; int ret = 0; spin_lock(&free_i->segmap_lock); if (time_to_inject(sbi, FAULT_NO_SEGMENT)) { ret = -ENOSPC; goto out_unlock; } if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) { segno = find_next_zero_bit(free_i->free_segmap, GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) goto got_it; } /* * If we format f2fs on zoned storage, let's try to get pinned sections * from beginning of the storage, which should be a conventional one. */ if (f2fs_sb_has_blkzoned(sbi)) { segno = pinning ? 0 : max(first_zoned_segno(sbi), *newseg); hint = GET_SEC_FROM_SEG(sbi, segno); } find_other_zone: secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); if (secno >= MAIN_SECS(sbi)) { secno = find_first_zero_bit(free_i->free_secmap, MAIN_SECS(sbi)); if (secno >= MAIN_SECS(sbi)) { ret = -ENOSPC; goto out_unlock; } } segno = GET_SEG_FROM_SEC(sbi, secno); zoneno = GET_ZONE_FROM_SEC(sbi, secno); /* give up on finding another zone */ if (!init) goto got_it; if (sbi->secs_per_zone == 1) goto got_it; if (zoneno == old_zoneno) goto got_it; for (i = 0; i < NR_CURSEG_TYPE; i++) if (CURSEG_I(sbi, i)->zone == zoneno) break; if (i < NR_CURSEG_TYPE) { /* zone is in user, try another */ if (zoneno + 1 >= total_zones) hint = 0; else hint = (zoneno + 1) * sbi->secs_per_zone; init = false; goto find_other_zone; } got_it: /* set it as dirty segment in free segmap */ f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); /* no free section in conventional zone */ if (new_sec && pinning && !f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) { ret = -EAGAIN; goto out_unlock; } __set_inuse(sbi, segno); *newseg = segno; out_unlock: spin_unlock(&free_i->segmap_lock); if (ret == -ENOSPC) { f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT); f2fs_bug_on(sbi, 1); } return ret; } static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) { struct curseg_info *curseg = CURSEG_I(sbi, type); struct summary_footer *sum_footer; unsigned short seg_type = curseg->seg_type; /* only happen when get_new_segment() fails */ if (curseg->next_segno == NULL_SEGNO) return; curseg->inited = true; curseg->segno = curseg->next_segno; curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); curseg->next_blkoff = 0; curseg->next_segno = NULL_SEGNO; sum_footer = &(curseg->sum_blk->footer); memset(sum_footer, 0, sizeof(struct summary_footer)); sanity_check_seg_type(sbi, seg_type); if (IS_DATASEG(seg_type)) SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); if (IS_NODESEG(seg_type)) SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); } static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned short seg_type = curseg->seg_type; sanity_check_seg_type(sbi, seg_type); if (f2fs_need_rand_seg(sbi)) return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi)); if (__is_large_section(sbi)) return curseg->segno; /* inmem log may not locate on any segment after mount */ if (!curseg->inited) return 0; if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) return 0; if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)) return 0; if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) return SIT_I(sbi)->last_victim[ALLOC_NEXT]; /* find segments from 0 to reuse freed segments */ if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) return 0; return curseg->segno; } /* * Allocate a current working segment. * This function always allocates a free segment in LFS manner. */ static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) { struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned int segno = curseg->segno; bool pinning = type == CURSEG_COLD_DATA_PINNED; int ret; if (curseg->inited) write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno)); segno = __get_next_segno(sbi, type); ret = get_new_segment(sbi, &segno, new_sec, pinning); if (ret) { if (ret == -ENOSPC) curseg->segno = NULL_SEGNO; return ret; } curseg->next_segno = segno; reset_curseg(sbi, type, 1); curseg->alloc_type = LFS; if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) curseg->fragment_remained_chunk = get_random_u32_inclusive(1, sbi->max_fragment_chunk); return 0; } static int __next_free_blkoff(struct f2fs_sb_info *sbi, int segno, block_t start) { struct seg_entry *se = get_seg_entry(sbi, segno); int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); unsigned long *target_map = SIT_I(sbi)->tmp_map; unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; unsigned long *cur_map = (unsigned long *)se->cur_valid_map; int i; for (i = 0; i < entries; i++) target_map[i] = ckpt_map[i] | cur_map[i]; return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start); } static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi, struct curseg_info *seg) { return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1); } bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) { return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi); } /* * This function always allocates a used segment(from dirty seglist) by SSR * manner, so it should recover the existing segment information of valid blocks */ static int change_curseg(struct f2fs_sb_info *sbi, int type) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned int new_segno = curseg->next_segno; struct f2fs_summary_block *sum_node; struct page *sum_page; write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); __set_test_and_inuse(sbi, new_segno); mutex_lock(&dirty_i->seglist_lock); __remove_dirty_segment(sbi, new_segno, PRE); __remove_dirty_segment(sbi, new_segno, DIRTY); mutex_unlock(&dirty_i->seglist_lock); reset_curseg(sbi, type, 1); curseg->alloc_type = SSR; curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); sum_page = f2fs_get_sum_page(sbi, new_segno); if (IS_ERR(sum_page)) { /* GC won't be able to use stale summary pages by cp_error */ memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); return PTR_ERR(sum_page); } sum_node = (struct f2fs_summary_block *)page_address(sum_page); memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); f2fs_put_page(sum_page, 1); return 0; } static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, int alloc_mode, unsigned long long age); static int get_atssr_segment(struct f2fs_sb_info *sbi, int type, int target_type, int alloc_mode, unsigned long long age) { struct curseg_info *curseg = CURSEG_I(sbi, type); int ret = 0; curseg->seg_type = target_type; if (get_ssr_segment(sbi, type, alloc_mode, age)) { struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); curseg->seg_type = se->type; ret = change_curseg(sbi, type); } else { /* allocate cold segment by default */ curseg->seg_type = CURSEG_COLD_DATA; ret = new_curseg(sbi, type, true); } stat_inc_seg_type(sbi, curseg); return ret; } static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) { struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); int ret = 0; if (!sbi->am.atgc_enabled) return 0; f2fs_down_read(&SM_I(sbi)->curseg_lock); mutex_lock(&curseg->curseg_mutex); down_write(&SIT_I(sbi)->sentry_lock); ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0); up_write(&SIT_I(sbi)->sentry_lock); mutex_unlock(&curseg->curseg_mutex); f2fs_up_read(&SM_I(sbi)->curseg_lock); return ret; } int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) { return __f2fs_init_atgc_curseg(sbi); } static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); mutex_lock(&curseg->curseg_mutex); if (!curseg->inited) goto out; if (get_valid_blocks(sbi, curseg->segno, false)) { write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); } else { mutex_lock(&DIRTY_I(sbi)->seglist_lock); __set_test_and_free(sbi, curseg->segno, true); mutex_unlock(&DIRTY_I(sbi)->seglist_lock); } out: mutex_unlock(&curseg->curseg_mutex); } void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) { __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); if (sbi->am.atgc_enabled) __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); } static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); mutex_lock(&curseg->curseg_mutex); if (!curseg->inited) goto out; if (get_valid_blocks(sbi, curseg->segno, false)) goto out; mutex_lock(&DIRTY_I(sbi)->seglist_lock); __set_test_and_inuse(sbi, curseg->segno); mutex_unlock(&DIRTY_I(sbi)->seglist_lock); out: mutex_unlock(&curseg->curseg_mutex); } void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) { __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); if (sbi->am.atgc_enabled) __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); } static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, int alloc_mode, unsigned long long age) { struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned segno = NULL_SEGNO; unsigned short seg_type = curseg->seg_type; int i, cnt; bool reversed = false; sanity_check_seg_type(sbi, seg_type); /* f2fs_need_SSR() already forces to do this */ if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { curseg->next_segno = segno; return 1; } /* For node segments, let's do SSR more intensively */ if (IS_NODESEG(seg_type)) { if (seg_type >= CURSEG_WARM_NODE) { reversed = true; i = CURSEG_COLD_NODE; } else { i = CURSEG_HOT_NODE; } cnt = NR_CURSEG_NODE_TYPE; } else { if (seg_type >= CURSEG_WARM_DATA) { reversed = true; i = CURSEG_COLD_DATA; } else { i = CURSEG_HOT_DATA; } cnt = NR_CURSEG_DATA_TYPE; } for (; cnt-- > 0; reversed ? i-- : i++) { if (i == seg_type) continue; if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { curseg->next_segno = segno; return 1; } } /* find valid_blocks=0 in dirty list */ if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { segno = get_free_segment(sbi); if (segno != NULL_SEGNO) { curseg->next_segno = segno; return 1; } } return 0; } static bool need_new_seg(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && curseg->seg_type == CURSEG_WARM_NODE) return true; if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg, type) && likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) return true; if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0)) return true; return false; } int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, unsigned int start, unsigned int end) { struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned int segno; int ret = 0; f2fs_down_read(&SM_I(sbi)->curseg_lock); mutex_lock(&curseg->curseg_mutex); down_write(&SIT_I(sbi)->sentry_lock); segno = CURSEG_I(sbi, type)->segno; if (segno < start || segno > end) goto unlock; if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) ret = change_curseg(sbi, type); else ret = new_curseg(sbi, type, true); stat_inc_seg_type(sbi, curseg); locate_dirty_segment(sbi, segno); unlock: up_write(&SIT_I(sbi)->sentry_lock); if (segno != curseg->segno) f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", type, segno, curseg->segno); mutex_unlock(&curseg->curseg_mutex); f2fs_up_read(&SM_I(sbi)->curseg_lock); return ret; } static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type, bool new_sec, bool force) { struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned int old_segno; int err = 0; if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited) goto allocate; if (!force && curseg->inited && !curseg->next_blkoff && !get_valid_blocks(sbi, curseg->segno, new_sec) && !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) return 0; allocate: old_segno = curseg->segno; err = new_curseg(sbi, type, true); if (err) return err; stat_inc_seg_type(sbi, curseg); locate_dirty_segment(sbi, old_segno); return 0; } int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) { int ret; f2fs_down_read(&SM_I(sbi)->curseg_lock); down_write(&SIT_I(sbi)->sentry_lock); ret = __allocate_new_segment(sbi, type, true, force); up_write(&SIT_I(sbi)->sentry_lock); f2fs_up_read(&SM_I(sbi)->curseg_lock); return ret; } int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi) { int err; bool gc_required = true; retry: f2fs_lock_op(sbi); err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); f2fs_unlock_op(sbi); if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) { f2fs_down_write(&sbi->gc_lock); err = f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk), true, 1); f2fs_up_write(&sbi->gc_lock); gc_required = false; if (!err) goto retry; } return err; } int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) { int i; int err = 0; f2fs_down_read(&SM_I(sbi)->curseg_lock); down_write(&SIT_I(sbi)->sentry_lock); for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) err += __allocate_new_segment(sbi, i, false, false); up_write(&SIT_I(sbi)->sentry_lock); f2fs_up_read(&SM_I(sbi)->curseg_lock); return err; } bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc) { __u64 trim_start = cpc->trim_start; bool has_candidate = false; down_write(&SIT_I(sbi)->sentry_lock); for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { if (add_discard_addrs(sbi, cpc, true)) { has_candidate = true; break; } } up_write(&SIT_I(sbi)->sentry_lock); cpc->trim_start = trim_start; return has_candidate; } static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, struct discard_policy *dpolicy, unsigned int start, unsigned int end) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct discard_cmd *prev_dc = NULL, *next_dc = NULL; struct rb_node **insert_p = NULL, *insert_parent = NULL; struct discard_cmd *dc; struct blk_plug plug; int issued; unsigned int trimmed = 0; next: issued = 0; mutex_lock(&dcc->cmd_lock); if (unlikely(dcc->rbtree_check)) f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); dc = __lookup_discard_cmd_ret(&dcc->root, start, &prev_dc, &next_dc, &insert_p, &insert_parent); if (!dc) dc = next_dc; blk_start_plug(&plug); while (dc && dc->di.lstart <= end) { struct rb_node *node; int err = 0; if (dc->di.len < dpolicy->granularity) goto skip; if (dc->state != D_PREP) { list_move_tail(&dc->list, &dcc->fstrim_list); goto skip; } err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); if (issued >= dpolicy->max_requests) { start = dc->di.lstart + dc->di.len; if (err) __remove_discard_cmd(sbi, dc); blk_finish_plug(&plug); mutex_unlock(&dcc->cmd_lock); trimmed += __wait_all_discard_cmd(sbi, NULL); f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); goto next; } skip: node = rb_next(&dc->rb_node); if (err) __remove_discard_cmd(sbi, dc); dc = rb_entry_safe(node, struct discard_cmd, rb_node); if (fatal_signal_pending(current)) break; } blk_finish_plug(&plug); mutex_unlock(&dcc->cmd_lock); return trimmed; } int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) { __u64 start = F2FS_BYTES_TO_BLK(range->start); __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; unsigned int start_segno, end_segno; block_t start_block, end_block; struct cp_control cpc; struct discard_policy dpolicy; unsigned long long trimmed = 0; int err = 0; bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) return -EINVAL; if (end < MAIN_BLKADDR(sbi)) goto out; if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); return -EFSCORRUPTED; } /* start/end segment number in main_area */ start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : GET_SEGNO(sbi, end); if (need_align) { start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi)); end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1; } cpc.reason = CP_DISCARD; cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); cpc.trim_start = start_segno; cpc.trim_end = end_segno; if (sbi->discard_blks == 0) goto out; f2fs_down_write(&sbi->gc_lock); stat_inc_cp_call_count(sbi, TOTAL_CALL); err = f2fs_write_checkpoint(sbi, &cpc); f2fs_up_write(&sbi->gc_lock); if (err) goto out; /* * We filed discard candidates, but actually we don't need to wait for * all of them, since they'll be issued in idle time along with runtime * discard option. User configuration looks like using runtime discard * or periodic fstrim instead of it. */ if (f2fs_realtime_discard_enable(sbi)) goto out; start_block = START_BLOCK(sbi, start_segno); end_block = START_BLOCK(sbi, end_segno + 1); __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); trimmed = __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block); trimmed += __wait_discard_cmd_range(sbi, &dpolicy, start_block, end_block); out: if (!err) range->len = F2FS_BLK_TO_BYTES(trimmed); return err; } int f2fs_rw_hint_to_seg_type(enum rw_hint hint) { switch (hint) { case WRITE_LIFE_SHORT: return CURSEG_HOT_DATA; case WRITE_LIFE_EXTREME: return CURSEG_COLD_DATA; default: return CURSEG_WARM_DATA; } } static int __get_segment_type_2(struct f2fs_io_info *fio) { if (fio->type == DATA) return CURSEG_HOT_DATA; else return CURSEG_HOT_NODE; } static int __get_segment_type_4(struct f2fs_io_info *fio) { if (fio->type == DATA) { struct inode *inode = fio->page->mapping->host; if (S_ISDIR(inode->i_mode)) return CURSEG_HOT_DATA; else return CURSEG_COLD_DATA; } else { if (IS_DNODE(fio->page) && is_cold_node(fio->page)) return CURSEG_WARM_NODE; else return CURSEG_COLD_NODE; } } static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct extent_info ei = {}; if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) { if (!ei.age) return NO_CHECK_TYPE; if (ei.age <= sbi->hot_data_age_threshold) return CURSEG_HOT_DATA; if (ei.age <= sbi->warm_data_age_threshold) return CURSEG_WARM_DATA; return CURSEG_COLD_DATA; } return NO_CHECK_TYPE; } static int __get_segment_type_6(struct f2fs_io_info *fio) { if (fio->type == DATA) { struct inode *inode = fio->page->mapping->host; int type; if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) return CURSEG_COLD_DATA_PINNED; if (page_private_gcing(fio->page)) { if (fio->sbi->am.atgc_enabled && (fio->io_type == FS_DATA_IO) && (fio->sbi->gc_mode != GC_URGENT_HIGH)) return CURSEG_ALL_DATA_ATGC; else return CURSEG_COLD_DATA; } if (file_is_cold(inode) || f2fs_need_compress_data(inode)) return CURSEG_COLD_DATA; type = __get_age_segment_type(inode, fio->page->index); if (type != NO_CHECK_TYPE) return type; if (file_is_hot(inode) || is_inode_flag_set(inode, FI_HOT_DATA) || f2fs_is_cow_file(inode)) return CURSEG_HOT_DATA; return f2fs_rw_hint_to_seg_type(inode->i_write_hint); } else { if (IS_DNODE(fio->page)) return is_cold_node(fio->page) ? CURSEG_WARM_NODE : CURSEG_HOT_NODE; return CURSEG_COLD_NODE; } } static int __get_segment_type(struct f2fs_io_info *fio) { int type = 0; switch (F2FS_OPTION(fio->sbi).active_logs) { case 2: type = __get_segment_type_2(fio); break; case 4: type = __get_segment_type_4(fio); break; case 6: type = __get_segment_type_6(fio); break; default: f2fs_bug_on(fio->sbi, true); } if (IS_HOT(type)) fio->temp = HOT; else if (IS_WARM(type)) fio->temp = WARM; else fio->temp = COLD; return type; } static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi, struct curseg_info *seg) { /* To allocate block chunks in different sizes, use random number */ if (--seg->fragment_remained_chunk > 0) return; seg->fragment_remained_chunk = get_random_u32_inclusive(1, sbi->max_fragment_chunk); seg->next_blkoff += get_random_u32_inclusive(1, sbi->max_fragment_hole); } static void reset_curseg_fields(struct curseg_info *curseg) { curseg->inited = false; curseg->segno = NULL_SEGNO; curseg->next_segno = 0; } int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, block_t old_blkaddr, block_t *new_blkaddr, struct f2fs_summary *sum, int type, struct f2fs_io_info *fio) { struct sit_info *sit_i = SIT_I(sbi); struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned long long old_mtime; bool from_gc = (type == CURSEG_ALL_DATA_ATGC); struct seg_entry *se = NULL; bool segment_full = false; int ret = 0; f2fs_down_read(&SM_I(sbi)->curseg_lock); mutex_lock(&curseg->curseg_mutex); down_write(&sit_i->sentry_lock); if (curseg->segno == NULL_SEGNO) { ret = -ENOSPC; goto out_err; } if (from_gc) { f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); sanity_check_seg_type(sbi, se->type); f2fs_bug_on(sbi, IS_NODESEG(se->type)); } *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi)); f2fs_wait_discard_bio(sbi, *new_blkaddr); curseg->sum_blk->entries[curseg->next_blkoff] = *sum; if (curseg->alloc_type == SSR) { curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg); } else { curseg->next_blkoff++; if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) f2fs_randomize_chunk(sbi, curseg); } if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno)) segment_full = true; stat_inc_block_count(sbi, curseg); if (from_gc) { old_mtime = get_segment_mtime(sbi, old_blkaddr); } else { update_segment_mtime(sbi, old_blkaddr, 0); old_mtime = 0; } update_segment_mtime(sbi, *new_blkaddr, old_mtime); /* * SIT information should be updated before segment allocation, * since SSR needs latest valid block information. */ update_sit_entry(sbi, *new_blkaddr, 1); update_sit_entry(sbi, old_blkaddr, -1); /* * If the current segment is full, flush it out and replace it with a * new segment. */ if (segment_full) { if (type == CURSEG_COLD_DATA_PINNED && !((curseg->segno + 1) % sbi->segs_per_sec)) { reset_curseg_fields(curseg); goto skip_new_segment; } if (from_gc) { ret = get_atssr_segment(sbi, type, se->type, AT_SSR, se->mtime); } else { if (need_new_seg(sbi, type)) ret = new_curseg(sbi, type, false); else ret = change_curseg(sbi, type); stat_inc_seg_type(sbi, curseg); } if (ret) goto out_err; } skip_new_segment: /* * segment dirty status should be updated after segment allocation, * so we just need to update status only one time after previous * segment being closed. */ locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); if (IS_DATASEG(curseg->seg_type)) atomic64_inc(&sbi->allocated_data_blocks); up_write(&sit_i->sentry_lock); if (page && IS_NODESEG(curseg->seg_type)) { fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); f2fs_inode_chksum_set(sbi, page); } if (fio) { struct f2fs_bio_info *io; INIT_LIST_HEAD(&fio->list); fio->in_list = 1; io = sbi->write_io[fio->type] + fio->temp; spin_lock(&io->io_lock); list_add_tail(&fio->list, &io->io_list); spin_unlock(&io->io_lock); } mutex_unlock(&curseg->curseg_mutex); f2fs_up_read(&SM_I(sbi)->curseg_lock); return 0; out_err: *new_blkaddr = NULL_ADDR; up_write(&sit_i->sentry_lock); mutex_unlock(&curseg->curseg_mutex); f2fs_up_read(&SM_I(sbi)->curseg_lock); return ret; } void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, block_t blkaddr, unsigned int blkcnt) { if (!f2fs_is_multi_device(sbi)) return; while (1) { unsigned int devidx = f2fs_target_device_index(sbi, blkaddr); unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1; /* update device state for fsync */ f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO); /* update device state for checkpoint */ if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { spin_lock(&sbi->dev_lock); f2fs_set_bit(devidx, (char *)&sbi->dirty_device); spin_unlock(&sbi->dev_lock); } if (blkcnt <= blks) break; blkcnt -= blks; blkaddr += blks; } } static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) { int type = __get_segment_type(fio); bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); if (keep_order) f2fs_down_read(&fio->sbi->io_order_lock); if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, &fio->new_blkaddr, sum, type, fio)) { if (fscrypt_inode_uses_fs_layer_crypto(fio->page->mapping->host)) fscrypt_finalize_bounce_page(&fio->encrypted_page); if (PageWriteback(fio->page)) end_page_writeback(fio->page); if (f2fs_in_warm_node_list(fio->sbi, fio->page)) f2fs_del_fsync_node_entry(fio->sbi, fio->page); goto out; } if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr); /* writeout dirty page into bdev */ f2fs_submit_page_write(fio); f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); out: if (keep_order) f2fs_up_read(&fio->sbi->io_order_lock); } void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, enum iostat_type io_type) { struct f2fs_io_info fio = { .sbi = sbi, .type = META, .temp = HOT, .op = REQ_OP_WRITE, .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, .old_blkaddr = page->index, .new_blkaddr = page->index, .page = page, .encrypted_page = NULL, .in_list = 0, }; if (unlikely(page->index >= MAIN_BLKADDR(sbi))) fio.op_flags &= ~REQ_META; set_page_writeback(page); f2fs_submit_page_write(&fio); stat_inc_meta_count(sbi, page->index); f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE); } void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) { struct f2fs_summary sum; set_summary(&sum, nid, 0, 0); do_write_page(&sum, fio); f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE); } void f2fs_outplace_write_data(struct dnode_of_data *dn, struct f2fs_io_info *fio) { struct f2fs_sb_info *sbi = fio->sbi; struct f2fs_summary sum; f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO) f2fs_update_age_extent_cache(dn); set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); do_write_page(&sum, fio); f2fs_update_data_blkaddr(dn, fio->new_blkaddr); f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE); } int f2fs_inplace_write_data(struct f2fs_io_info *fio) { int err; struct f2fs_sb_info *sbi = fio->sbi; unsigned int segno; fio->new_blkaddr = fio->old_blkaddr; /* i/o temperature is needed for passing down write hints */ __get_segment_type(fio); segno = GET_SEGNO(sbi, fio->new_blkaddr); if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { set_sbi_flag(sbi, SBI_NEED_FSCK); f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", __func__, segno); err = -EFSCORRUPTED; f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); goto drop_bio; } if (f2fs_cp_error(sbi)) { err = -EIO; goto drop_bio; } if (fio->post_read) f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1); stat_inc_inplace_blocks(fio->sbi); if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi)) err = f2fs_merge_page_bio(fio); else err = f2fs_submit_page_bio(fio); if (!err) { f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); f2fs_update_iostat(fio->sbi, fio->page->mapping->host, fio->io_type, F2FS_BLKSIZE); } return err; drop_bio: if (fio->bio && *(fio->bio)) { struct bio *bio = *(fio->bio); bio->bi_status = BLK_STS_IOERR; bio_endio(bio); *(fio->bio) = NULL; } return err; } static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, unsigned int segno) { int i; for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { if (CURSEG_I(sbi, i)->segno == segno) break; } return i; } void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, block_t old_blkaddr, block_t new_blkaddr, bool recover_curseg, bool recover_newaddr, bool from_gc) { struct sit_info *sit_i = SIT_I(sbi); struct curseg_info *curseg; unsigned int segno, old_cursegno; struct seg_entry *se; int type; unsigned short old_blkoff; unsigned char old_alloc_type; segno = GET_SEGNO(sbi, new_blkaddr); se = get_seg_entry(sbi, segno); type = se->type; f2fs_down_write(&SM_I(sbi)->curseg_lock); if (!recover_curseg) { /* for recovery flow */ if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { if (old_blkaddr == NULL_ADDR) type = CURSEG_COLD_DATA; else type = CURSEG_WARM_DATA; } } else { if (IS_CURSEG(sbi, segno)) { /* se->type is volatile as SSR allocation */ type = __f2fs_get_curseg(sbi, segno); f2fs_bug_on(sbi, type == NO_CHECK_TYPE); } else { type = CURSEG_WARM_DATA; } } f2fs_bug_on(sbi, !IS_DATASEG(type)); curseg = CURSEG_I(sbi, type); mutex_lock(&curseg->curseg_mutex); down_write(&sit_i->sentry_lock); old_cursegno = curseg->segno; old_blkoff = curseg->next_blkoff; old_alloc_type = curseg->alloc_type; /* change the current segment */ if (segno != curseg->segno) { curseg->next_segno = segno; if (change_curseg(sbi, type)) goto out_unlock; } curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); curseg->sum_blk->entries[curseg->next_blkoff] = *sum; if (!recover_curseg || recover_newaddr) { if (!from_gc) update_segment_mtime(sbi, new_blkaddr, 0); update_sit_entry(sbi, new_blkaddr, 1); } if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { f2fs_invalidate_internal_cache(sbi, old_blkaddr); if (!from_gc) update_segment_mtime(sbi, old_blkaddr, 0); update_sit_entry(sbi, old_blkaddr, -1); } locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); locate_dirty_segment(sbi, old_cursegno); if (recover_curseg) { if (old_cursegno != curseg->segno) { curseg->next_segno = old_cursegno; if (change_curseg(sbi, type)) goto out_unlock; } curseg->next_blkoff = old_blkoff; curseg->alloc_type = old_alloc_type; } out_unlock: up_write(&sit_i->sentry_lock); mutex_unlock(&curseg->curseg_mutex); f2fs_up_write(&SM_I(sbi)->curseg_lock); } void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, block_t old_addr, block_t new_addr, unsigned char version, bool recover_curseg, bool recover_newaddr) { struct f2fs_summary sum; set_summary(&sum, dn->nid, dn->ofs_in_node, version); f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, recover_curseg, recover_newaddr, false); f2fs_update_data_blkaddr(dn, new_addr); } void f2fs_wait_on_page_writeback(struct page *page, enum page_type type, bool ordered, bool locked) { if (PageWriteback(page)) { struct f2fs_sb_info *sbi = F2FS_P_SB(page); /* submit cached LFS IO */ f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); /* submit cached IPU IO */ f2fs_submit_merged_ipu_write(sbi, NULL, page); if (ordered) { wait_on_page_writeback(page); f2fs_bug_on(sbi, locked && PageWriteback(page)); } else { wait_for_stable_page(page); } } } void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct page *cpage; if (!f2fs_post_read_required(inode)) return; if (!__is_valid_data_blkaddr(blkaddr)) return; cpage = find_lock_page(META_MAPPING(sbi), blkaddr); if (cpage) { f2fs_wait_on_page_writeback(cpage, DATA, true, true); f2fs_put_page(cpage, 1); } } void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, block_t len) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); block_t i; if (!f2fs_post_read_required(inode)) return; for (i = 0; i < len; i++) f2fs_wait_on_block_writeback(inode, blkaddr + i); f2fs_truncate_meta_inode_pages(sbi, blkaddr, len); } static int read_compacted_summaries(struct f2fs_sb_info *sbi) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct curseg_info *seg_i; unsigned char *kaddr; struct page *page; block_t start; int i, j, offset; start = start_sum_block(sbi); page = f2fs_get_meta_page(sbi, start++); if (IS_ERR(page)) return PTR_ERR(page); kaddr = (unsigned char *)page_address(page); /* Step 1: restore nat cache */ seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); /* Step 2: restore sit cache */ seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); offset = 2 * SUM_JOURNAL_SIZE; /* Step 3: restore summary entries */ for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { unsigned short blk_off; unsigned int segno; seg_i = CURSEG_I(sbi, i); segno = le32_to_cpu(ckpt->cur_data_segno[i]); blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); seg_i->next_segno = segno; reset_curseg(sbi, i, 0); seg_i->alloc_type = ckpt->alloc_type[i]; seg_i->next_blkoff = blk_off; if (seg_i->alloc_type == SSR) blk_off = BLKS_PER_SEG(sbi); for (j = 0; j < blk_off; j++) { struct f2fs_summary *s; s = (struct f2fs_summary *)(kaddr + offset); seg_i->sum_blk->entries[j] = *s; offset += SUMMARY_SIZE; if (offset + SUMMARY_SIZE <= PAGE_SIZE - SUM_FOOTER_SIZE) continue; f2fs_put_page(page, 1); page = NULL; page = f2fs_get_meta_page(sbi, start++); if (IS_ERR(page)) return PTR_ERR(page); kaddr = (unsigned char *)page_address(page); offset = 0; } } f2fs_put_page(page, 1); return 0; } static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct f2fs_summary_block *sum; struct curseg_info *curseg; struct page *new; unsigned short blk_off; unsigned int segno = 0; block_t blk_addr = 0; int err = 0; /* get segment number and block addr */ if (IS_DATASEG(type)) { segno = le32_to_cpu(ckpt->cur_data_segno[type]); blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - CURSEG_HOT_DATA]); if (__exist_node_summaries(sbi)) blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); else blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); } else { segno = le32_to_cpu(ckpt->cur_node_segno[type - CURSEG_HOT_NODE]); blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - CURSEG_HOT_NODE]); if (__exist_node_summaries(sbi)) blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, type - CURSEG_HOT_NODE); else blk_addr = GET_SUM_BLOCK(sbi, segno); } new = f2fs_get_meta_page(sbi, blk_addr); if (IS_ERR(new)) return PTR_ERR(new); sum = (struct f2fs_summary_block *)page_address(new); if (IS_NODESEG(type)) { if (__exist_node_summaries(sbi)) { struct f2fs_summary *ns = &sum->entries[0]; int i; for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) { ns->version = 0; ns->ofs_in_node = 0; } } else { err = f2fs_restore_node_summary(sbi, segno, sum); if (err) goto out; } } /* set uncompleted segment to curseg */ curseg = CURSEG_I(sbi, type); mutex_lock(&curseg->curseg_mutex); /* update journal info */ down_write(&curseg->journal_rwsem); memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); up_write(&curseg->journal_rwsem); memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); curseg->next_segno = segno; reset_curseg(sbi, type, 0); curseg->alloc_type = ckpt->alloc_type[type]; curseg->next_blkoff = blk_off; mutex_unlock(&curseg->curseg_mutex); out: f2fs_put_page(new, 1); return err; } static int restore_curseg_summaries(struct f2fs_sb_info *sbi) { struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; int type = CURSEG_HOT_DATA; int err; if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { int npages = f2fs_npages_for_summary_flush(sbi, true); if (npages >= 2) f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, META_CP, true); /* restore for compacted data summary */ err = read_compacted_summaries(sbi); if (err) return err; type = CURSEG_HOT_NODE; } if (__exist_node_summaries(sbi)) f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), NR_CURSEG_PERSIST_TYPE - type, META_CP, true); for (; type <= CURSEG_COLD_NODE; type++) { err = read_normal_summaries(sbi, type); if (err) return err; } /* sanity check for summary blocks */ if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { f2fs_err(sbi, "invalid journal entries nats %u sits %u", nats_in_cursum(nat_j), sits_in_cursum(sit_j)); return -EINVAL; } return 0; } static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) { struct page *page; unsigned char *kaddr; struct f2fs_summary *summary; struct curseg_info *seg_i; int written_size = 0; int i, j; page = f2fs_grab_meta_page(sbi, blkaddr++); kaddr = (unsigned char *)page_address(page); memset(kaddr, 0, PAGE_SIZE); /* Step 1: write nat cache */ seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); written_size += SUM_JOURNAL_SIZE; /* Step 2: write sit cache */ seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); written_size += SUM_JOURNAL_SIZE; /* Step 3: write summary entries */ for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { seg_i = CURSEG_I(sbi, i); for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) { if (!page) { page = f2fs_grab_meta_page(sbi, blkaddr++); kaddr = (unsigned char *)page_address(page); memset(kaddr, 0, PAGE_SIZE); written_size = 0; } summary = (struct f2fs_summary *)(kaddr + written_size); *summary = seg_i->sum_blk->entries[j]; written_size += SUMMARY_SIZE; if (written_size + SUMMARY_SIZE <= PAGE_SIZE - SUM_FOOTER_SIZE) continue; set_page_dirty(page); f2fs_put_page(page, 1); page = NULL; } } if (page) { set_page_dirty(page); f2fs_put_page(page, 1); } } static void write_normal_summaries(struct f2fs_sb_info *sbi, block_t blkaddr, int type) { int i, end; if (IS_DATASEG(type)) end = type + NR_CURSEG_DATA_TYPE; else end = type + NR_CURSEG_NODE_TYPE; for (i = type; i < end; i++) write_current_sum_page(sbi, i, blkaddr + (i - type)); } void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) { if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) write_compacted_summaries(sbi, start_blk); else write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); } void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) { write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); } int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, unsigned int val, int alloc) { int i; if (type == NAT_JOURNAL) { for (i = 0; i < nats_in_cursum(journal); i++) { if (le32_to_cpu(nid_in_journal(journal, i)) == val) return i; } if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) return update_nats_in_cursum(journal, 1); } else if (type == SIT_JOURNAL) { for (i = 0; i < sits_in_cursum(journal); i++) if (le32_to_cpu(segno_in_journal(journal, i)) == val) return i; if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) return update_sits_in_cursum(journal, 1); } return -1; } static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, unsigned int segno) { return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); } static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, unsigned int start) { struct sit_info *sit_i = SIT_I(sbi); struct page *page; pgoff_t src_off, dst_off; src_off = current_sit_addr(sbi, start); dst_off = next_sit_addr(sbi, src_off); page = f2fs_grab_meta_page(sbi, dst_off); seg_info_to_sit_page(sbi, page, start); set_page_dirty(page); set_to_next_sit(sit_i, start); return page; } static struct sit_entry_set *grab_sit_entry_set(void) { struct sit_entry_set *ses = f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS, true, NULL); ses->entry_cnt = 0; INIT_LIST_HEAD(&ses->set_list); return ses; } static void release_sit_entry_set(struct sit_entry_set *ses) { list_del(&ses->set_list); kmem_cache_free(sit_entry_set_slab, ses); } static void adjust_sit_entry_set(struct sit_entry_set *ses, struct list_head *head) { struct sit_entry_set *next = ses; if (list_is_last(&ses->set_list, head)) return; list_for_each_entry_continue(next, head, set_list) if (ses->entry_cnt <= next->entry_cnt) { list_move_tail(&ses->set_list, &next->set_list); return; } list_move_tail(&ses->set_list, head); } static void add_sit_entry(unsigned int segno, struct list_head *head) { struct sit_entry_set *ses; unsigned int start_segno = START_SEGNO(segno); list_for_each_entry(ses, head, set_list) { if (ses->start_segno == start_segno) { ses->entry_cnt++; adjust_sit_entry_set(ses, head); return; } } ses = grab_sit_entry_set(); ses->start_segno = start_segno; ses->entry_cnt++; list_add(&ses->set_list, head); } static void add_sits_in_set(struct f2fs_sb_info *sbi) { struct f2fs_sm_info *sm_info = SM_I(sbi); struct list_head *set_list = &sm_info->sit_entry_set; unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; unsigned int segno; for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) add_sit_entry(segno, set_list); } static void remove_sits_in_journal(struct f2fs_sb_info *sbi) { struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); struct f2fs_journal *journal = curseg->journal; int i; down_write(&curseg->journal_rwsem); for (i = 0; i < sits_in_cursum(journal); i++) { unsigned int segno; bool dirtied; segno = le32_to_cpu(segno_in_journal(journal, i)); dirtied = __mark_sit_entry_dirty(sbi, segno); if (!dirtied) add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); } update_sits_in_cursum(journal, -i); up_write(&curseg->journal_rwsem); } /* * CP calls this function, which flushes SIT entries including sit_journal, * and moves prefree segs to free segs. */ void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) { struct sit_info *sit_i = SIT_I(sbi); unsigned long *bitmap = sit_i->dirty_sentries_bitmap; struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); struct f2fs_journal *journal = curseg->journal; struct sit_entry_set *ses, *tmp; struct list_head *head = &SM_I(sbi)->sit_entry_set; bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); struct seg_entry *se; down_write(&sit_i->sentry_lock); if (!sit_i->dirty_sentries) goto out; /* * add and account sit entries of dirty bitmap in sit entry * set temporarily */ add_sits_in_set(sbi); /* * if there are no enough space in journal to store dirty sit * entries, remove all entries from journal and add and account * them in sit entry set. */ if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || !to_journal) remove_sits_in_journal(sbi); /* * there are two steps to flush sit entries: * #1, flush sit entries to journal in current cold data summary block. * #2, flush sit entries to sit page. */ list_for_each_entry_safe(ses, tmp, head, set_list) { struct page *page = NULL; struct f2fs_sit_block *raw_sit = NULL; unsigned int start_segno = ses->start_segno; unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, (unsigned long)MAIN_SEGS(sbi)); unsigned int segno = start_segno; if (to_journal && !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) to_journal = false; if (to_journal) { down_write(&curseg->journal_rwsem); } else { page = get_next_sit_page(sbi, start_segno); raw_sit = page_address(page); } /* flush dirty sit entries in region of current sit set */ for_each_set_bit_from(segno, bitmap, end) { int offset, sit_offset; se = get_seg_entry(sbi, segno); #ifdef CONFIG_F2FS_CHECK_FS if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, SIT_VBLOCK_MAP_SIZE)) f2fs_bug_on(sbi, 1); #endif /* add discard candidates */ if (!(cpc->reason & CP_DISCARD)) { cpc->trim_start = segno; add_discard_addrs(sbi, cpc, false); } if (to_journal) { offset = f2fs_lookup_journal_in_cursum(journal, SIT_JOURNAL, segno, 1); f2fs_bug_on(sbi, offset < 0); segno_in_journal(journal, offset) = cpu_to_le32(segno); seg_info_to_raw_sit(se, &sit_in_journal(journal, offset)); check_block_count(sbi, segno, &sit_in_journal(journal, offset)); } else { sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]); check_block_count(sbi, segno, &raw_sit->entries[sit_offset]); } __clear_bit(segno, bitmap); sit_i->dirty_sentries--; ses->entry_cnt--; } if (to_journal) up_write(&curseg->journal_rwsem); else f2fs_put_page(page, 1); f2fs_bug_on(sbi, ses->entry_cnt); release_sit_entry_set(ses); } f2fs_bug_on(sbi, !list_empty(head)); f2fs_bug_on(sbi, sit_i->dirty_sentries); out: if (cpc->reason & CP_DISCARD) { __u64 trim_start = cpc->trim_start; for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) add_discard_addrs(sbi, cpc, false); cpc->trim_start = trim_start; } up_write(&sit_i->sentry_lock); set_prefree_as_free_segments(sbi); } static int build_sit_info(struct f2fs_sb_info *sbi) { struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); struct sit_info *sit_i; unsigned int sit_segs, start; char *src_bitmap, *bitmap; unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0; /* allocate memory for SIT information */ sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); if (!sit_i) return -ENOMEM; SM_I(sbi)->sit_info = sit_i; sit_i->sentries = f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), MAIN_SEGS(sbi)), GFP_KERNEL); if (!sit_i->sentries) return -ENOMEM; main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, GFP_KERNEL); if (!sit_i->dirty_sentries_bitmap) return -ENOMEM; #ifdef CONFIG_F2FS_CHECK_FS bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map); #else bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map); #endif sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); if (!sit_i->bitmap) return -ENOMEM; bitmap = sit_i->bitmap; for (start = 0; start < MAIN_SEGS(sbi); start++) { sit_i->sentries[start].cur_valid_map = bitmap; bitmap += SIT_VBLOCK_MAP_SIZE; sit_i->sentries[start].ckpt_valid_map = bitmap; bitmap += SIT_VBLOCK_MAP_SIZE; #ifdef CONFIG_F2FS_CHECK_FS sit_i->sentries[start].cur_valid_map_mir = bitmap; bitmap += SIT_VBLOCK_MAP_SIZE; #endif if (discard_map) { sit_i->sentries[start].discard_map = bitmap; bitmap += SIT_VBLOCK_MAP_SIZE; } } sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); if (!sit_i->tmp_map) return -ENOMEM; if (__is_large_section(sbi)) { sit_i->sec_entries = f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), MAIN_SECS(sbi)), GFP_KERNEL); if (!sit_i->sec_entries) return -ENOMEM; } /* get information related with SIT */ sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; /* setup SIT bitmap from ckeckpoint pack */ sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); if (!sit_i->sit_bitmap) return -ENOMEM; #ifdef CONFIG_F2FS_CHECK_FS sit_i->sit_bitmap_mir = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); if (!sit_i->sit_bitmap_mir) return -ENOMEM; sit_i->invalid_segmap = f2fs_kvzalloc(sbi, main_bitmap_size, GFP_KERNEL); if (!sit_i->invalid_segmap) return -ENOMEM; #endif sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs); sit_i->written_valid_blocks = 0; sit_i->bitmap_size = sit_bitmap_size; sit_i->dirty_sentries = 0; sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); sit_i->mounted_time = ktime_get_boottime_seconds(); init_rwsem(&sit_i->sentry_lock); return 0; } static int build_free_segmap(struct f2fs_sb_info *sbi) { struct free_segmap_info *free_i; unsigned int bitmap_size, sec_bitmap_size; /* allocate memory for free segmap information */ free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); if (!free_i) return -ENOMEM; SM_I(sbi)->free_info = free_i; bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); if (!free_i->free_segmap) return -ENOMEM; sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); if (!free_i->free_secmap) return -ENOMEM; /* set all segments as dirty temporarily */ memset(free_i->free_segmap, 0xff, bitmap_size); memset(free_i->free_secmap, 0xff, sec_bitmap_size); /* init free segmap information */ free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); free_i->free_segments = 0; free_i->free_sections = 0; spin_lock_init(&free_i->segmap_lock); return 0; } static int build_curseg(struct f2fs_sb_info *sbi) { struct curseg_info *array; int i; array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)), GFP_KERNEL); if (!array) return -ENOMEM; SM_I(sbi)->curseg_array = array; for (i = 0; i < NO_CHECK_TYPE; i++) { mutex_init(&array[i].curseg_mutex); array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); if (!array[i].sum_blk) return -ENOMEM; init_rwsem(&array[i].journal_rwsem); array[i].journal = f2fs_kzalloc(sbi, sizeof(struct f2fs_journal), GFP_KERNEL); if (!array[i].journal) return -ENOMEM; if (i < NR_PERSISTENT_LOG) array[i].seg_type = CURSEG_HOT_DATA + i; else if (i == CURSEG_COLD_DATA_PINNED) array[i].seg_type = CURSEG_COLD_DATA; else if (i == CURSEG_ALL_DATA_ATGC) array[i].seg_type = CURSEG_COLD_DATA; reset_curseg_fields(&array[i]); } return restore_curseg_summaries(sbi); } static int build_sit_entries(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); struct f2fs_journal *journal = curseg->journal; struct seg_entry *se; struct f2fs_sit_entry sit; int sit_blk_cnt = SIT_BLK_CNT(sbi); unsigned int i, start, end; unsigned int readed, start_blk = 0; int err = 0; block_t sit_valid_blocks[2] = {0, 0}; do { readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, META_SIT, true); start = start_blk * sit_i->sents_per_block; end = (start_blk + readed) * sit_i->sents_per_block; for (; start < end && start < MAIN_SEGS(sbi); start++) { struct f2fs_sit_block *sit_blk; struct page *page; se = &sit_i->sentries[start]; page = get_current_sit_page(sbi, start); if (IS_ERR(page)) return PTR_ERR(page); sit_blk = (struct f2fs_sit_block *)page_address(page); sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; f2fs_put_page(page, 1); err = check_block_count(sbi, start, &sit); if (err) return err; seg_info_from_raw_sit(se, &sit); if (se->type >= NR_PERSISTENT_LOG) { f2fs_err(sbi, "Invalid segment type: %u, segno: %u", se->type, start); f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); return -EFSCORRUPTED; } sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; if (!f2fs_block_unit_discard(sbi)) goto init_discard_map_done; /* build discard map only one time */ if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); goto init_discard_map_done; } memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); sbi->discard_blks += BLKS_PER_SEG(sbi) - se->valid_blocks; init_discard_map_done: if (__is_large_section(sbi)) get_sec_entry(sbi, start)->valid_blocks += se->valid_blocks; } start_blk += readed; } while (start_blk < sit_blk_cnt); down_read(&curseg->journal_rwsem); for (i = 0; i < sits_in_cursum(journal); i++) { unsigned int old_valid_blocks; start = le32_to_cpu(segno_in_journal(journal, i)); if (start >= MAIN_SEGS(sbi)) { f2fs_err(sbi, "Wrong journal entry on segno %u", start); err = -EFSCORRUPTED; f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL); break; } se = &sit_i->sentries[start]; sit = sit_in_journal(journal, i); old_valid_blocks = se->valid_blocks; sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks; err = check_block_count(sbi, start, &sit); if (err) break; seg_info_from_raw_sit(se, &sit); if (se->type >= NR_PERSISTENT_LOG) { f2fs_err(sbi, "Invalid segment type: %u, segno: %u", se->type, start); err = -EFSCORRUPTED; f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); break; } sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; if (f2fs_block_unit_discard(sbi)) { if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); } else { memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); sbi->discard_blks += old_valid_blocks; sbi->discard_blks -= se->valid_blocks; } } if (__is_large_section(sbi)) { get_sec_entry(sbi, start)->valid_blocks += se->valid_blocks; get_sec_entry(sbi, start)->valid_blocks -= old_valid_blocks; } } up_read(&curseg->journal_rwsem); if (err) return err; if (sit_valid_blocks[NODE] != valid_node_count(sbi)) { f2fs_err(sbi, "SIT is corrupted node# %u vs %u", sit_valid_blocks[NODE], valid_node_count(sbi)); f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT); return -EFSCORRUPTED; } if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] > valid_user_blocks(sbi)) { f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u", sit_valid_blocks[DATA], sit_valid_blocks[NODE], valid_user_blocks(sbi)); f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT); return -EFSCORRUPTED; } return 0; } static void init_free_segmap(struct f2fs_sb_info *sbi) { unsigned int start; int type; struct seg_entry *sentry; for (start = 0; start < MAIN_SEGS(sbi); start++) { if (f2fs_usable_blks_in_seg(sbi, start) == 0) continue; sentry = get_seg_entry(sbi, start); if (!sentry->valid_blocks) __set_free(sbi, start); else SIT_I(sbi)->written_valid_blocks += sentry->valid_blocks; } /* set use the current segments */ for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { struct curseg_info *curseg_t = CURSEG_I(sbi, type); __set_test_and_inuse(sbi, curseg_t->segno); } } static void init_dirty_segmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); struct free_segmap_info *free_i = FREE_I(sbi); unsigned int segno = 0, offset = 0, secno; block_t valid_blocks, usable_blks_in_seg; while (1) { /* find dirty segment based on free segmap */ segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); if (segno >= MAIN_SEGS(sbi)) break; offset = segno + 1; valid_blocks = get_valid_blocks(sbi, segno, false); usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); if (valid_blocks == usable_blks_in_seg || !valid_blocks) continue; if (valid_blocks > usable_blks_in_seg) { f2fs_bug_on(sbi, 1); continue; } mutex_lock(&dirty_i->seglist_lock); __locate_dirty_segment(sbi, segno, DIRTY); mutex_unlock(&dirty_i->seglist_lock); } if (!__is_large_section(sbi)) return; mutex_lock(&dirty_i->seglist_lock); for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) { valid_blocks = get_valid_blocks(sbi, segno, true); secno = GET_SEC_FROM_SEG(sbi, segno); if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi)) continue; if (IS_CURSEC(sbi, secno)) continue; set_bit(secno, dirty_i->dirty_secmap); } mutex_unlock(&dirty_i->seglist_lock); } static int init_victim_secmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); if (!dirty_i->victim_secmap) return -ENOMEM; dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); if (!dirty_i->pinned_secmap) return -ENOMEM; dirty_i->pinned_secmap_cnt = 0; dirty_i->enable_pin_section = true; return 0; } static int build_dirty_segmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i; unsigned int bitmap_size, i; /* allocate memory for dirty segments list information */ dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), GFP_KERNEL); if (!dirty_i) return -ENOMEM; SM_I(sbi)->dirty_info = dirty_i; mutex_init(&dirty_i->seglist_lock); bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); for (i = 0; i < NR_DIRTY_TYPE; i++) { dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); if (!dirty_i->dirty_segmap[i]) return -ENOMEM; } if (__is_large_section(sbi)) { bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); if (!dirty_i->dirty_secmap) return -ENOMEM; } init_dirty_segmap(sbi); return init_victim_secmap(sbi); } static int sanity_check_curseg(struct f2fs_sb_info *sbi) { int i; /* * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; * In LFS curseg, all blkaddr after .next_blkoff should be unused. */ for (i = 0; i < NR_PERSISTENT_LOG; i++) { struct curseg_info *curseg = CURSEG_I(sbi, i); struct seg_entry *se = get_seg_entry(sbi, curseg->segno); unsigned int blkofs = curseg->next_blkoff; if (f2fs_sb_has_readonly(sbi) && i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) continue; sanity_check_seg_type(sbi, curseg->seg_type); if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) { f2fs_err(sbi, "Current segment has invalid alloc_type:%d", curseg->alloc_type); f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); return -EFSCORRUPTED; } if (f2fs_test_bit(blkofs, se->cur_valid_map)) goto out; if (curseg->alloc_type == SSR) continue; for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) { if (!f2fs_test_bit(blkofs, se->cur_valid_map)) continue; out: f2fs_err(sbi, "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", i, curseg->segno, curseg->alloc_type, curseg->next_blkoff, blkofs); f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); return -EFSCORRUPTED; } } return 0; } #ifdef CONFIG_BLK_DEV_ZONED static const char *f2fs_zone_status[BLK_ZONE_COND_OFFLINE + 1] = { [BLK_ZONE_COND_NOT_WP] = "NOT_WP", [BLK_ZONE_COND_EMPTY] = "EMPTY", [BLK_ZONE_COND_IMP_OPEN] = "IMPLICIT_OPEN", [BLK_ZONE_COND_EXP_OPEN] = "EXPLICIT_OPEN", [BLK_ZONE_COND_CLOSED] = "CLOSED", [BLK_ZONE_COND_READONLY] = "READONLY", [BLK_ZONE_COND_FULL] = "FULL", [BLK_ZONE_COND_OFFLINE] = "OFFLINE", }; static int check_zone_write_pointer(struct f2fs_sb_info *sbi, struct f2fs_dev_info *fdev, struct blk_zone *zone) { unsigned int zone_segno; block_t zone_block, valid_block_cnt; unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; int ret; unsigned int nofs_flags; if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) return 0; zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); zone_segno = GET_SEGNO(sbi, zone_block); /* * Skip check of zones cursegs point to, since * fix_curseg_write_pointer() checks them. */ if (zone_segno >= MAIN_SEGS(sbi)) return 0; /* * Get # of valid block of the zone. */ valid_block_cnt = get_valid_blocks(sbi, zone_segno, true); if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) { f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]", zone_segno, valid_block_cnt, f2fs_zone_status[zone->cond]); return 0; } if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) || (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL)) return 0; if (!valid_block_cnt) { f2fs_notice(sbi, "Zone without valid block has non-zero write " "pointer. Reset the write pointer: cond[%s]", f2fs_zone_status[zone->cond]); ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, zone->len >> log_sectors_per_block); if (ret) f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", fdev->path, ret); return ret; } /* * If there are valid blocks and the write pointer doesn't match * with them, we need to report the inconsistency and fill * the zone till the end to close the zone. This inconsistency * does not cause write error because the zone will not be * selected for write operation until it get discarded. */ f2fs_notice(sbi, "Valid blocks are not aligned with write " "pointer: valid block[0x%x,0x%x] cond[%s]", zone_segno, valid_block_cnt, f2fs_zone_status[zone->cond]); nofs_flags = memalloc_nofs_save(); ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH, zone->start, zone->len); memalloc_nofs_restore(nofs_flags); if (ret == -EOPNOTSUPP) { ret = blkdev_issue_zeroout(fdev->bdev, zone->wp, zone->len - (zone->wp - zone->start), GFP_NOFS, 0); if (ret) f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)", fdev->path, ret); } else if (ret) { f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)", fdev->path, ret); } return ret; } static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, block_t zone_blkaddr) { int i; for (i = 0; i < sbi->s_ndevs; i++) { if (!bdev_is_zoned(FDEV(i).bdev)) continue; if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && zone_blkaddr <= FDEV(i).end_blk)) return &FDEV(i); } return NULL; } static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, void *data) { memcpy(data, zone, sizeof(struct blk_zone)); return 0; } static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) { struct curseg_info *cs = CURSEG_I(sbi, type); struct f2fs_dev_info *zbd; struct blk_zone zone; unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; block_t cs_zone_block, wp_block; unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; sector_t zone_sector; int err; cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); zbd = get_target_zoned_dev(sbi, cs_zone_block); if (!zbd) return 0; /* report zone for the sector the curseg points to */ zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) << log_sectors_per_block; err = blkdev_report_zones(zbd->bdev, zone_sector, 1, report_one_zone_cb, &zone); if (err != 1) { f2fs_err(sbi, "Report zone failed: %s errno=(%d)", zbd->path, err); return err; } if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) return 0; /* * When safely unmounted in the previous mount, we could use current * segments. Otherwise, allocate new sections. */ if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); wp_segno = GET_SEGNO(sbi, wp_block); wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && wp_sector_off == 0) return 0; f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); } /* Allocate a new section if it's not new. */ if (cs->next_blkoff) { unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff; f2fs_allocate_new_section(sbi, type, true); f2fs_notice(sbi, "Assign new section to curseg[%d]: " "[0x%x,0x%x] -> [0x%x,0x%x]", type, old_segno, old_blkoff, cs->segno, cs->next_blkoff); } /* check consistency of the zone curseg pointed to */ if (check_zone_write_pointer(sbi, zbd, &zone)) return -EIO; /* check newly assigned zone */ cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); zbd = get_target_zoned_dev(sbi, cs_zone_block); if (!zbd) return 0; zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) << log_sectors_per_block; err = blkdev_report_zones(zbd->bdev, zone_sector, 1, report_one_zone_cb, &zone); if (err != 1) { f2fs_err(sbi, "Report zone failed: %s errno=(%d)", zbd->path, err); return err; } if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) return 0; if (zone.wp != zone.start) { f2fs_notice(sbi, "New zone for curseg[%d] is not yet discarded. " "Reset the zone: curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block, zone.len >> log_sectors_per_block); if (err) { f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", zbd->path, err); return err; } } return 0; } int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) { int i, ret; for (i = 0; i < NR_PERSISTENT_LOG; i++) { ret = fix_curseg_write_pointer(sbi, i); if (ret) return ret; } return 0; } struct check_zone_write_pointer_args { struct f2fs_sb_info *sbi; struct f2fs_dev_info *fdev; }; static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, void *data) { struct check_zone_write_pointer_args *args; args = (struct check_zone_write_pointer_args *)data; return check_zone_write_pointer(args->sbi, args->fdev, zone); } int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) { int i, ret; struct check_zone_write_pointer_args args; for (i = 0; i < sbi->s_ndevs; i++) { if (!bdev_is_zoned(FDEV(i).bdev)) continue; args.sbi = sbi; args.fdev = &FDEV(i); ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, check_zone_write_pointer_cb, &args); if (ret < 0) return ret; } return 0; } /* * Return the number of usable blocks in a segment. The number of blocks * returned is always equal to the number of blocks in a segment for * segments fully contained within a sequential zone capacity or a * conventional zone. For segments partially contained in a sequential * zone capacity, the number of usable blocks up to the zone capacity * is returned. 0 is returned in all other cases. */ static inline unsigned int f2fs_usable_zone_blks_in_seg( struct f2fs_sb_info *sbi, unsigned int segno) { block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; unsigned int secno; if (!sbi->unusable_blocks_per_sec) return BLKS_PER_SEG(sbi); secno = GET_SEC_FROM_SEG(sbi, segno); seg_start = START_BLOCK(sbi, segno); sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi); /* * If segment starts before zone capacity and spans beyond * zone capacity, then usable blocks are from seg start to * zone capacity. If the segment starts after the zone capacity, * then there are no usable blocks. */ if (seg_start >= sec_cap_blkaddr) return 0; if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr) return sec_cap_blkaddr - seg_start; return BLKS_PER_SEG(sbi); } #else int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) { return 0; } int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) { return 0; } static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, unsigned int segno) { return 0; } #endif unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, unsigned int segno) { if (f2fs_sb_has_blkzoned(sbi)) return f2fs_usable_zone_blks_in_seg(sbi, segno); return BLKS_PER_SEG(sbi); } unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, unsigned int segno) { if (f2fs_sb_has_blkzoned(sbi)) return CAP_SEGS_PER_SEC(sbi); return SEGS_PER_SEC(sbi); } /* * Update min, max modified time for cost-benefit GC algorithm */ static void init_min_max_mtime(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); unsigned int segno; down_write(&sit_i->sentry_lock); sit_i->min_mtime = ULLONG_MAX; for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) { unsigned int i; unsigned long long mtime = 0; for (i = 0; i < SEGS_PER_SEC(sbi); i++) mtime += get_seg_entry(sbi, segno + i)->mtime; mtime = div_u64(mtime, SEGS_PER_SEC(sbi)); if (sit_i->min_mtime > mtime) sit_i->min_mtime = mtime; } sit_i->max_mtime = get_mtime(sbi, false); sit_i->dirty_max_mtime = 0; up_write(&sit_i->sentry_lock); } int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) { struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct f2fs_sm_info *sm_info; int err; sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); if (!sm_info) return -ENOMEM; /* init sm info */ sbi->sm_info = sm_info; sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); sm_info->segment_count = le32_to_cpu(raw_super->segment_count); sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); sm_info->rec_prefree_segments = sm_info->main_segments * DEF_RECLAIM_PREFREE_SEGMENTS / 100; if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; if (!f2fs_lfs_mode(sbi)) sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC); sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; sm_info->min_seq_blocks = BLKS_PER_SEG(sbi); sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; sm_info->min_ssr_sections = reserved_sections(sbi); INIT_LIST_HEAD(&sm_info->sit_entry_set); init_f2fs_rwsem(&sm_info->curseg_lock); err = f2fs_create_flush_cmd_control(sbi); if (err) return err; err = create_discard_cmd_control(sbi); if (err) return err; err = build_sit_info(sbi); if (err) return err; err = build_free_segmap(sbi); if (err) return err; err = build_curseg(sbi); if (err) return err; /* reinit free segmap based on SIT */ err = build_sit_entries(sbi); if (err) return err; init_free_segmap(sbi); err = build_dirty_segmap(sbi); if (err) return err; err = sanity_check_curseg(sbi); if (err) return err; init_min_max_mtime(sbi); return 0; } static void discard_dirty_segmap(struct f2fs_sb_info *sbi, enum dirty_type dirty_type) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); mutex_lock(&dirty_i->seglist_lock); kvfree(dirty_i->dirty_segmap[dirty_type]); dirty_i->nr_dirty[dirty_type] = 0; mutex_unlock(&dirty_i->seglist_lock); } static void destroy_victim_secmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); kvfree(dirty_i->pinned_secmap); kvfree(dirty_i->victim_secmap); } static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); int i; if (!dirty_i) return; /* discard pre-free/dirty segments list */ for (i = 0; i < NR_DIRTY_TYPE; i++) discard_dirty_segmap(sbi, i); if (__is_large_section(sbi)) { mutex_lock(&dirty_i->seglist_lock); kvfree(dirty_i->dirty_secmap); mutex_unlock(&dirty_i->seglist_lock); } destroy_victim_secmap(sbi); SM_I(sbi)->dirty_info = NULL; kfree(dirty_i); } static void destroy_curseg(struct f2fs_sb_info *sbi) { struct curseg_info *array = SM_I(sbi)->curseg_array; int i; if (!array) return; SM_I(sbi)->curseg_array = NULL; for (i = 0; i < NR_CURSEG_TYPE; i++) { kfree(array[i].sum_blk); kfree(array[i].journal); } kfree(array); } static void destroy_free_segmap(struct f2fs_sb_info *sbi) { struct free_segmap_info *free_i = SM_I(sbi)->free_info; if (!free_i) return; SM_I(sbi)->free_info = NULL; kvfree(free_i->free_segmap); kvfree(free_i->free_secmap); kfree(free_i); } static void destroy_sit_info(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); if (!sit_i) return; if (sit_i->sentries) kvfree(sit_i->bitmap); kfree(sit_i->tmp_map); kvfree(sit_i->sentries); kvfree(sit_i->sec_entries); kvfree(sit_i->dirty_sentries_bitmap); SM_I(sbi)->sit_info = NULL; kvfree(sit_i->sit_bitmap); #ifdef CONFIG_F2FS_CHECK_FS kvfree(sit_i->sit_bitmap_mir); kvfree(sit_i->invalid_segmap); #endif kfree(sit_i); } void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) { struct f2fs_sm_info *sm_info = SM_I(sbi); if (!sm_info) return; f2fs_destroy_flush_cmd_control(sbi, true); destroy_discard_cmd_control(sbi); destroy_dirty_segmap(sbi); destroy_curseg(sbi); destroy_free_segmap(sbi); destroy_sit_info(sbi); sbi->sm_info = NULL; kfree(sm_info); } int __init f2fs_create_segment_manager_caches(void) { discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", sizeof(struct discard_entry)); if (!discard_entry_slab) goto fail; discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", sizeof(struct discard_cmd)); if (!discard_cmd_slab) goto destroy_discard_entry; sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", sizeof(struct sit_entry_set)); if (!sit_entry_set_slab) goto destroy_discard_cmd; revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry", sizeof(struct revoke_entry)); if (!revoke_entry_slab) goto destroy_sit_entry_set; return 0; destroy_sit_entry_set: kmem_cache_destroy(sit_entry_set_slab); destroy_discard_cmd: kmem_cache_destroy(discard_cmd_slab); destroy_discard_entry: kmem_cache_destroy(discard_entry_slab); fail: return -ENOMEM; } void f2fs_destroy_segment_manager_caches(void) { kmem_cache_destroy(sit_entry_set_slab); kmem_cache_destroy(discard_cmd_slab); kmem_cache_destroy(discard_entry_slab); kmem_cache_destroy(revoke_entry_slab); }