// SPDX-License-Identifier: GPL-2.0 #include "misc.h" #include "ctree.h" #include "block-rsv.h" #include "space-info.h" #include "transaction.h" #include "block-group.h" #include "fs.h" #include "accessors.h" /* * HOW DO BLOCK RESERVES WORK * * Think of block_rsv's as buckets for logically grouped metadata * reservations. Each block_rsv has a ->size and a ->reserved. ->size is * how large we want our block rsv to be, ->reserved is how much space is * currently reserved for this block reserve. * * ->failfast exists for the truncate case, and is described below. * * NORMAL OPERATION * * -> Reserve * Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill * * We call into btrfs_reserve_metadata_bytes() with our bytes, which is * accounted for in space_info->bytes_may_use, and then add the bytes to * ->reserved, and ->size in the case of btrfs_block_rsv_add. * * ->size is an over-estimation of how much we may use for a particular * operation. * * -> Use * Entrance: btrfs_use_block_rsv * * When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv() * to determine the appropriate block_rsv to use, and then verify that * ->reserved has enough space for our tree block allocation. Once * successful we subtract fs_info->nodesize from ->reserved. * * -> Finish * Entrance: btrfs_block_rsv_release * * We are finished with our operation, subtract our individual reservation * from ->size, and then subtract ->size from ->reserved and free up the * excess if there is any. * * There is some logic here to refill the delayed refs rsv or the global rsv * as needed, otherwise the excess is subtracted from * space_info->bytes_may_use. * * TYPES OF BLOCK RESERVES * * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK * These behave normally, as described above, just within the confines of the * lifetime of their particular operation (transaction for the whole trans * handle lifetime, for example). * * BLOCK_RSV_GLOBAL * It is impossible to properly account for all the space that may be required * to make our extent tree updates. This block reserve acts as an overflow * buffer in case our delayed refs reserve does not reserve enough space to * update the extent tree. * * We can steal from this in some cases as well, notably on evict() or * truncate() in order to help users recover from ENOSPC conditions. * * BLOCK_RSV_DELALLOC * The individual item sizes are determined by the per-inode size * calculations, which are described with the delalloc code. This is pretty * straightforward, it's just the calculation of ->size encodes a lot of * different items, and thus it gets used when updating inodes, inserting file * extents, and inserting checksums. * * BLOCK_RSV_DELREFS * We keep a running tally of how many delayed refs we have on the system. * We assume each one of these delayed refs are going to use a full * reservation. We use the transaction items and pre-reserve space for every * operation, and use this reservation to refill any gap between ->size and * ->reserved that may exist. * * From there it's straightforward, removing a delayed ref means we remove its * count from ->size and free up reservations as necessary. Since this is * the most dynamic block reserve in the system, we will try to refill this * block reserve first with any excess returned by any other block reserve. * * BLOCK_RSV_EMPTY * This is the fallback block reserve to make us try to reserve space if we * don't have a specific bucket for this allocation. It is mostly used for * updating the device tree and such, since that is a separate pool we're * content to just reserve space from the space_info on demand. * * BLOCK_RSV_TEMP * This is used by things like truncate and iput. We will temporarily * allocate a block reserve, set it to some size, and then truncate bytes * until we have no space left. With ->failfast set we'll simply return * ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try * to make a new reservation. This is because these operations are * unbounded, so we want to do as much work as we can, and then back off and * re-reserve. */ static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, struct btrfs_block_rsv *block_rsv, struct btrfs_block_rsv *dest, u64 num_bytes, u64 *qgroup_to_release_ret) { struct btrfs_space_info *space_info = block_rsv->space_info; u64 qgroup_to_release = 0; u64 ret; spin_lock(&block_rsv->lock); if (num_bytes == (u64)-1) { num_bytes = block_rsv->size; qgroup_to_release = block_rsv->qgroup_rsv_size; } block_rsv->size -= num_bytes; if (block_rsv->reserved >= block_rsv->size) { num_bytes = block_rsv->reserved - block_rsv->size; block_rsv->reserved = block_rsv->size; block_rsv->full = true; } else { num_bytes = 0; } if (qgroup_to_release_ret && block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { qgroup_to_release = block_rsv->qgroup_rsv_reserved - block_rsv->qgroup_rsv_size; block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; } else { qgroup_to_release = 0; } spin_unlock(&block_rsv->lock); ret = num_bytes; if (num_bytes > 0) { if (dest) { spin_lock(&dest->lock); if (!dest->full) { u64 bytes_to_add; bytes_to_add = dest->size - dest->reserved; bytes_to_add = min(num_bytes, bytes_to_add); dest->reserved += bytes_to_add; if (dest->reserved >= dest->size) dest->full = true; num_bytes -= bytes_to_add; } spin_unlock(&dest->lock); } if (num_bytes) btrfs_space_info_free_bytes_may_use(fs_info, space_info, num_bytes); } if (qgroup_to_release_ret) *qgroup_to_release_ret = qgroup_to_release; return ret; } int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, struct btrfs_block_rsv *dst, u64 num_bytes, bool update_size) { int ret; ret = btrfs_block_rsv_use_bytes(src, num_bytes); if (ret) return ret; btrfs_block_rsv_add_bytes(dst, num_bytes, update_size); return 0; } void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type) { memset(rsv, 0, sizeof(*rsv)); spin_lock_init(&rsv->lock); rsv->type = type; } void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type) { btrfs_init_block_rsv(rsv, type); rsv->space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); } struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, enum btrfs_rsv_type type) { struct btrfs_block_rsv *block_rsv; block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); if (!block_rsv) return NULL; btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); return block_rsv; } void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, struct btrfs_block_rsv *rsv) { if (!rsv) return; btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL); kfree(rsv); } int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info, struct btrfs_block_rsv *block_rsv, u64 num_bytes, enum btrfs_reserve_flush_enum flush) { int ret; if (num_bytes == 0) return 0; ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, num_bytes, flush); if (!ret) btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true); return ret; } int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent) { u64 num_bytes = 0; int ret = -ENOSPC; spin_lock(&block_rsv->lock); num_bytes = mult_perc(block_rsv->size, min_percent); if (block_rsv->reserved >= num_bytes) ret = 0; spin_unlock(&block_rsv->lock); return ret; } int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info, struct btrfs_block_rsv *block_rsv, u64 num_bytes, enum btrfs_reserve_flush_enum flush) { int ret = -ENOSPC; if (!block_rsv) return 0; spin_lock(&block_rsv->lock); if (block_rsv->reserved >= num_bytes) ret = 0; else num_bytes -= block_rsv->reserved; spin_unlock(&block_rsv->lock); if (!ret) return 0; ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, num_bytes, flush); if (!ret) { btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false); return 0; } return ret; } u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, struct btrfs_block_rsv *block_rsv, u64 num_bytes, u64 *qgroup_to_release) { struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; struct btrfs_block_rsv *target = NULL; /* * If we are a delayed block reserve then push to the global rsv, * otherwise dump into the global delayed reserve if it is not full. */ if (block_rsv->type == BTRFS_BLOCK_RSV_DELOPS) target = global_rsv; else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv)) target = delayed_rsv; if (target && block_rsv->space_info != target->space_info) target = NULL; return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes, qgroup_to_release); } int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes) { int ret = -ENOSPC; spin_lock(&block_rsv->lock); if (block_rsv->reserved >= num_bytes) { block_rsv->reserved -= num_bytes; if (block_rsv->reserved < block_rsv->size) block_rsv->full = false; ret = 0; } spin_unlock(&block_rsv->lock); return ret; } void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes, bool update_size) { spin_lock(&block_rsv->lock); block_rsv->reserved += num_bytes; if (update_size) block_rsv->size += num_bytes; else if (block_rsv->reserved >= block_rsv->size) block_rsv->full = true; spin_unlock(&block_rsv->lock); } void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info) { struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; struct btrfs_space_info *sinfo = block_rsv->space_info; struct btrfs_root *root, *tmp; u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item); unsigned int min_items = 1; /* * The global block rsv is based on the size of the extent tree, the * checksum tree and the root tree. If the fs is empty we want to set * it to a minimal amount for safety. * * We also are going to need to modify the minimum of the tree root and * any global roots we could touch. */ read_lock(&fs_info->global_root_lock); rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree, rb_node) { if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID || root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID || root->root_key.objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { num_bytes += btrfs_root_used(&root->root_item); min_items++; } } read_unlock(&fs_info->global_root_lock); if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { num_bytes += btrfs_root_used(&fs_info->block_group_root->root_item); min_items++; } if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { num_bytes += btrfs_root_used(&fs_info->stripe_root->root_item); min_items++; } /* * But we also want to reserve enough space so we can do the fallback * global reserve for an unlink, which is an additional * BTRFS_UNLINK_METADATA_UNITS items. * * But we also need space for the delayed ref updates from the unlink, * so add BTRFS_UNLINK_METADATA_UNITS units for delayed refs, one for * each unlink metadata item. */ min_items += BTRFS_UNLINK_METADATA_UNITS; num_bytes = max_t(u64, num_bytes, btrfs_calc_insert_metadata_size(fs_info, min_items) + btrfs_calc_delayed_ref_bytes(fs_info, BTRFS_UNLINK_METADATA_UNITS)); spin_lock(&sinfo->lock); spin_lock(&block_rsv->lock); block_rsv->size = min_t(u64, num_bytes, SZ_512M); if (block_rsv->reserved < block_rsv->size) { num_bytes = block_rsv->size - block_rsv->reserved; btrfs_space_info_update_bytes_may_use(fs_info, sinfo, num_bytes); block_rsv->reserved = block_rsv->size; } else if (block_rsv->reserved > block_rsv->size) { num_bytes = block_rsv->reserved - block_rsv->size; btrfs_space_info_update_bytes_may_use(fs_info, sinfo, -num_bytes); block_rsv->reserved = block_rsv->size; btrfs_try_granting_tickets(fs_info, sinfo); } block_rsv->full = (block_rsv->reserved == block_rsv->size); if (block_rsv->size >= sinfo->total_bytes) sinfo->force_alloc = CHUNK_ALLOC_FORCE; spin_unlock(&block_rsv->lock); spin_unlock(&sinfo->lock); } void btrfs_init_root_block_rsv(struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; switch (root->root_key.objectid) { case BTRFS_CSUM_TREE_OBJECTID: case BTRFS_EXTENT_TREE_OBJECTID: case BTRFS_FREE_SPACE_TREE_OBJECTID: case BTRFS_BLOCK_GROUP_TREE_OBJECTID: case BTRFS_RAID_STRIPE_TREE_OBJECTID: root->block_rsv = &fs_info->delayed_refs_rsv; break; case BTRFS_ROOT_TREE_OBJECTID: case BTRFS_DEV_TREE_OBJECTID: case BTRFS_QUOTA_TREE_OBJECTID: root->block_rsv = &fs_info->global_block_rsv; break; case BTRFS_CHUNK_TREE_OBJECTID: root->block_rsv = &fs_info->chunk_block_rsv; break; default: root->block_rsv = NULL; break; } } void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info) { struct btrfs_space_info *space_info; space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); fs_info->chunk_block_rsv.space_info = space_info; space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); fs_info->global_block_rsv.space_info = space_info; fs_info->trans_block_rsv.space_info = space_info; fs_info->empty_block_rsv.space_info = space_info; fs_info->delayed_block_rsv.space_info = space_info; fs_info->delayed_refs_rsv.space_info = space_info; btrfs_update_global_block_rsv(fs_info); } void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info) { btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1, NULL); WARN_ON(fs_info->trans_block_rsv.size > 0); WARN_ON(fs_info->trans_block_rsv.reserved > 0); WARN_ON(fs_info->chunk_block_rsv.size > 0); WARN_ON(fs_info->chunk_block_rsv.reserved > 0); WARN_ON(fs_info->delayed_block_rsv.size > 0); WARN_ON(fs_info->delayed_block_rsv.reserved > 0); WARN_ON(fs_info->delayed_refs_rsv.reserved > 0); WARN_ON(fs_info->delayed_refs_rsv.size > 0); } static struct btrfs_block_rsv *get_block_rsv( const struct btrfs_trans_handle *trans, const struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_block_rsv *block_rsv = NULL; if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || (root == fs_info->uuid_root) || (trans->adding_csums && root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID)) block_rsv = trans->block_rsv; if (!block_rsv) block_rsv = root->block_rsv; if (!block_rsv) block_rsv = &fs_info->empty_block_rsv; return block_rsv; } struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans, struct btrfs_root *root, u32 blocksize) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_block_rsv *block_rsv; struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; int ret; bool global_updated = false; block_rsv = get_block_rsv(trans, root); if (unlikely(btrfs_block_rsv_size(block_rsv) == 0)) goto try_reserve; again: ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize); if (!ret) return block_rsv; if (block_rsv->failfast) return ERR_PTR(ret); if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { global_updated = true; btrfs_update_global_block_rsv(fs_info); goto again; } /* * The global reserve still exists to save us from ourselves, so don't * warn_on if we are short on our delayed refs reserve. */ if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL * 10, /*DEFAULT_RATELIMIT_BURST*/ 1); if (__ratelimit(&_rs)) WARN(1, KERN_DEBUG "BTRFS: block rsv %d returned %d\n", block_rsv->type, ret); } try_reserve: ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, blocksize, BTRFS_RESERVE_NO_FLUSH); if (!ret) return block_rsv; /* * If we couldn't reserve metadata bytes try and use some from * the global reserve if its space type is the same as the global * reservation. */ if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && block_rsv->space_info == global_rsv->space_info) { ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize); if (!ret) return global_rsv; } /* * All hope is lost, but of course our reservations are overly * pessimistic, so instead of possibly having an ENOSPC abort here, try * one last time to force a reservation if there's enough actual space * on disk to make the reservation. */ ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, blocksize, BTRFS_RESERVE_FLUSH_EMERGENCY); if (!ret) return block_rsv; return ERR_PTR(ret); } int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info, struct btrfs_block_rsv *rsv) { u64 needed_bytes; int ret; /* 1 for slack space, 1 for updating the inode */ needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) + btrfs_calc_metadata_size(fs_info, 1); spin_lock(&rsv->lock); if (rsv->reserved < needed_bytes) ret = -ENOSPC; else ret = 0; spin_unlock(&rsv->lock); return ret; }