// SPDX-License-Identifier: GPL-2.0-only /* * AMD Secure Encrypted Virtualization (SEV) guest driver interface * * Copyright (C) 2021 Advanced Micro Devices, Inc. * * Author: Brijesh Singh */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sev-guest.h" #define DEVICE_NAME "sev-guest" #define AAD_LEN 48 #define MSG_HDR_VER 1 #define SNP_REQ_MAX_RETRY_DURATION (60*HZ) #define SNP_REQ_RETRY_DELAY (2*HZ) struct snp_guest_crypto { struct crypto_aead *tfm; u8 *iv, *authtag; int iv_len, a_len; }; struct snp_guest_dev { struct device *dev; struct miscdevice misc; void *certs_data; struct snp_guest_crypto *crypto; /* request and response are in unencrypted memory */ struct snp_guest_msg *request, *response; /* * Avoid information leakage by double-buffering shared messages * in fields that are in regular encrypted memory. */ struct snp_guest_msg secret_request, secret_response; struct snp_secrets_page *secrets; struct snp_req_data input; union { struct snp_report_req report; struct snp_derived_key_req derived_key; struct snp_ext_report_req ext_report; } req; u32 *os_area_msg_seqno; u8 *vmpck; }; static u32 vmpck_id; module_param(vmpck_id, uint, 0444); MODULE_PARM_DESC(vmpck_id, "The VMPCK ID to use when communicating with the PSP."); /* Mutex to serialize the shared buffer access and command handling. */ static DEFINE_MUTEX(snp_cmd_mutex); static bool is_vmpck_empty(struct snp_guest_dev *snp_dev) { char zero_key[VMPCK_KEY_LEN] = {0}; if (snp_dev->vmpck) return !memcmp(snp_dev->vmpck, zero_key, VMPCK_KEY_LEN); return true; } /* * If an error is received from the host or AMD Secure Processor (ASP) there * are two options. Either retry the exact same encrypted request or discontinue * using the VMPCK. * * This is because in the current encryption scheme GHCB v2 uses AES-GCM to * encrypt the requests. The IV for this scheme is the sequence number. GCM * cannot tolerate IV reuse. * * The ASP FW v1.51 only increments the sequence numbers on a successful * guest<->ASP back and forth and only accepts messages at its exact sequence * number. * * So if the sequence number were to be reused the encryption scheme is * vulnerable. If the sequence number were incremented for a fresh IV the ASP * will reject the request. */ static void snp_disable_vmpck(struct snp_guest_dev *snp_dev) { dev_alert(snp_dev->dev, "Disabling vmpck_id %d to prevent IV reuse.\n", vmpck_id); memzero_explicit(snp_dev->vmpck, VMPCK_KEY_LEN); snp_dev->vmpck = NULL; } static inline u64 __snp_get_msg_seqno(struct snp_guest_dev *snp_dev) { u64 count; lockdep_assert_held(&snp_cmd_mutex); /* Read the current message sequence counter from secrets pages */ count = *snp_dev->os_area_msg_seqno; return count + 1; } /* Return a non-zero on success */ static u64 snp_get_msg_seqno(struct snp_guest_dev *snp_dev) { u64 count = __snp_get_msg_seqno(snp_dev); /* * The message sequence counter for the SNP guest request is a 64-bit * value but the version 2 of GHCB specification defines a 32-bit storage * for it. If the counter exceeds the 32-bit value then return zero. * The caller should check the return value, but if the caller happens to * not check the value and use it, then the firmware treats zero as an * invalid number and will fail the message request. */ if (count >= UINT_MAX) { dev_err(snp_dev->dev, "request message sequence counter overflow\n"); return 0; } return count; } static void snp_inc_msg_seqno(struct snp_guest_dev *snp_dev) { /* * The counter is also incremented by the PSP, so increment it by 2 * and save in secrets page. */ *snp_dev->os_area_msg_seqno += 2; } static inline struct snp_guest_dev *to_snp_dev(struct file *file) { struct miscdevice *dev = file->private_data; return container_of(dev, struct snp_guest_dev, misc); } static struct snp_guest_crypto *init_crypto(struct snp_guest_dev *snp_dev, u8 *key, size_t keylen) { struct snp_guest_crypto *crypto; crypto = kzalloc(sizeof(*crypto), GFP_KERNEL_ACCOUNT); if (!crypto) return NULL; crypto->tfm = crypto_alloc_aead("gcm(aes)", 0, 0); if (IS_ERR(crypto->tfm)) goto e_free; if (crypto_aead_setkey(crypto->tfm, key, keylen)) goto e_free_crypto; crypto->iv_len = crypto_aead_ivsize(crypto->tfm); crypto->iv = kmalloc(crypto->iv_len, GFP_KERNEL_ACCOUNT); if (!crypto->iv) goto e_free_crypto; if (crypto_aead_authsize(crypto->tfm) > MAX_AUTHTAG_LEN) { if (crypto_aead_setauthsize(crypto->tfm, MAX_AUTHTAG_LEN)) { dev_err(snp_dev->dev, "failed to set authsize to %d\n", MAX_AUTHTAG_LEN); goto e_free_iv; } } crypto->a_len = crypto_aead_authsize(crypto->tfm); crypto->authtag = kmalloc(crypto->a_len, GFP_KERNEL_ACCOUNT); if (!crypto->authtag) goto e_free_iv; return crypto; e_free_iv: kfree(crypto->iv); e_free_crypto: crypto_free_aead(crypto->tfm); e_free: kfree(crypto); return NULL; } static void deinit_crypto(struct snp_guest_crypto *crypto) { crypto_free_aead(crypto->tfm); kfree(crypto->iv); kfree(crypto->authtag); kfree(crypto); } static int enc_dec_message(struct snp_guest_crypto *crypto, struct snp_guest_msg *msg, u8 *src_buf, u8 *dst_buf, size_t len, bool enc) { struct snp_guest_msg_hdr *hdr = &msg->hdr; struct scatterlist src[3], dst[3]; DECLARE_CRYPTO_WAIT(wait); struct aead_request *req; int ret; req = aead_request_alloc(crypto->tfm, GFP_KERNEL); if (!req) return -ENOMEM; /* * AEAD memory operations: * +------ AAD -------+------- DATA -----+---- AUTHTAG----+ * | msg header | plaintext | hdr->authtag | * | bytes 30h - 5Fh | or | | * | | cipher | | * +------------------+------------------+----------------+ */ sg_init_table(src, 3); sg_set_buf(&src[0], &hdr->algo, AAD_LEN); sg_set_buf(&src[1], src_buf, hdr->msg_sz); sg_set_buf(&src[2], hdr->authtag, crypto->a_len); sg_init_table(dst, 3); sg_set_buf(&dst[0], &hdr->algo, AAD_LEN); sg_set_buf(&dst[1], dst_buf, hdr->msg_sz); sg_set_buf(&dst[2], hdr->authtag, crypto->a_len); aead_request_set_ad(req, AAD_LEN); aead_request_set_tfm(req, crypto->tfm); aead_request_set_callback(req, 0, crypto_req_done, &wait); aead_request_set_crypt(req, src, dst, len, crypto->iv); ret = crypto_wait_req(enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req), &wait); aead_request_free(req); return ret; } static int __enc_payload(struct snp_guest_dev *snp_dev, struct snp_guest_msg *msg, void *plaintext, size_t len) { struct snp_guest_crypto *crypto = snp_dev->crypto; struct snp_guest_msg_hdr *hdr = &msg->hdr; memset(crypto->iv, 0, crypto->iv_len); memcpy(crypto->iv, &hdr->msg_seqno, sizeof(hdr->msg_seqno)); return enc_dec_message(crypto, msg, plaintext, msg->payload, len, true); } static int dec_payload(struct snp_guest_dev *snp_dev, struct snp_guest_msg *msg, void *plaintext, size_t len) { struct snp_guest_crypto *crypto = snp_dev->crypto; struct snp_guest_msg_hdr *hdr = &msg->hdr; /* Build IV with response buffer sequence number */ memset(crypto->iv, 0, crypto->iv_len); memcpy(crypto->iv, &hdr->msg_seqno, sizeof(hdr->msg_seqno)); return enc_dec_message(crypto, msg, msg->payload, plaintext, len, false); } static int verify_and_dec_payload(struct snp_guest_dev *snp_dev, void *payload, u32 sz) { struct snp_guest_crypto *crypto = snp_dev->crypto; struct snp_guest_msg *resp = &snp_dev->secret_response; struct snp_guest_msg *req = &snp_dev->secret_request; struct snp_guest_msg_hdr *req_hdr = &req->hdr; struct snp_guest_msg_hdr *resp_hdr = &resp->hdr; dev_dbg(snp_dev->dev, "response [seqno %lld type %d version %d sz %d]\n", resp_hdr->msg_seqno, resp_hdr->msg_type, resp_hdr->msg_version, resp_hdr->msg_sz); /* Copy response from shared memory to encrypted memory. */ memcpy(resp, snp_dev->response, sizeof(*resp)); /* Verify that the sequence counter is incremented by 1 */ if (unlikely(resp_hdr->msg_seqno != (req_hdr->msg_seqno + 1))) return -EBADMSG; /* Verify response message type and version number. */ if (resp_hdr->msg_type != (req_hdr->msg_type + 1) || resp_hdr->msg_version != req_hdr->msg_version) return -EBADMSG; /* * If the message size is greater than our buffer length then return * an error. */ if (unlikely((resp_hdr->msg_sz + crypto->a_len) > sz)) return -EBADMSG; /* Decrypt the payload */ return dec_payload(snp_dev, resp, payload, resp_hdr->msg_sz + crypto->a_len); } static int enc_payload(struct snp_guest_dev *snp_dev, u64 seqno, int version, u8 type, void *payload, size_t sz) { struct snp_guest_msg *req = &snp_dev->secret_request; struct snp_guest_msg_hdr *hdr = &req->hdr; memset(req, 0, sizeof(*req)); hdr->algo = SNP_AEAD_AES_256_GCM; hdr->hdr_version = MSG_HDR_VER; hdr->hdr_sz = sizeof(*hdr); hdr->msg_type = type; hdr->msg_version = version; hdr->msg_seqno = seqno; hdr->msg_vmpck = vmpck_id; hdr->msg_sz = sz; /* Verify the sequence number is non-zero */ if (!hdr->msg_seqno) return -ENOSR; dev_dbg(snp_dev->dev, "request [seqno %lld type %d version %d sz %d]\n", hdr->msg_seqno, hdr->msg_type, hdr->msg_version, hdr->msg_sz); return __enc_payload(snp_dev, req, payload, sz); } static int __handle_guest_request(struct snp_guest_dev *snp_dev, u64 exit_code, struct snp_guest_request_ioctl *rio) { unsigned long req_start = jiffies; unsigned int override_npages = 0; u64 override_err = 0; int rc; retry_request: /* * Call firmware to process the request. In this function the encrypted * message enters shared memory with the host. So after this call the * sequence number must be incremented or the VMPCK must be deleted to * prevent reuse of the IV. */ rc = snp_issue_guest_request(exit_code, &snp_dev->input, rio); switch (rc) { case -ENOSPC: /* * If the extended guest request fails due to having too * small of a certificate data buffer, retry the same * guest request without the extended data request in * order to increment the sequence number and thus avoid * IV reuse. */ override_npages = snp_dev->input.data_npages; exit_code = SVM_VMGEXIT_GUEST_REQUEST; /* * Override the error to inform callers the given extended * request buffer size was too small and give the caller the * required buffer size. */ override_err = SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN); /* * If this call to the firmware succeeds, the sequence number can * be incremented allowing for continued use of the VMPCK. If * there is an error reflected in the return value, this value * is checked further down and the result will be the deletion * of the VMPCK and the error code being propagated back to the * user as an ioctl() return code. */ goto retry_request; /* * The host may return SNP_GUEST_VMM_ERR_BUSY if the request has been * throttled. Retry in the driver to avoid returning and reusing the * message sequence number on a different message. */ case -EAGAIN: if (jiffies - req_start > SNP_REQ_MAX_RETRY_DURATION) { rc = -ETIMEDOUT; break; } schedule_timeout_killable(SNP_REQ_RETRY_DELAY); goto retry_request; } /* * Increment the message sequence number. There is no harm in doing * this now because decryption uses the value stored in the response * structure and any failure will wipe the VMPCK, preventing further * use anyway. */ snp_inc_msg_seqno(snp_dev); if (override_err) { rio->exitinfo2 = override_err; /* * If an extended guest request was issued and the supplied certificate * buffer was not large enough, a standard guest request was issued to * prevent IV reuse. If the standard request was successful, return -EIO * back to the caller as would have originally been returned. */ if (!rc && override_err == SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN)) rc = -EIO; } if (override_npages) snp_dev->input.data_npages = override_npages; return rc; } static int handle_guest_request(struct snp_guest_dev *snp_dev, u64 exit_code, struct snp_guest_request_ioctl *rio, u8 type, void *req_buf, size_t req_sz, void *resp_buf, u32 resp_sz) { u64 seqno; int rc; /* Get message sequence and verify that its a non-zero */ seqno = snp_get_msg_seqno(snp_dev); if (!seqno) return -EIO; /* Clear shared memory's response for the host to populate. */ memset(snp_dev->response, 0, sizeof(struct snp_guest_msg)); /* Encrypt the userspace provided payload in snp_dev->secret_request. */ rc = enc_payload(snp_dev, seqno, rio->msg_version, type, req_buf, req_sz); if (rc) return rc; /* * Write the fully encrypted request to the shared unencrypted * request page. */ memcpy(snp_dev->request, &snp_dev->secret_request, sizeof(snp_dev->secret_request)); rc = __handle_guest_request(snp_dev, exit_code, rio); if (rc) { if (rc == -EIO && rio->exitinfo2 == SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN)) return rc; dev_alert(snp_dev->dev, "Detected error from ASP request. rc: %d, exitinfo2: 0x%llx\n", rc, rio->exitinfo2); snp_disable_vmpck(snp_dev); return rc; } rc = verify_and_dec_payload(snp_dev, resp_buf, resp_sz); if (rc) { dev_alert(snp_dev->dev, "Detected unexpected decode failure from ASP. rc: %d\n", rc); snp_disable_vmpck(snp_dev); return rc; } return 0; } struct snp_req_resp { sockptr_t req_data; sockptr_t resp_data; }; static int get_report(struct snp_guest_dev *snp_dev, struct snp_guest_request_ioctl *arg) { struct snp_guest_crypto *crypto = snp_dev->crypto; struct snp_report_req *req = &snp_dev->req.report; struct snp_report_resp *resp; int rc, resp_len; lockdep_assert_held(&snp_cmd_mutex); if (!arg->req_data || !arg->resp_data) return -EINVAL; if (copy_from_user(req, (void __user *)arg->req_data, sizeof(*req))) return -EFAULT; /* * The intermediate response buffer is used while decrypting the * response payload. Make sure that it has enough space to cover the * authtag. */ resp_len = sizeof(resp->data) + crypto->a_len; resp = kzalloc(resp_len, GFP_KERNEL_ACCOUNT); if (!resp) return -ENOMEM; rc = handle_guest_request(snp_dev, SVM_VMGEXIT_GUEST_REQUEST, arg, SNP_MSG_REPORT_REQ, req, sizeof(*req), resp->data, resp_len); if (rc) goto e_free; if (copy_to_user((void __user *)arg->resp_data, resp, sizeof(*resp))) rc = -EFAULT; e_free: kfree(resp); return rc; } static int get_derived_key(struct snp_guest_dev *snp_dev, struct snp_guest_request_ioctl *arg) { struct snp_derived_key_req *req = &snp_dev->req.derived_key; struct snp_guest_crypto *crypto = snp_dev->crypto; struct snp_derived_key_resp resp = {0}; int rc, resp_len; /* Response data is 64 bytes and max authsize for GCM is 16 bytes. */ u8 buf[64 + 16]; lockdep_assert_held(&snp_cmd_mutex); if (!arg->req_data || !arg->resp_data) return -EINVAL; /* * The intermediate response buffer is used while decrypting the * response payload. Make sure that it has enough space to cover the * authtag. */ resp_len = sizeof(resp.data) + crypto->a_len; if (sizeof(buf) < resp_len) return -ENOMEM; if (copy_from_user(req, (void __user *)arg->req_data, sizeof(*req))) return -EFAULT; rc = handle_guest_request(snp_dev, SVM_VMGEXIT_GUEST_REQUEST, arg, SNP_MSG_KEY_REQ, req, sizeof(*req), buf, resp_len); if (rc) return rc; memcpy(resp.data, buf, sizeof(resp.data)); if (copy_to_user((void __user *)arg->resp_data, &resp, sizeof(resp))) rc = -EFAULT; /* The response buffer contains the sensitive data, explicitly clear it. */ memzero_explicit(buf, sizeof(buf)); memzero_explicit(&resp, sizeof(resp)); return rc; } static int get_ext_report(struct snp_guest_dev *snp_dev, struct snp_guest_request_ioctl *arg, struct snp_req_resp *io) { struct snp_ext_report_req *req = &snp_dev->req.ext_report; struct snp_guest_crypto *crypto = snp_dev->crypto; struct snp_report_resp *resp; int ret, npages = 0, resp_len; sockptr_t certs_address; lockdep_assert_held(&snp_cmd_mutex); if (sockptr_is_null(io->req_data) || sockptr_is_null(io->resp_data)) return -EINVAL; if (copy_from_sockptr(req, io->req_data, sizeof(*req))) return -EFAULT; /* caller does not want certificate data */ if (!req->certs_len || !req->certs_address) goto cmd; if (req->certs_len > SEV_FW_BLOB_MAX_SIZE || !IS_ALIGNED(req->certs_len, PAGE_SIZE)) return -EINVAL; if (sockptr_is_kernel(io->resp_data)) { certs_address = KERNEL_SOCKPTR((void *)req->certs_address); } else { certs_address = USER_SOCKPTR((void __user *)req->certs_address); if (!access_ok(certs_address.user, req->certs_len)) return -EFAULT; } /* * Initialize the intermediate buffer with all zeros. This buffer * is used in the guest request message to get the certs blob from * the host. If host does not supply any certs in it, then copy * zeros to indicate that certificate data was not provided. */ memset(snp_dev->certs_data, 0, req->certs_len); npages = req->certs_len >> PAGE_SHIFT; cmd: /* * The intermediate response buffer is used while decrypting the * response payload. Make sure that it has enough space to cover the * authtag. */ resp_len = sizeof(resp->data) + crypto->a_len; resp = kzalloc(resp_len, GFP_KERNEL_ACCOUNT); if (!resp) return -ENOMEM; snp_dev->input.data_npages = npages; ret = handle_guest_request(snp_dev, SVM_VMGEXIT_EXT_GUEST_REQUEST, arg, SNP_MSG_REPORT_REQ, &req->data, sizeof(req->data), resp->data, resp_len); /* If certs length is invalid then copy the returned length */ if (arg->vmm_error == SNP_GUEST_VMM_ERR_INVALID_LEN) { req->certs_len = snp_dev->input.data_npages << PAGE_SHIFT; if (copy_to_sockptr(io->req_data, req, sizeof(*req))) ret = -EFAULT; } if (ret) goto e_free; if (npages && copy_to_sockptr(certs_address, snp_dev->certs_data, req->certs_len)) { ret = -EFAULT; goto e_free; } if (copy_to_sockptr(io->resp_data, resp, sizeof(*resp))) ret = -EFAULT; e_free: kfree(resp); return ret; } static long snp_guest_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) { struct snp_guest_dev *snp_dev = to_snp_dev(file); void __user *argp = (void __user *)arg; struct snp_guest_request_ioctl input; struct snp_req_resp io; int ret = -ENOTTY; if (copy_from_user(&input, argp, sizeof(input))) return -EFAULT; input.exitinfo2 = 0xff; /* Message version must be non-zero */ if (!input.msg_version) return -EINVAL; mutex_lock(&snp_cmd_mutex); /* Check if the VMPCK is not empty */ if (is_vmpck_empty(snp_dev)) { dev_err_ratelimited(snp_dev->dev, "VMPCK is disabled\n"); mutex_unlock(&snp_cmd_mutex); return -ENOTTY; } switch (ioctl) { case SNP_GET_REPORT: ret = get_report(snp_dev, &input); break; case SNP_GET_DERIVED_KEY: ret = get_derived_key(snp_dev, &input); break; case SNP_GET_EXT_REPORT: /* * As get_ext_report() may be called from the ioctl() path and a * kernel internal path (configfs-tsm), decorate the passed * buffers as user pointers. */ io.req_data = USER_SOCKPTR((void __user *)input.req_data); io.resp_data = USER_SOCKPTR((void __user *)input.resp_data); ret = get_ext_report(snp_dev, &input, &io); break; default: break; } mutex_unlock(&snp_cmd_mutex); if (input.exitinfo2 && copy_to_user(argp, &input, sizeof(input))) return -EFAULT; return ret; } static void free_shared_pages(void *buf, size_t sz) { unsigned int npages = PAGE_ALIGN(sz) >> PAGE_SHIFT; int ret; if (!buf) return; ret = set_memory_encrypted((unsigned long)buf, npages); if (ret) { WARN_ONCE(ret, "failed to restore encryption mask (leak it)\n"); return; } __free_pages(virt_to_page(buf), get_order(sz)); } static void *alloc_shared_pages(struct device *dev, size_t sz) { unsigned int npages = PAGE_ALIGN(sz) >> PAGE_SHIFT; struct page *page; int ret; page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(sz)); if (!page) return NULL; ret = set_memory_decrypted((unsigned long)page_address(page), npages); if (ret) { dev_err(dev, "failed to mark page shared, ret=%d\n", ret); __free_pages(page, get_order(sz)); return NULL; } return page_address(page); } static const struct file_operations snp_guest_fops = { .owner = THIS_MODULE, .unlocked_ioctl = snp_guest_ioctl, }; static u8 *get_vmpck(int id, struct snp_secrets_page *secrets, u32 **seqno) { u8 *key = NULL; switch (id) { case 0: *seqno = &secrets->os_area.msg_seqno_0; key = secrets->vmpck0; break; case 1: *seqno = &secrets->os_area.msg_seqno_1; key = secrets->vmpck1; break; case 2: *seqno = &secrets->os_area.msg_seqno_2; key = secrets->vmpck2; break; case 3: *seqno = &secrets->os_area.msg_seqno_3; key = secrets->vmpck3; break; default: break; } return key; } struct snp_msg_report_resp_hdr { u32 status; u32 report_size; u8 rsvd[24]; }; struct snp_msg_cert_entry { guid_t guid; u32 offset; u32 length; }; static int sev_report_new(struct tsm_report *report, void *data) { struct snp_msg_cert_entry *cert_table; struct tsm_desc *desc = &report->desc; struct snp_guest_dev *snp_dev = data; struct snp_msg_report_resp_hdr hdr; const u32 report_size = SZ_4K; const u32 ext_size = SEV_FW_BLOB_MAX_SIZE; u32 certs_size, i, size = report_size + ext_size; int ret; if (desc->inblob_len != SNP_REPORT_USER_DATA_SIZE) return -EINVAL; void *buf __free(kvfree) = kvzalloc(size, GFP_KERNEL); if (!buf) return -ENOMEM; guard(mutex)(&snp_cmd_mutex); /* Check if the VMPCK is not empty */ if (is_vmpck_empty(snp_dev)) { dev_err_ratelimited(snp_dev->dev, "VMPCK is disabled\n"); return -ENOTTY; } cert_table = buf + report_size; struct snp_ext_report_req ext_req = { .data = { .vmpl = desc->privlevel }, .certs_address = (__u64)cert_table, .certs_len = ext_size, }; memcpy(&ext_req.data.user_data, desc->inblob, desc->inblob_len); struct snp_guest_request_ioctl input = { .msg_version = 1, .req_data = (__u64)&ext_req, .resp_data = (__u64)buf, .exitinfo2 = 0xff, }; struct snp_req_resp io = { .req_data = KERNEL_SOCKPTR(&ext_req), .resp_data = KERNEL_SOCKPTR(buf), }; ret = get_ext_report(snp_dev, &input, &io); if (ret) return ret; memcpy(&hdr, buf, sizeof(hdr)); if (hdr.status == SEV_RET_INVALID_PARAM) return -EINVAL; if (hdr.status == SEV_RET_INVALID_KEY) return -EINVAL; if (hdr.status) return -ENXIO; if ((hdr.report_size + sizeof(hdr)) > report_size) return -ENOMEM; void *rbuf __free(kvfree) = kvzalloc(hdr.report_size, GFP_KERNEL); if (!rbuf) return -ENOMEM; memcpy(rbuf, buf + sizeof(hdr), hdr.report_size); report->outblob = no_free_ptr(rbuf); report->outblob_len = hdr.report_size; certs_size = 0; for (i = 0; i < ext_size / sizeof(struct snp_msg_cert_entry); i++) { struct snp_msg_cert_entry *ent = &cert_table[i]; if (guid_is_null(&ent->guid) && !ent->offset && !ent->length) break; certs_size = max(certs_size, ent->offset + ent->length); } /* Suspicious that the response populated entries without populating size */ if (!certs_size && i) dev_warn_ratelimited(snp_dev->dev, "certificate slots conveyed without size\n"); /* No certs to report */ if (!certs_size) return 0; /* Suspicious that the certificate blob size contract was violated */ if (certs_size > ext_size) { dev_warn_ratelimited(snp_dev->dev, "certificate data truncated\n"); certs_size = ext_size; } void *cbuf __free(kvfree) = kvzalloc(certs_size, GFP_KERNEL); if (!cbuf) return -ENOMEM; memcpy(cbuf, cert_table, certs_size); report->auxblob = no_free_ptr(cbuf); report->auxblob_len = certs_size; return 0; } static const struct tsm_ops sev_tsm_ops = { .name = KBUILD_MODNAME, .report_new = sev_report_new, }; static void unregister_sev_tsm(void *data) { tsm_unregister(&sev_tsm_ops); } static int __init sev_guest_probe(struct platform_device *pdev) { struct sev_guest_platform_data *data; struct snp_secrets_page *secrets; struct device *dev = &pdev->dev; struct snp_guest_dev *snp_dev; struct miscdevice *misc; void __iomem *mapping; int ret; if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) return -ENODEV; if (!dev->platform_data) return -ENODEV; data = (struct sev_guest_platform_data *)dev->platform_data; mapping = ioremap_encrypted(data->secrets_gpa, PAGE_SIZE); if (!mapping) return -ENODEV; secrets = (__force void *)mapping; ret = -ENOMEM; snp_dev = devm_kzalloc(&pdev->dev, sizeof(struct snp_guest_dev), GFP_KERNEL); if (!snp_dev) goto e_unmap; ret = -EINVAL; snp_dev->vmpck = get_vmpck(vmpck_id, secrets, &snp_dev->os_area_msg_seqno); if (!snp_dev->vmpck) { dev_err(dev, "invalid vmpck id %d\n", vmpck_id); goto e_unmap; } /* Verify that VMPCK is not zero. */ if (is_vmpck_empty(snp_dev)) { dev_err(dev, "vmpck id %d is null\n", vmpck_id); goto e_unmap; } platform_set_drvdata(pdev, snp_dev); snp_dev->dev = dev; snp_dev->secrets = secrets; /* Allocate the shared page used for the request and response message. */ snp_dev->request = alloc_shared_pages(dev, sizeof(struct snp_guest_msg)); if (!snp_dev->request) goto e_unmap; snp_dev->response = alloc_shared_pages(dev, sizeof(struct snp_guest_msg)); if (!snp_dev->response) goto e_free_request; snp_dev->certs_data = alloc_shared_pages(dev, SEV_FW_BLOB_MAX_SIZE); if (!snp_dev->certs_data) goto e_free_response; ret = -EIO; snp_dev->crypto = init_crypto(snp_dev, snp_dev->vmpck, VMPCK_KEY_LEN); if (!snp_dev->crypto) goto e_free_cert_data; misc = &snp_dev->misc; misc->minor = MISC_DYNAMIC_MINOR; misc->name = DEVICE_NAME; misc->fops = &snp_guest_fops; /* initial the input address for guest request */ snp_dev->input.req_gpa = __pa(snp_dev->request); snp_dev->input.resp_gpa = __pa(snp_dev->response); snp_dev->input.data_gpa = __pa(snp_dev->certs_data); ret = tsm_register(&sev_tsm_ops, snp_dev, &tsm_report_extra_type); if (ret) goto e_free_cert_data; ret = devm_add_action_or_reset(&pdev->dev, unregister_sev_tsm, NULL); if (ret) goto e_free_cert_data; ret = misc_register(misc); if (ret) goto e_free_cert_data; dev_info(dev, "Initialized SEV guest driver (using vmpck_id %d)\n", vmpck_id); return 0; e_free_cert_data: free_shared_pages(snp_dev->certs_data, SEV_FW_BLOB_MAX_SIZE); e_free_response: free_shared_pages(snp_dev->response, sizeof(struct snp_guest_msg)); e_free_request: free_shared_pages(snp_dev->request, sizeof(struct snp_guest_msg)); e_unmap: iounmap(mapping); return ret; } static void __exit sev_guest_remove(struct platform_device *pdev) { struct snp_guest_dev *snp_dev = platform_get_drvdata(pdev); free_shared_pages(snp_dev->certs_data, SEV_FW_BLOB_MAX_SIZE); free_shared_pages(snp_dev->response, sizeof(struct snp_guest_msg)); free_shared_pages(snp_dev->request, sizeof(struct snp_guest_msg)); deinit_crypto(snp_dev->crypto); misc_deregister(&snp_dev->misc); } /* * This driver is meant to be a common SEV guest interface driver and to * support any SEV guest API. As such, even though it has been introduced * with the SEV-SNP support, it is named "sev-guest". */ static struct platform_driver sev_guest_driver = { .remove_new = __exit_p(sev_guest_remove), .driver = { .name = "sev-guest", }, }; module_platform_driver_probe(sev_guest_driver, sev_guest_probe); MODULE_AUTHOR("Brijesh Singh "); MODULE_LICENSE("GPL"); MODULE_VERSION("1.0.0"); MODULE_DESCRIPTION("AMD SEV Guest Driver"); MODULE_ALIAS("platform:sev-guest");