// SPDX-License-Identifier: GPL-2.0 /* * Cadence CDNSP DRD Driver. * * Copyright (C) 2020 Cadence. * * Author: Pawel Laszczak * * Code based on Linux XHCI driver. * Origin: Copyright (C) 2008 Intel Corp. */ #include #include #include #include #include "cdnsp-gadget.h" #include "cdnsp-trace.h" static void cdnsp_free_stream_info(struct cdnsp_device *pdev, struct cdnsp_ep *pep); /* * Allocates a generic ring segment from the ring pool, sets the dma address, * initializes the segment to zero, and sets the private next pointer to NULL. * * "All components of all Command and Transfer TRBs shall be initialized to '0'" */ static struct cdnsp_segment *cdnsp_segment_alloc(struct cdnsp_device *pdev, unsigned int cycle_state, unsigned int max_packet, gfp_t flags) { struct cdnsp_segment *seg; dma_addr_t dma; int i; seg = kzalloc(sizeof(*seg), flags); if (!seg) return NULL; seg->trbs = dma_pool_zalloc(pdev->segment_pool, flags, &dma); if (!seg->trbs) { kfree(seg); return NULL; } if (max_packet) { seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA); if (!seg->bounce_buf) goto free_dma; } /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs. */ if (cycle_state == 0) { for (i = 0; i < TRBS_PER_SEGMENT; i++) seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); } seg->dma = dma; seg->next = NULL; return seg; free_dma: dma_pool_free(pdev->segment_pool, seg->trbs, dma); kfree(seg); return NULL; } static void cdnsp_segment_free(struct cdnsp_device *pdev, struct cdnsp_segment *seg) { if (seg->trbs) dma_pool_free(pdev->segment_pool, seg->trbs, seg->dma); kfree(seg->bounce_buf); kfree(seg); } static void cdnsp_free_segments_for_ring(struct cdnsp_device *pdev, struct cdnsp_segment *first) { struct cdnsp_segment *seg; seg = first->next; while (seg != first) { struct cdnsp_segment *next = seg->next; cdnsp_segment_free(pdev, seg); seg = next; } cdnsp_segment_free(pdev, first); } /* * Make the prev segment point to the next segment. * * Change the last TRB in the prev segment to be a Link TRB which points to the * DMA address of the next segment. The caller needs to set any Link TRB * related flags, such as End TRB, Toggle Cycle, and no snoop. */ static void cdnsp_link_segments(struct cdnsp_device *pdev, struct cdnsp_segment *prev, struct cdnsp_segment *next, enum cdnsp_ring_type type) { struct cdnsp_link_trb *link; u32 val; if (!prev || !next) return; prev->next = next; if (type != TYPE_EVENT) { link = &prev->trbs[TRBS_PER_SEGMENT - 1].link; link->segment_ptr = cpu_to_le64(next->dma); /* * Set the last TRB in the segment to have a TRB type ID * of Link TRB */ val = le32_to_cpu(link->control); val &= ~TRB_TYPE_BITMASK; val |= TRB_TYPE(TRB_LINK); link->control = cpu_to_le32(val); } } /* * Link the ring to the new segments. * Set Toggle Cycle for the new ring if needed. */ static void cdnsp_link_rings(struct cdnsp_device *pdev, struct cdnsp_ring *ring, struct cdnsp_segment *first, struct cdnsp_segment *last, unsigned int num_segs) { struct cdnsp_segment *next; if (!ring || !first || !last) return; next = ring->enq_seg->next; cdnsp_link_segments(pdev, ring->enq_seg, first, ring->type); cdnsp_link_segments(pdev, last, next, ring->type); ring->num_segs += num_segs; ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= ~cpu_to_le32(LINK_TOGGLE); last->trbs[TRBS_PER_SEGMENT - 1].link.control |= cpu_to_le32(LINK_TOGGLE); ring->last_seg = last; } } /* * We need a radix tree for mapping physical addresses of TRBs to which stream * ID they belong to. We need to do this because the device controller won't * tell us which stream ring the TRB came from. We could store the stream ID * in an event data TRB, but that doesn't help us for the cancellation case, * since the endpoint may stop before it reaches that event data TRB. * * The radix tree maps the upper portion of the TRB DMA address to a ring * segment that has the same upper portion of DMA addresses. For example, * say I have segments of size 1KB, that are always 1KB aligned. A segment may * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the * key to the stream ID is 0x43244. I can use the DMA address of the TRB to * pass the radix tree a key to get the right stream ID: * * 0x10c90fff >> 10 = 0x43243 * 0x10c912c0 >> 10 = 0x43244 * 0x10c91400 >> 10 = 0x43245 * * Obviously, only those TRBs with DMA addresses that are within the segment * will make the radix tree return the stream ID for that ring. * * Caveats for the radix tree: * * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit * extended systems (where the DMA address can be bigger than 32-bits), * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. */ static int cdnsp_insert_segment_mapping(struct radix_tree_root *trb_address_map, struct cdnsp_ring *ring, struct cdnsp_segment *seg, gfp_t mem_flags) { unsigned long key; int ret; key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); /* Skip any segments that were already added. */ if (radix_tree_lookup(trb_address_map, key)) return 0; ret = radix_tree_maybe_preload(mem_flags); if (ret) return ret; ret = radix_tree_insert(trb_address_map, key, ring); radix_tree_preload_end(); return ret; } static void cdnsp_remove_segment_mapping(struct radix_tree_root *trb_address_map, struct cdnsp_segment *seg) { unsigned long key; key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); if (radix_tree_lookup(trb_address_map, key)) radix_tree_delete(trb_address_map, key); } static int cdnsp_update_stream_segment_mapping(struct radix_tree_root *trb_address_map, struct cdnsp_ring *ring, struct cdnsp_segment *first_seg, struct cdnsp_segment *last_seg, gfp_t mem_flags) { struct cdnsp_segment *failed_seg; struct cdnsp_segment *seg; int ret; seg = first_seg; do { ret = cdnsp_insert_segment_mapping(trb_address_map, ring, seg, mem_flags); if (ret) goto remove_streams; if (seg == last_seg) return 0; seg = seg->next; } while (seg != first_seg); return 0; remove_streams: failed_seg = seg; seg = first_seg; do { cdnsp_remove_segment_mapping(trb_address_map, seg); if (seg == failed_seg) return ret; seg = seg->next; } while (seg != first_seg); return ret; } static void cdnsp_remove_stream_mapping(struct cdnsp_ring *ring) { struct cdnsp_segment *seg; seg = ring->first_seg; do { cdnsp_remove_segment_mapping(ring->trb_address_map, seg); seg = seg->next; } while (seg != ring->first_seg); } static int cdnsp_update_stream_mapping(struct cdnsp_ring *ring) { return cdnsp_update_stream_segment_mapping(ring->trb_address_map, ring, ring->first_seg, ring->last_seg, GFP_ATOMIC); } static void cdnsp_ring_free(struct cdnsp_device *pdev, struct cdnsp_ring *ring) { if (!ring) return; trace_cdnsp_ring_free(ring); if (ring->first_seg) { if (ring->type == TYPE_STREAM) cdnsp_remove_stream_mapping(ring); cdnsp_free_segments_for_ring(pdev, ring->first_seg); } kfree(ring); } void cdnsp_initialize_ring_info(struct cdnsp_ring *ring) { ring->enqueue = ring->first_seg->trbs; ring->enq_seg = ring->first_seg; ring->dequeue = ring->enqueue; ring->deq_seg = ring->first_seg; /* * The ring is initialized to 0. The producer must write 1 to the cycle * bit to handover ownership of the TRB, so PCS = 1. The consumer must * compare CCS to the cycle bit to check ownership, so CCS = 1. * * New rings are initialized with cycle state equal to 1; if we are * handling ring expansion, set the cycle state equal to the old ring. */ ring->cycle_state = 1; /* * Each segment has a link TRB, and leave an extra TRB for SW * accounting purpose */ ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; } /* Allocate segments and link them for a ring. */ static int cdnsp_alloc_segments_for_ring(struct cdnsp_device *pdev, struct cdnsp_segment **first, struct cdnsp_segment **last, unsigned int num_segs, unsigned int cycle_state, enum cdnsp_ring_type type, unsigned int max_packet, gfp_t flags) { struct cdnsp_segment *prev; /* Allocate first segment. */ prev = cdnsp_segment_alloc(pdev, cycle_state, max_packet, flags); if (!prev) return -ENOMEM; num_segs--; *first = prev; /* Allocate all other segments. */ while (num_segs > 0) { struct cdnsp_segment *next; next = cdnsp_segment_alloc(pdev, cycle_state, max_packet, flags); if (!next) { cdnsp_free_segments_for_ring(pdev, *first); return -ENOMEM; } cdnsp_link_segments(pdev, prev, next, type); prev = next; num_segs--; } cdnsp_link_segments(pdev, prev, *first, type); *last = prev; return 0; } /* * Create a new ring with zero or more segments. * * Link each segment together into a ring. * Set the end flag and the cycle toggle bit on the last segment. */ static struct cdnsp_ring *cdnsp_ring_alloc(struct cdnsp_device *pdev, unsigned int num_segs, enum cdnsp_ring_type type, unsigned int max_packet, gfp_t flags) { struct cdnsp_ring *ring; int ret; ring = kzalloc(sizeof *(ring), flags); if (!ring) return NULL; ring->num_segs = num_segs; ring->bounce_buf_len = max_packet; INIT_LIST_HEAD(&ring->td_list); ring->type = type; if (num_segs == 0) return ring; ret = cdnsp_alloc_segments_for_ring(pdev, &ring->first_seg, &ring->last_seg, num_segs, 1, type, max_packet, flags); if (ret) goto fail; /* Only event ring does not use link TRB. */ if (type != TYPE_EVENT) ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= cpu_to_le32(LINK_TOGGLE); cdnsp_initialize_ring_info(ring); trace_cdnsp_ring_alloc(ring); return ring; fail: kfree(ring); return NULL; } void cdnsp_free_endpoint_rings(struct cdnsp_device *pdev, struct cdnsp_ep *pep) { cdnsp_ring_free(pdev, pep->ring); pep->ring = NULL; cdnsp_free_stream_info(pdev, pep); } /* * Expand an existing ring. * Allocate a new ring which has same segment numbers and link the two rings. */ int cdnsp_ring_expansion(struct cdnsp_device *pdev, struct cdnsp_ring *ring, unsigned int num_trbs, gfp_t flags) { unsigned int num_segs_needed; struct cdnsp_segment *first; struct cdnsp_segment *last; unsigned int num_segs; int ret; num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / (TRBS_PER_SEGMENT - 1); /* Allocate number of segments we needed, or double the ring size. */ num_segs = max(ring->num_segs, num_segs_needed); ret = cdnsp_alloc_segments_for_ring(pdev, &first, &last, num_segs, ring->cycle_state, ring->type, ring->bounce_buf_len, flags); if (ret) return -ENOMEM; if (ring->type == TYPE_STREAM) ret = cdnsp_update_stream_segment_mapping(ring->trb_address_map, ring, first, last, flags); if (ret) { cdnsp_free_segments_for_ring(pdev, first); return ret; } cdnsp_link_rings(pdev, ring, first, last, num_segs); trace_cdnsp_ring_expansion(ring); return 0; } static int cdnsp_init_device_ctx(struct cdnsp_device *pdev) { int size = HCC_64BYTE_CONTEXT(pdev->hcc_params) ? 2048 : 1024; pdev->out_ctx.type = CDNSP_CTX_TYPE_DEVICE; pdev->out_ctx.size = size; pdev->out_ctx.ctx_size = CTX_SIZE(pdev->hcc_params); pdev->out_ctx.bytes = dma_pool_zalloc(pdev->device_pool, GFP_ATOMIC, &pdev->out_ctx.dma); if (!pdev->out_ctx.bytes) return -ENOMEM; pdev->in_ctx.type = CDNSP_CTX_TYPE_INPUT; pdev->in_ctx.ctx_size = pdev->out_ctx.ctx_size; pdev->in_ctx.size = size + pdev->out_ctx.ctx_size; pdev->in_ctx.bytes = dma_pool_zalloc(pdev->device_pool, GFP_ATOMIC, &pdev->in_ctx.dma); if (!pdev->in_ctx.bytes) { dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes, pdev->out_ctx.dma); return -ENOMEM; } return 0; } struct cdnsp_input_control_ctx *cdnsp_get_input_control_ctx(struct cdnsp_container_ctx *ctx) { if (ctx->type != CDNSP_CTX_TYPE_INPUT) return NULL; return (struct cdnsp_input_control_ctx *)ctx->bytes; } struct cdnsp_slot_ctx *cdnsp_get_slot_ctx(struct cdnsp_container_ctx *ctx) { if (ctx->type == CDNSP_CTX_TYPE_DEVICE) return (struct cdnsp_slot_ctx *)ctx->bytes; return (struct cdnsp_slot_ctx *)(ctx->bytes + ctx->ctx_size); } struct cdnsp_ep_ctx *cdnsp_get_ep_ctx(struct cdnsp_container_ctx *ctx, unsigned int ep_index) { /* Increment ep index by offset of start of ep ctx array. */ ep_index++; if (ctx->type == CDNSP_CTX_TYPE_INPUT) ep_index++; return (struct cdnsp_ep_ctx *)(ctx->bytes + (ep_index * ctx->ctx_size)); } static void cdnsp_free_stream_ctx(struct cdnsp_device *pdev, struct cdnsp_ep *pep) { dma_pool_free(pdev->device_pool, pep->stream_info.stream_ctx_array, pep->stream_info.ctx_array_dma); } /* The stream context array must be a power of 2. */ static struct cdnsp_stream_ctx *cdnsp_alloc_stream_ctx(struct cdnsp_device *pdev, struct cdnsp_ep *pep) { size_t size = sizeof(struct cdnsp_stream_ctx) * pep->stream_info.num_stream_ctxs; if (size > CDNSP_CTX_SIZE) return NULL; /** * Driver uses intentionally the device_pool to allocated stream * context array. Device Pool has 2048 bytes of size what gives us * 128 entries. */ return dma_pool_zalloc(pdev->device_pool, GFP_DMA32 | GFP_ATOMIC, &pep->stream_info.ctx_array_dma); } struct cdnsp_ring *cdnsp_dma_to_transfer_ring(struct cdnsp_ep *pep, u64 address) { if (pep->ep_state & EP_HAS_STREAMS) return radix_tree_lookup(&pep->stream_info.trb_address_map, address >> TRB_SEGMENT_SHIFT); return pep->ring; } /* * Change an endpoint's internal structure so it supports stream IDs. * The number of requested streams includes stream 0, which cannot be used by * driver. * * The number of stream contexts in the stream context array may be bigger than * the number of streams the driver wants to use. This is because the number of * stream context array entries must be a power of two. */ int cdnsp_alloc_stream_info(struct cdnsp_device *pdev, struct cdnsp_ep *pep, unsigned int num_stream_ctxs, unsigned int num_streams) { struct cdnsp_stream_info *stream_info; struct cdnsp_ring *cur_ring; u32 cur_stream; u64 addr; int ret; int mps; stream_info = &pep->stream_info; stream_info->num_streams = num_streams; stream_info->num_stream_ctxs = num_stream_ctxs; /* Initialize the array of virtual pointers to stream rings. */ stream_info->stream_rings = kcalloc(num_streams, sizeof(struct cdnsp_ring *), GFP_ATOMIC); if (!stream_info->stream_rings) return -ENOMEM; /* Initialize the array of DMA addresses for stream rings for the HW. */ stream_info->stream_ctx_array = cdnsp_alloc_stream_ctx(pdev, pep); if (!stream_info->stream_ctx_array) goto cleanup_stream_rings; memset(stream_info->stream_ctx_array, 0, sizeof(struct cdnsp_stream_ctx) * num_stream_ctxs); INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); mps = usb_endpoint_maxp(pep->endpoint.desc); /* * Allocate rings for all the streams that the driver will use, * and add their segment DMA addresses to the radix tree. * Stream 0 is reserved. */ for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { cur_ring = cdnsp_ring_alloc(pdev, 2, TYPE_STREAM, mps, GFP_ATOMIC); stream_info->stream_rings[cur_stream] = cur_ring; if (!cur_ring) goto cleanup_rings; cur_ring->stream_id = cur_stream; cur_ring->trb_address_map = &stream_info->trb_address_map; /* Set deq ptr, cycle bit, and stream context type. */ addr = cur_ring->first_seg->dma | SCT_FOR_CTX(SCT_PRI_TR) | cur_ring->cycle_state; stream_info->stream_ctx_array[cur_stream].stream_ring = cpu_to_le64(addr); trace_cdnsp_set_stream_ring(cur_ring); ret = cdnsp_update_stream_mapping(cur_ring); if (ret) goto cleanup_rings; } return 0; cleanup_rings: for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { cur_ring = stream_info->stream_rings[cur_stream]; if (cur_ring) { cdnsp_ring_free(pdev, cur_ring); stream_info->stream_rings[cur_stream] = NULL; } } cleanup_stream_rings: kfree(pep->stream_info.stream_rings); return -ENOMEM; } /* Frees all stream contexts associated with the endpoint. */ static void cdnsp_free_stream_info(struct cdnsp_device *pdev, struct cdnsp_ep *pep) { struct cdnsp_stream_info *stream_info = &pep->stream_info; struct cdnsp_ring *cur_ring; int cur_stream; if (!(pep->ep_state & EP_HAS_STREAMS)) return; for (cur_stream = 1; cur_stream < stream_info->num_streams; cur_stream++) { cur_ring = stream_info->stream_rings[cur_stream]; if (cur_ring) { cdnsp_ring_free(pdev, cur_ring); stream_info->stream_rings[cur_stream] = NULL; } } if (stream_info->stream_ctx_array) cdnsp_free_stream_ctx(pdev, pep); kfree(stream_info->stream_rings); pep->ep_state &= ~EP_HAS_STREAMS; } /* All the cdnsp_tds in the ring's TD list should be freed at this point.*/ static void cdnsp_free_priv_device(struct cdnsp_device *pdev) { pdev->dcbaa->dev_context_ptrs[1] = 0; cdnsp_free_endpoint_rings(pdev, &pdev->eps[0]); if (pdev->in_ctx.bytes) dma_pool_free(pdev->device_pool, pdev->in_ctx.bytes, pdev->in_ctx.dma); if (pdev->out_ctx.bytes) dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes, pdev->out_ctx.dma); pdev->in_ctx.bytes = NULL; pdev->out_ctx.bytes = NULL; } static int cdnsp_alloc_priv_device(struct cdnsp_device *pdev) { int ret; ret = cdnsp_init_device_ctx(pdev); if (ret) return ret; /* Allocate endpoint 0 ring. */ pdev->eps[0].ring = cdnsp_ring_alloc(pdev, 2, TYPE_CTRL, 0, GFP_ATOMIC); if (!pdev->eps[0].ring) goto fail; /* Point to output device context in dcbaa. */ pdev->dcbaa->dev_context_ptrs[1] = cpu_to_le64(pdev->out_ctx.dma); pdev->cmd.in_ctx = &pdev->in_ctx; trace_cdnsp_alloc_priv_device(pdev); return 0; fail: dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes, pdev->out_ctx.dma); dma_pool_free(pdev->device_pool, pdev->in_ctx.bytes, pdev->in_ctx.dma); return ret; } void cdnsp_copy_ep0_dequeue_into_input_ctx(struct cdnsp_device *pdev) { struct cdnsp_ep_ctx *ep0_ctx = pdev->eps[0].in_ctx; struct cdnsp_ring *ep_ring = pdev->eps[0].ring; dma_addr_t dma; dma = cdnsp_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue); ep0_ctx->deq = cpu_to_le64(dma | ep_ring->cycle_state); } /* Setup an controller private device for a Set Address command. */ int cdnsp_setup_addressable_priv_dev(struct cdnsp_device *pdev) { struct cdnsp_slot_ctx *slot_ctx; struct cdnsp_ep_ctx *ep0_ctx; u32 max_packets, port; ep0_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, 0); slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); /* Only the control endpoint is valid - one endpoint context. */ slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); switch (pdev->gadget.speed) { case USB_SPEED_SUPER_PLUS: slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); max_packets = MAX_PACKET(512); break; case USB_SPEED_SUPER: slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); max_packets = MAX_PACKET(512); break; case USB_SPEED_HIGH: slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); max_packets = MAX_PACKET(64); break; case USB_SPEED_FULL: slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); max_packets = MAX_PACKET(64); break; default: /* Speed was not set , this shouldn't happen. */ return -EINVAL; } port = DEV_PORT(pdev->active_port->port_num); slot_ctx->dev_port |= cpu_to_le32(port); slot_ctx->dev_state = cpu_to_le32((pdev->device_address & DEV_ADDR_MASK)); ep0_ctx->tx_info = cpu_to_le32(EP_AVG_TRB_LENGTH(0x8)); ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | max_packets); ep0_ctx->deq = cpu_to_le64(pdev->eps[0].ring->first_seg->dma | pdev->eps[0].ring->cycle_state); trace_cdnsp_setup_addressable_priv_device(pdev); return 0; } /* * Convert interval expressed as 2^(bInterval - 1) == interval into * straight exponent value 2^n == interval. */ static unsigned int cdnsp_parse_exponent_interval(struct usb_gadget *g, struct cdnsp_ep *pep) { unsigned int interval; interval = clamp_val(pep->endpoint.desc->bInterval, 1, 16) - 1; if (interval != pep->endpoint.desc->bInterval - 1) dev_warn(&g->dev, "ep %s - rounding interval to %d %sframes\n", pep->name, 1 << interval, g->speed == USB_SPEED_FULL ? "" : "micro"); /* * Full speed isoc endpoints specify interval in frames, * not microframes. We are using microframes everywhere, * so adjust accordingly. */ if (g->speed == USB_SPEED_FULL) interval += 3; /* 1 frame = 2^3 uframes */ /* Controller handles only up to 512ms (2^12). */ if (interval > 12) interval = 12; return interval; } /* * Convert bInterval expressed in microframes (in 1-255 range) to exponent of * microframes, rounded down to nearest power of 2. */ static unsigned int cdnsp_microframes_to_exponent(struct usb_gadget *g, struct cdnsp_ep *pep, unsigned int desc_interval, unsigned int min_exponent, unsigned int max_exponent) { unsigned int interval; interval = fls(desc_interval) - 1; return clamp_val(interval, min_exponent, max_exponent); } /* * Return the polling interval. * * The polling interval is expressed in "microframes". If controllers's Interval * field is set to N, it will service the endpoint every 2^(Interval)*125us. */ static unsigned int cdnsp_get_endpoint_interval(struct usb_gadget *g, struct cdnsp_ep *pep) { unsigned int interval = 0; switch (g->speed) { case USB_SPEED_HIGH: case USB_SPEED_SUPER_PLUS: case USB_SPEED_SUPER: if (usb_endpoint_xfer_int(pep->endpoint.desc) || usb_endpoint_xfer_isoc(pep->endpoint.desc)) interval = cdnsp_parse_exponent_interval(g, pep); break; case USB_SPEED_FULL: if (usb_endpoint_xfer_isoc(pep->endpoint.desc)) { interval = cdnsp_parse_exponent_interval(g, pep); } else if (usb_endpoint_xfer_int(pep->endpoint.desc)) { interval = pep->endpoint.desc->bInterval << 3; interval = cdnsp_microframes_to_exponent(g, pep, interval, 3, 10); } break; default: WARN_ON(1); } return interval; } /* * The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. * High speed endpoint descriptors can define "the number of additional * transaction opportunities per microframe", but that goes in the Max Burst * endpoint context field. */ static u32 cdnsp_get_endpoint_mult(struct usb_gadget *g, struct cdnsp_ep *pep) { if (g->speed < USB_SPEED_SUPER || !usb_endpoint_xfer_isoc(pep->endpoint.desc)) return 0; return pep->endpoint.comp_desc->bmAttributes; } static u32 cdnsp_get_endpoint_max_burst(struct usb_gadget *g, struct cdnsp_ep *pep) { /* Super speed and Plus have max burst in ep companion desc */ if (g->speed >= USB_SPEED_SUPER) return pep->endpoint.comp_desc->bMaxBurst; if (g->speed == USB_SPEED_HIGH && (usb_endpoint_xfer_isoc(pep->endpoint.desc) || usb_endpoint_xfer_int(pep->endpoint.desc))) return usb_endpoint_maxp_mult(pep->endpoint.desc) - 1; return 0; } static u32 cdnsp_get_endpoint_type(const struct usb_endpoint_descriptor *desc) { int in; in = usb_endpoint_dir_in(desc); switch (usb_endpoint_type(desc)) { case USB_ENDPOINT_XFER_CONTROL: return CTRL_EP; case USB_ENDPOINT_XFER_BULK: return in ? BULK_IN_EP : BULK_OUT_EP; case USB_ENDPOINT_XFER_ISOC: return in ? ISOC_IN_EP : ISOC_OUT_EP; case USB_ENDPOINT_XFER_INT: return in ? INT_IN_EP : INT_OUT_EP; } return 0; } /* * Return the maximum endpoint service interval time (ESIT) payload. * Basically, this is the maxpacket size, multiplied by the burst size * and mult size. */ static u32 cdnsp_get_max_esit_payload(struct usb_gadget *g, struct cdnsp_ep *pep) { int max_packet; int max_burst; /* Only applies for interrupt or isochronous endpoints*/ if (usb_endpoint_xfer_control(pep->endpoint.desc) || usb_endpoint_xfer_bulk(pep->endpoint.desc)) return 0; /* SuperSpeedPlus Isoc ep sending over 48k per EIST. */ if (g->speed >= USB_SPEED_SUPER_PLUS && USB_SS_SSP_ISOC_COMP(pep->endpoint.desc->bmAttributes)) return le16_to_cpu(pep->endpoint.comp_desc->wBytesPerInterval); /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ else if (g->speed >= USB_SPEED_SUPER) return le16_to_cpu(pep->endpoint.comp_desc->wBytesPerInterval); max_packet = usb_endpoint_maxp(pep->endpoint.desc); max_burst = usb_endpoint_maxp_mult(pep->endpoint.desc); /* A 0 in max burst means 1 transfer per ESIT */ return max_packet * max_burst; } int cdnsp_endpoint_init(struct cdnsp_device *pdev, struct cdnsp_ep *pep, gfp_t mem_flags) { enum cdnsp_ring_type ring_type; struct cdnsp_ep_ctx *ep_ctx; unsigned int err_count = 0; unsigned int avg_trb_len; unsigned int max_packet; unsigned int max_burst; unsigned int interval; u32 max_esit_payload; unsigned int mult; u32 endpoint_type; int ret; ep_ctx = pep->in_ctx; endpoint_type = cdnsp_get_endpoint_type(pep->endpoint.desc); if (!endpoint_type) return -EINVAL; ring_type = usb_endpoint_type(pep->endpoint.desc); /* * Get values to fill the endpoint context, mostly from ep descriptor. * The average TRB buffer length for bulk endpoints is unclear as we * have no clue on scatter gather list entry size. For Isoc and Int, * set it to max available. */ max_esit_payload = cdnsp_get_max_esit_payload(&pdev->gadget, pep); interval = cdnsp_get_endpoint_interval(&pdev->gadget, pep); mult = cdnsp_get_endpoint_mult(&pdev->gadget, pep); max_packet = usb_endpoint_maxp(pep->endpoint.desc); max_burst = cdnsp_get_endpoint_max_burst(&pdev->gadget, pep); avg_trb_len = max_esit_payload; /* Allow 3 retries for everything but isoc, set CErr = 3. */ if (!usb_endpoint_xfer_isoc(pep->endpoint.desc)) err_count = 3; if (usb_endpoint_xfer_bulk(pep->endpoint.desc) && pdev->gadget.speed == USB_SPEED_HIGH) max_packet = 512; /* Controller spec indicates that ctrl ep avg TRB Length should be 8. */ if (usb_endpoint_xfer_control(pep->endpoint.desc)) avg_trb_len = 8; /* Set up the endpoint ring. */ pep->ring = cdnsp_ring_alloc(pdev, 2, ring_type, max_packet, mem_flags); if (!pep->ring) return -ENOMEM; pep->skip = false; /* Fill the endpoint context */ ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | EP_INTERVAL(interval) | EP_MULT(mult)); ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | MAX_PACKET(max_packet) | MAX_BURST(max_burst) | ERROR_COUNT(err_count)); ep_ctx->deq = cpu_to_le64(pep->ring->first_seg->dma | pep->ring->cycle_state); ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | EP_AVG_TRB_LENGTH(avg_trb_len)); if (usb_endpoint_xfer_bulk(pep->endpoint.desc) && pdev->gadget.speed > USB_SPEED_HIGH) { ret = cdnsp_alloc_streams(pdev, pep); if (ret < 0) return ret; } return 0; } void cdnsp_endpoint_zero(struct cdnsp_device *pdev, struct cdnsp_ep *pep) { pep->in_ctx->ep_info = 0; pep->in_ctx->ep_info2 = 0; pep->in_ctx->deq = 0; pep->in_ctx->tx_info = 0; } static int cdnsp_alloc_erst(struct cdnsp_device *pdev, struct cdnsp_ring *evt_ring, struct cdnsp_erst *erst) { struct cdnsp_erst_entry *entry; struct cdnsp_segment *seg; unsigned int val; size_t size; size = sizeof(struct cdnsp_erst_entry) * evt_ring->num_segs; erst->entries = dma_alloc_coherent(pdev->dev, size, &erst->erst_dma_addr, GFP_KERNEL); if (!erst->entries) return -ENOMEM; erst->num_entries = evt_ring->num_segs; seg = evt_ring->first_seg; for (val = 0; val < evt_ring->num_segs; val++) { entry = &erst->entries[val]; entry->seg_addr = cpu_to_le64(seg->dma); entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); entry->rsvd = 0; seg = seg->next; } return 0; } static void cdnsp_free_erst(struct cdnsp_device *pdev, struct cdnsp_erst *erst) { size_t size = sizeof(struct cdnsp_erst_entry) * (erst->num_entries); struct device *dev = pdev->dev; if (erst->entries) dma_free_coherent(dev, size, erst->entries, erst->erst_dma_addr); erst->entries = NULL; } void cdnsp_mem_cleanup(struct cdnsp_device *pdev) { struct device *dev = pdev->dev; cdnsp_free_priv_device(pdev); cdnsp_free_erst(pdev, &pdev->erst); if (pdev->event_ring) cdnsp_ring_free(pdev, pdev->event_ring); pdev->event_ring = NULL; if (pdev->cmd_ring) cdnsp_ring_free(pdev, pdev->cmd_ring); pdev->cmd_ring = NULL; dma_pool_destroy(pdev->segment_pool); pdev->segment_pool = NULL; dma_pool_destroy(pdev->device_pool); pdev->device_pool = NULL; dma_free_coherent(dev, sizeof(*pdev->dcbaa), pdev->dcbaa, pdev->dcbaa->dma); pdev->dcbaa = NULL; pdev->usb2_port.exist = 0; pdev->usb3_port.exist = 0; pdev->usb2_port.port_num = 0; pdev->usb3_port.port_num = 0; pdev->active_port = NULL; } static void cdnsp_set_event_deq(struct cdnsp_device *pdev) { dma_addr_t deq; u64 temp; deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg, pdev->event_ring->dequeue); /* Update controller event ring dequeue pointer */ temp = cdnsp_read_64(&pdev->ir_set->erst_dequeue); temp &= ERST_PTR_MASK; /* * Don't clear the EHB bit (which is RW1C) because * there might be more events to service. */ temp &= ~ERST_EHB; cdnsp_write_64(((u64)deq & (u64)~ERST_PTR_MASK) | temp, &pdev->ir_set->erst_dequeue); } static void cdnsp_add_in_port(struct cdnsp_device *pdev, struct cdnsp_port *port, __le32 __iomem *addr) { u32 temp, port_offset, port_count; temp = readl(addr); port->maj_rev = CDNSP_EXT_PORT_MAJOR(temp); port->min_rev = CDNSP_EXT_PORT_MINOR(temp); /* Port offset and count in the third dword.*/ temp = readl(addr + 2); port_offset = CDNSP_EXT_PORT_OFF(temp); port_count = CDNSP_EXT_PORT_COUNT(temp); trace_cdnsp_port_info(addr, port_offset, port_count, port->maj_rev); port->port_num = port_offset; port->exist = 1; } /* * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that * specify what speeds each port is supposed to be. */ static int cdnsp_setup_port_arrays(struct cdnsp_device *pdev) { void __iomem *base; u32 offset; int i; base = &pdev->cap_regs->hc_capbase; offset = cdnsp_find_next_ext_cap(base, 0, EXT_CAP_CFG_DEV_20PORT_CAP_ID); pdev->port20_regs = base + offset; offset = cdnsp_find_next_ext_cap(base, 0, D_XEC_CFG_3XPORT_CAP); pdev->port3x_regs = base + offset; offset = 0; base = &pdev->cap_regs->hc_capbase; /* Driver expects max 2 extended protocol capability. */ for (i = 0; i < 2; i++) { u32 temp; offset = cdnsp_find_next_ext_cap(base, offset, EXT_CAPS_PROTOCOL); temp = readl(base + offset); if (CDNSP_EXT_PORT_MAJOR(temp) == 0x03 && !pdev->usb3_port.port_num) cdnsp_add_in_port(pdev, &pdev->usb3_port, base + offset); if (CDNSP_EXT_PORT_MAJOR(temp) == 0x02 && !pdev->usb2_port.port_num) cdnsp_add_in_port(pdev, &pdev->usb2_port, base + offset); } if (!pdev->usb2_port.exist || !pdev->usb3_port.exist) { dev_err(pdev->dev, "Error: Only one port detected\n"); return -ENODEV; } trace_cdnsp_init("Found USB 2.0 ports and USB 3.0 ports."); pdev->usb2_port.regs = (struct cdnsp_port_regs __iomem *) (&pdev->op_regs->port_reg_base + NUM_PORT_REGS * (pdev->usb2_port.port_num - 1)); pdev->usb3_port.regs = (struct cdnsp_port_regs __iomem *) (&pdev->op_regs->port_reg_base + NUM_PORT_REGS * (pdev->usb3_port.port_num - 1)); return 0; } /* * Initialize memory for CDNSP (one-time init). * * Program the PAGESIZE register, initialize the device context array, create * device contexts, set up a command ring segment, create event * ring (one for now). */ int cdnsp_mem_init(struct cdnsp_device *pdev) { struct device *dev = pdev->dev; int ret = -ENOMEM; unsigned int val; dma_addr_t dma; u32 page_size; u64 val_64; /* * Use 4K pages, since that's common and the minimum the * controller supports */ page_size = 1 << 12; val = readl(&pdev->op_regs->config_reg); val |= ((val & ~MAX_DEVS) | CDNSP_DEV_MAX_SLOTS) | CONFIG_U3E; writel(val, &pdev->op_regs->config_reg); /* * Doorbell array must be physically contiguous * and 64-byte (cache line) aligned. */ pdev->dcbaa = dma_alloc_coherent(dev, sizeof(*pdev->dcbaa), &dma, GFP_KERNEL); if (!pdev->dcbaa) return -ENOMEM; pdev->dcbaa->dma = dma; cdnsp_write_64(dma, &pdev->op_regs->dcbaa_ptr); /* * Initialize the ring segment pool. The ring must be a contiguous * structure comprised of TRBs. The TRBs must be 16 byte aligned, * however, the command ring segment needs 64-byte aligned segments * and our use of dma addresses in the trb_address_map radix tree needs * TRB_SEGMENT_SIZE alignment, so driver pick the greater alignment * need. */ pdev->segment_pool = dma_pool_create("CDNSP ring segments", dev, TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, page_size); if (!pdev->segment_pool) goto release_dcbaa; pdev->device_pool = dma_pool_create("CDNSP input/output contexts", dev, CDNSP_CTX_SIZE, 64, page_size); if (!pdev->device_pool) goto destroy_segment_pool; /* Set up the command ring to have one segments for now. */ pdev->cmd_ring = cdnsp_ring_alloc(pdev, 1, TYPE_COMMAND, 0, GFP_KERNEL); if (!pdev->cmd_ring) goto destroy_device_pool; /* Set the address in the Command Ring Control register */ val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring); val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) | (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) | pdev->cmd_ring->cycle_state; cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring); val = readl(&pdev->cap_regs->db_off); val &= DBOFF_MASK; pdev->dba = (void __iomem *)pdev->cap_regs + val; /* Set ir_set to interrupt register set 0 */ pdev->ir_set = &pdev->run_regs->ir_set[0]; /* * Event ring setup: Allocate a normal ring, but also setup * the event ring segment table (ERST). */ pdev->event_ring = cdnsp_ring_alloc(pdev, ERST_NUM_SEGS, TYPE_EVENT, 0, GFP_KERNEL); if (!pdev->event_ring) goto free_cmd_ring; ret = cdnsp_alloc_erst(pdev, pdev->event_ring, &pdev->erst); if (ret) goto free_event_ring; /* Set ERST count with the number of entries in the segment table. */ val = readl(&pdev->ir_set->erst_size); val &= ERST_SIZE_MASK; val |= ERST_NUM_SEGS; writel(val, &pdev->ir_set->erst_size); /* Set the segment table base address. */ val_64 = cdnsp_read_64(&pdev->ir_set->erst_base); val_64 &= ERST_PTR_MASK; val_64 |= (pdev->erst.erst_dma_addr & (u64)~ERST_PTR_MASK); cdnsp_write_64(val_64, &pdev->ir_set->erst_base); /* Set the event ring dequeue address. */ cdnsp_set_event_deq(pdev); ret = cdnsp_setup_port_arrays(pdev); if (ret) goto free_erst; ret = cdnsp_alloc_priv_device(pdev); if (ret) { dev_err(pdev->dev, "Could not allocate cdnsp_device data structures\n"); goto free_erst; } return 0; free_erst: cdnsp_free_erst(pdev, &pdev->erst); free_event_ring: cdnsp_ring_free(pdev, pdev->event_ring); free_cmd_ring: cdnsp_ring_free(pdev, pdev->cmd_ring); destroy_device_pool: dma_pool_destroy(pdev->device_pool); destroy_segment_pool: dma_pool_destroy(pdev->segment_pool); release_dcbaa: dma_free_coherent(dev, sizeof(*pdev->dcbaa), pdev->dcbaa, pdev->dcbaa->dma); cdnsp_reset(pdev); return ret; }