// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2019 Google LLC */ #include #include "ufshcd-crypto.h" /* Blk-crypto modes supported by UFS crypto */ static const struct ufs_crypto_alg_entry { enum ufs_crypto_alg ufs_alg; enum ufs_crypto_key_size ufs_key_size; } ufs_crypto_algs[BLK_ENCRYPTION_MODE_MAX] = { [BLK_ENCRYPTION_MODE_AES_256_XTS] = { .ufs_alg = UFS_CRYPTO_ALG_AES_XTS, .ufs_key_size = UFS_CRYPTO_KEY_SIZE_256, }, }; static int ufshcd_program_key(struct ufs_hba *hba, const union ufs_crypto_cfg_entry *cfg, int slot) { int i; u32 slot_offset = hba->crypto_cfg_register + slot * sizeof(*cfg); int err = 0; ufshcd_hold(hba); if (hba->vops && hba->vops->program_key) { err = hba->vops->program_key(hba, cfg, slot); goto out; } /* Ensure that CFGE is cleared before programming the key */ ufshcd_writel(hba, 0, slot_offset + 16 * sizeof(cfg->reg_val[0])); for (i = 0; i < 16; i++) { ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[i]), slot_offset + i * sizeof(cfg->reg_val[0])); } /* Write dword 17 */ ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[17]), slot_offset + 17 * sizeof(cfg->reg_val[0])); /* Dword 16 must be written last */ ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[16]), slot_offset + 16 * sizeof(cfg->reg_val[0])); out: ufshcd_release(hba); return err; } static int ufshcd_crypto_keyslot_program(struct blk_crypto_profile *profile, const struct blk_crypto_key *key, unsigned int slot) { struct ufs_hba *hba = container_of(profile, struct ufs_hba, crypto_profile); const union ufs_crypto_cap_entry *ccap_array = hba->crypto_cap_array; const struct ufs_crypto_alg_entry *alg = &ufs_crypto_algs[key->crypto_cfg.crypto_mode]; u8 data_unit_mask = key->crypto_cfg.data_unit_size / 512; int i; int cap_idx = -1; union ufs_crypto_cfg_entry cfg = {}; int err; BUILD_BUG_ON(UFS_CRYPTO_KEY_SIZE_INVALID != 0); for (i = 0; i < hba->crypto_capabilities.num_crypto_cap; i++) { if (ccap_array[i].algorithm_id == alg->ufs_alg && ccap_array[i].key_size == alg->ufs_key_size && (ccap_array[i].sdus_mask & data_unit_mask)) { cap_idx = i; break; } } if (WARN_ON(cap_idx < 0)) return -EOPNOTSUPP; cfg.data_unit_size = data_unit_mask; cfg.crypto_cap_idx = cap_idx; cfg.config_enable = UFS_CRYPTO_CONFIGURATION_ENABLE; if (ccap_array[cap_idx].algorithm_id == UFS_CRYPTO_ALG_AES_XTS) { /* In XTS mode, the blk_crypto_key's size is already doubled */ memcpy(cfg.crypto_key, key->raw, key->size/2); memcpy(cfg.crypto_key + UFS_CRYPTO_KEY_MAX_SIZE/2, key->raw + key->size/2, key->size/2); } else { memcpy(cfg.crypto_key, key->raw, key->size); } err = ufshcd_program_key(hba, &cfg, slot); memzero_explicit(&cfg, sizeof(cfg)); return err; } static int ufshcd_clear_keyslot(struct ufs_hba *hba, int slot) { /* * Clear the crypto cfg on the device. Clearing CFGE * might not be sufficient, so just clear the entire cfg. */ union ufs_crypto_cfg_entry cfg = {}; return ufshcd_program_key(hba, &cfg, slot); } static int ufshcd_crypto_keyslot_evict(struct blk_crypto_profile *profile, const struct blk_crypto_key *key, unsigned int slot) { struct ufs_hba *hba = container_of(profile, struct ufs_hba, crypto_profile); return ufshcd_clear_keyslot(hba, slot); } bool ufshcd_crypto_enable(struct ufs_hba *hba) { if (!(hba->caps & UFSHCD_CAP_CRYPTO)) return false; /* Reset might clear all keys, so reprogram all the keys. */ blk_crypto_reprogram_all_keys(&hba->crypto_profile); return true; } static const struct blk_crypto_ll_ops ufshcd_crypto_ops = { .keyslot_program = ufshcd_crypto_keyslot_program, .keyslot_evict = ufshcd_crypto_keyslot_evict, }; static enum blk_crypto_mode_num ufshcd_find_blk_crypto_mode(union ufs_crypto_cap_entry cap) { int i; for (i = 0; i < ARRAY_SIZE(ufs_crypto_algs); i++) { BUILD_BUG_ON(UFS_CRYPTO_KEY_SIZE_INVALID != 0); if (ufs_crypto_algs[i].ufs_alg == cap.algorithm_id && ufs_crypto_algs[i].ufs_key_size == cap.key_size) { return i; } } return BLK_ENCRYPTION_MODE_INVALID; } /** * ufshcd_hba_init_crypto_capabilities - Read crypto capabilities, init crypto * fields in hba * @hba: Per adapter instance * * Return: 0 if crypto was initialized or is not supported, else a -errno value. */ int ufshcd_hba_init_crypto_capabilities(struct ufs_hba *hba) { int cap_idx; int err = 0; enum blk_crypto_mode_num blk_mode_num; /* * Don't use crypto if either the hardware doesn't advertise the * standard crypto capability bit *or* if the vendor specific driver * hasn't advertised that crypto is supported. */ if (!(hba->capabilities & MASK_CRYPTO_SUPPORT) || !(hba->caps & UFSHCD_CAP_CRYPTO)) goto out; hba->crypto_capabilities.reg_val = cpu_to_le32(ufshcd_readl(hba, REG_UFS_CCAP)); hba->crypto_cfg_register = (u32)hba->crypto_capabilities.config_array_ptr * 0x100; hba->crypto_cap_array = devm_kcalloc(hba->dev, hba->crypto_capabilities.num_crypto_cap, sizeof(hba->crypto_cap_array[0]), GFP_KERNEL); if (!hba->crypto_cap_array) { err = -ENOMEM; goto out; } /* The actual number of configurations supported is (CFGC+1) */ err = devm_blk_crypto_profile_init( hba->dev, &hba->crypto_profile, hba->crypto_capabilities.config_count + 1); if (err) goto out; hba->crypto_profile.ll_ops = ufshcd_crypto_ops; /* UFS only supports 8 bytes for any DUN */ hba->crypto_profile.max_dun_bytes_supported = 8; hba->crypto_profile.dev = hba->dev; /* * Cache all the UFS crypto capabilities and advertise the supported * crypto modes and data unit sizes to the block layer. */ for (cap_idx = 0; cap_idx < hba->crypto_capabilities.num_crypto_cap; cap_idx++) { hba->crypto_cap_array[cap_idx].reg_val = cpu_to_le32(ufshcd_readl(hba, REG_UFS_CRYPTOCAP + cap_idx * sizeof(__le32))); blk_mode_num = ufshcd_find_blk_crypto_mode( hba->crypto_cap_array[cap_idx]); if (blk_mode_num != BLK_ENCRYPTION_MODE_INVALID) hba->crypto_profile.modes_supported[blk_mode_num] |= hba->crypto_cap_array[cap_idx].sdus_mask * 512; } return 0; out: /* Indicate that init failed by clearing UFSHCD_CAP_CRYPTO */ hba->caps &= ~UFSHCD_CAP_CRYPTO; return err; } /** * ufshcd_init_crypto - Initialize crypto hardware * @hba: Per adapter instance */ void ufshcd_init_crypto(struct ufs_hba *hba) { int slot; if (!(hba->caps & UFSHCD_CAP_CRYPTO)) return; /* Clear all keyslots - the number of keyslots is (CFGC + 1) */ for (slot = 0; slot < hba->crypto_capabilities.config_count + 1; slot++) ufshcd_clear_keyslot(hba, slot); } void ufshcd_crypto_register(struct ufs_hba *hba, struct request_queue *q) { if (hba->caps & UFSHCD_CAP_CRYPTO) blk_crypto_register(&hba->crypto_profile, q); }